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Basics notations and properties

Standard notations

R — the real axis with elements α, β, . . . , ω. R+ is the nonnegative
part of R.

En =

n︷ ︸︸ ︷
R× R× . . .R, E+

n =

n︷ ︸︸ ︷
R+ × R+ × . . .R+. Dimension n may

be omitted if irrelevant.

0 and 1 are null and unit (= (1, 1, . . . , 1)) elements of E .

ab — the inner product of a, b ∈ E . Orthonorm ‖a‖ =
√
aa,

‖x‖∞ = maxi=1,2,...,n |xi |.
∆E = {x : 1x = 1, x ∈ E+} — standart symplex in E . Can also be
denoted as ∆n ⊂ E+

n if it matters.
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Basics notations and properties

Convexity

Here A is a finite set of ponts a1, a2, . . . , am in E .

coA = {x =
∑m

i=1 αia
i} with α ∈ ∆m is a convex hull of A. It can

also be called polytope;

CoA = {x =
∑m

i=1 αia
i} with α ∈ E+

m is a conical hull of A. It can
also be called convex polyhedral cone;

A defines also the linear operator A : Em → En such that
Az = x =

∑m
i=1 zia

i . AZ = {Az , z ∈ Z ;

(X )x = minz∈X xz is the support function of X . Finite for closed
convex bounded sets (default);

epi f = {(x , µ) : µ ≥ f (x)} ⊂ E × R — the epigraph of function f ;

Fenchel-Moreau conjugate function:
f ?(g) = supx{xg − f (x)} = (epi f )(g ,−1) .
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Basics notations and properties

Polytopes and polyhedrons

Let P is the default set.

If P = co{AP} for some finite set AP then it is called the inner
representation of P.

If P = {x : APx ≤ bP} for some linear operator AP and bP ∈ Em

then it is called the outer representation.

These representations are equivalent, however they may have very different
complexity: any of these may have exponential (wrt dimension) complexity
with the polynomial counterpart.
It advocates different algorithmic approaches for solving computational
problems in these two representations.
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Basics notations and properties

Projection problem

Orthogonal projection (most common):

min ‖x − a‖2

x ∈ X
= ‖ΠX (a)− a‖2 = min ‖x‖2

x ∈ X − a
= ‖ΠX−a(0)‖2

where ΠX (a) ∈ X and where ΠX−a(0) ∈ X − a.
Good news:

a) ΠX : E → X — single-valued (follows from strong convexity).

a) Lipschitz continious with the Lipschitz constant LX ≤ 1:
‖ΠX (a)− ΠX (b)‖ ≤ LX‖a− b‖ for any a, b.

Not so good news:

a) It is not so rare that LX = 1 (nonexpansion) so forget about iteration
algorithms.

b) Even if for some X constant LX < 1 it may be VERY close to 1 so
iteration algorithm may be VERY slow.
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Simple sets

Trivial cases

boxes, spheres, halfspaces, linear manyfolds — closed form solutions.
Problems become nontrivial for huge dimensions, and/or degenerate
cases but this is another story.

ellipsoid – reducable to 1-dimensional polynom root finding problem
with good bounds for the single positive real root. Smth like n log(ε)
complexity bound for ε-accuracy.

Dual function for ellips projection ψ(u) =
n∑

i=1

z2
i

a2
i (1+u/a2

i )2 = 1
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Simple sets

Canonical simplex

Projection problem with many applications X = ∆E

min ‖a− x‖2.
x ∈ ∆E

The number of faces exponential in dimension n, the lowest algorithmic
upper complexity bound is unknown. Algorithms with smth like n log(n)
complexity:

Michelot (C. Michelot, JOTA, 1986)

Malozemov–Tamasyan, Comput. Math. and Math. Phys., 2016)

and probably many others . . .
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Simple sets

Michelot algorithm
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Michelot algorithm function [ x iter ] = michelot(z, rho)

x = z;

x += (rho - sum(x)) / rows(x);

iter = 0;

do

bv = (x > 0); nbv = sum(bv);

if !all(bv)

x(!bv) = 0;

x(bv) += ( (rho-sum(x(bv))) / nbv );

endif

iter++;

until all( x >= 0)

endfunction
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Polytopes

Polytope projection

Problem:
min
x∈P
‖x‖2,

where P = co{p̂i , i ∈ I} = co{P̂}.
Rewrite as constrained QP ?

min ‖x‖2 s.t. x = P̂s, s ∈ ∆.

Essential increase in the number of unknowns. Semidefinite.

Rewrite in baricentric coordinates ?

min sP̂T P̂s s.t. s ∈ ∆.

High chances of dense P̂T P̂ Not all pipj will actually be needed. May
be semidefinite.

