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The problem

We deal with the convex optimization problem

(P) Min g(x)
st. f(x) <0, teT,
xeC,

where T is an arbitrary (possibly infinite) index set, C is a non-empty closed
convex subset of a (separated) locally convex vector space X, and

g fr: X—=RU {+oo}, t € T, are proper Isc convex functions defined on X.
We assume that the constraint system

T:={f(x) <0, teT; xeC}, (1)

is consistent; i.e., it has a non-empty set of feasible solutions, which is represented
by FF.
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An important particular case is that in which the explicit constraints are affine and
continuous and there is no constraint set C (equivalently, C = X), i.e.

T={(af,x) < by, t € T}, (2)

where af € X*, t € T.

When T is infinite , the objective function g is linear , and X = IR", we are
dealing with the so-called linear semi-infinite optimization problem (LSIP, in brief).
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Our aims:

@ To study, in the framework of infinite convex systems, some CQ'’s as the
Farkas-Minkowski property (FM, in brief) and the local Farkas-Minkowski
property (LFM, in short).

@ To provide optimality conditions by appealing to the properties of the
supremum function of an infinite family of convex functions and the
characterizations of its subdifferential.

@ To formulate weak CQ’s and derive associated optimality conditions.
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Associated unconstrained problems

@ Let x € IF, introduce the function

¢(x) :=sup{g(x) —g(x); fir(x), t € T; le(x)},
and consider the unconstrained problem

infp, x € X,.

@ For x € FF one has g(x) — g(x) > 0, and so ¢(x) > ¢(x) = 0. Hence, x is
optimal for (P) = 0 € dg(x).

@ ¢ is a supremum function, and d¢ can be expressed using the
approximate/exact subdifferentials of g and the f;'s.

@ We also have that x is optimal for (P) if and only if x is optimal for
infxex (