This motivated the development of a special algorithm not unlike the
Active Set variety but with its own add-delete rules.
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Polytopes PTP algorithm

PTP algorithm

Data: X̂ = {x̂1, x̂2, . . . , x̂N}
Result: x? ∈ X with the minimal norm
Define initial X̄ ⊂ X̂ and the least norm x̄ ∈ lin(X̄ ) such that
x̄ ∈ co(X̄ );

while There is a chance to improve x̄ do

Add some x̂ ∈ X̂ which results in decrease of distance:

min
x∈Lin(x̂ ,X̄ )

‖x‖ = ‖x s‖ < ‖x̄‖

Delete x̂ ∈ X̄ with negative baricentric coordinate.

end
Nurminski E.A. Convergence of the Suitable Affine Subspace Method . . . : Comp. Math. Math. Phys., Vol. 45 No. 11, 2005,
pp. 1915-1922.

Python and Octave codes. https://www.researchgate.net, my page.
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Polytopes PTP algorithm

Exercise in Geometry

Start from a suitable basis

O

L1

x̂1

x̂2

ΠL1
(0)

x̂3

Halfway to the next suitable basis

O

L2

x̂1

x̂2

x̂3
ΠL2

(0)

ΠL1(0)

A suitable basis for X = {x̂1, x̂2, . . . } is such subset Y ⊂ X that

min
x∈Lin(Y )

‖x‖ = min
x∈co{Y )}

‖x‖
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Polytopes Numerical performance

Run-Time Results

QP – off-the-shelf general purpose quadratic programming subroutine.

PTP – specialized polytope projection.
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Polytopes Numerical performance

PTP iterations complexity
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PTP run-time dependence on the base size, fitted with the quadratic
approximation 1.833 10−8x2 + 5.764 10−6x + 0.0097
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Polyhedrons

Systems of linear inequalities

What about minx∈X ‖x‖2 when

X = {x : Ax ≤ b} = {x : aix ≤ βi , i = 1, 2, . . . ,m}?

Problems:

direct transformation into polytope

PX = co{x̂k , k = 1, 2, . . . ,K}

is impractical because of exponentialy large K .

Something like column generation technique with solving LP problems
of the type

min
x∈X

px = min
Ax≤b

px

also does not look very promissing.
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Polyhedrons Reduction to cone projection

But convex analysis comes to the resque

A few simple transformations

Ax ≤ b ↔ Āx̄ ≤ 0
ax̄ = 1

where Ā = |A, −b|, x̄ = (x , ξ) and a = (0, 0, . . . , 0, 1).
Redenote for simplicity:

K = {x : Ax ≤ 0}, H = {x : xa = 1}

where a, x ∈ E .

Continue on the next 10 slides ...

E.A. Nurminski (FEFU) Projection VAO-2020 16 / 34



Polyhedrons Reduction to cone projection

Using standard duality we can suggest the following sequence of
transformations:

min
x ∈ KA ∩ H

1
2‖x‖

2 = min
x1 ∈ KA, x

2 ∈ H,
x1 = x2

1
2‖x

1‖2 =

maxθ,u{−θ + minx1,x2∈K{1
2‖x

1‖2 + u(x1 − x2) + θax1}} =

maxθ{−θ + maxu{minx{1
2‖x‖

2 + (u + θa)x}+ minx∈K{−ux}}

Of course

min
x
{1

2
‖x‖2 + (u + θa)x} = −1

2
‖u + θa‖2

and minx∈K{−ux} is the indicator function of K+ (upto taking into
account −u), so we arrive to the next slide ..
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Polyhedrons Reduction to cone projection

Final result

Taking out all intermediate computation we see the final result as

min
x ∈ KA ∩ H

1
2‖x‖

2 = maxθ,u∈K+{−θ − 1
2‖u − θa‖

2} =

−minθ{θ + minu∈K+ ‖u − θa‖2}

The essential part of it is just projection of the point θa on the cone K+:

φ(θ) = min
u∈K+

‖u − θa‖2 = φ(1)θ2.

It means that to project on a polyheadron we have to project the point
a = (0, 0, . . . , 0, 1) on the cone gererated by rows of the system of
inequalities (in fact in conjugate space)
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Polyhedrons Numerical performance

Rate of convergence for polyheadron 1000x2000
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Polyhedrons Numerical performance

Rate of convergence for polyheadron projection
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Polyhedrons Numerical performance

Projection on random polyheadrons

n m min max ave std ntest fail

1000 1500 470 490 476.7143 7.0170 7 0
1000 1600 478 521 500.3000 14.5911 10 0
1000 1700 502 541 523.1000 11.3964 10 0
1000 1800 516 558 537.3000 14.8702 10 0
1000 1900 549 581 567.5556 11.7698 9 0
1000 2000 568 596 581.2857 10.7659 7 0

1500 1800 535 567 554.0000 12.9228 5 0
1500 1900 567 595 576.7500 12.7639 4 0
1500 2000 574 616 596.7500 17.6517 4 0
1500 2100 595 631 617.6667 19.7315 3 0

n — vars, m — ineqs, min,max — min,max iters, ave — mean iters, std — std dev, ntest — succs, fail — fails.
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Polyhedrons Scaled truncated cones approach

Truncated cones

b

O

a1

a2
a3

a4

a5

b

a1

a2

a3

a4

a5

It is almost obvious that for scaling factor γ large enough

min
x∈Co{A}

‖x − b‖2 = min
x∈γ co{,A}

‖x − b‖2

. Q: How big must be γ ?
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Polyhedrons Scaled truncated cones approach

Truncated cones

b

O

‖bmin‖
‖b‖

a1

a2
a3

a4

a5

Thm: If bbmin < ‖bmin‖2 then ΠAc (b) = ΠCo{A}(b).

It implies that γ > ‖b‖/‖bmin‖ will suffice.
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Polyhedrons Scaled truncated cones approach

Scaled truncated cone algorithm

Data: The set A = {ai , i = 1, 2, . . . } of generators of a cone K (A),
the vector b to be projected on the cone K (A).

Result: The solution bK of projection problem: b → Co{A}.
Phase 1. Compute a suitable value for the scaling parameter ρ by
solving the auxiliary polytope projection problem

min
z∈co{A}

‖z‖2 = ρ2
min

and set ρ > ‖b‖/ρmin.
Phase 2: Solve the projection problem

min
z∈co{0,ρAc}

‖z − b‖2 = ‖bK − b‖2.
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Polyhedrons Scaled truncated cones approach

Numerical experiments with STAC
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Computational complexity for solutions of problems phase-1, phase-2 for
three different values of the size of the data set: A – 106, B – 2 · 106 and
C – 3 · 106 dual precision elements.
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Applications Linear Optimization

Consider LO-problem:
min
Ax≤b

cx = cx?.

Seems everybody knew but nobody cared to proof that

x? = ΠX (x0 − θc)

for arbitrary x0 and large enough θ > 0.
Lemma. Let x?, u? are unique primal-dual solutions of the primal-dual LO
formulations of the problem above, which satisfy strict complementarity
conditions

u?(Ax? − b) = 0; u? > Ax? − b

and K ◦X (x?) is a polar cone for the feasible set X at the optimal point x?.
Then −c ∈ int(K ◦X (x?)).
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Applications Linear Optimization

Linear optimization

x2

x10 1

2

3

4
x∗

−c
=
(1
0,
9)

Simplex

x2

x1

(30, 27)

x∗

−c
=
(1
0,
9)

Single-projection procedure, θ = 3
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Applications Decomposition

Polytope Decomposition

Let A = {ai , i = 1, 2, . . . ,m} and consider minx∈X ‖x‖2 where

X = co{A} = co{Ac
k , k = 1, 2, . . . ,K},

and Ac
k = co{Ak}, and Ak ⊂ A, k = 1,K is a covering of A.

Algorithm for minx∈X ‖x‖2:
start with z0 ∈ A,m = 0
Loop:
Decomposition: solve minw∈co{Ac

k ,z
m} ‖w‖2 = ‖wk‖2, k = 1, 2, . . . ,K

Coordination: solve minz∈co{wk ,k=1,2,...,K ‖z‖2 = ‖zm+1‖2

Work MUCH better if we adapt covering !
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Applications Nondifferentiable optimization

Conjugate subgradient algorithms

Descent direction is found as projection on co{g s , s = 1, 2, . . . }:
1 Wolfe, P.: A Method of Conjugate Subgradients for Minimizing

Nondifferentiable Functions. Mathematical Programming Study, 3,
145-–173 (1975)

2 Li, Q.: Conjugate gradient type methods for the nondifferentiable
convex minimization. Optimization Letters, 7(3), 533—545 (2013)

The same idea can be used for gradient methods for VI.
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Applications Nondifferentiable optimization

Conjugate Epi-Projection Algorithm

The basic idea:

f ?(0) = −min
x

f (x) = −f? = inf
(0,µ)∈epi f ?

µ.

(recall that f ?(g) = supx{xg − f (x)}) and use projection onto the
epigraph epi f ? for computing f ?(0).
As the result the algorithm consists of two basic operations:

1 Projection.
min

(ξ,g)∈epi f ?
{(ξ − ξk)2 + ‖g‖2}.

2 Support-Update. Compute support function vk = (epi f ?)zk and
update the approximate solution with ξk+1

ξk+1 = vk/(f ?(gk
p )− ξk).
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Applications Nondifferentiable optimization

Project

Conjugate variables g

f
?
(g
)

f ?(0)

O

epif ?

ξk

Projection of (ξ, 0) onto epi f ?.
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Applications Nondifferentiable optimization

Support-Update

Conjugate variables g

f
?
(g
)

f ?(0)

O

epif ?

ξk

ξk+1

Compute support function of epi f ?:

sup
g
{x(zk/ξk)− f ?(g)} = f (zk/ξk)
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Applications Nondifferentiable optimization

Major convergence results

Proved:

If f (x) is just convex the convergence is superlinear:

fk+1 − f? ≤ λk(fk − f?), λk → 0 when k →∞

If f (x) is sup-quadratic the convergence is quadratic:

fk+1 − f? ≤ λ(fk − f?)2, when k →∞

when λ < f0 − f? which garantees convergence.

If f (x) has sharp minimum then convergence is finite.

In all cases convergence is global, ie does not depend on initial point.
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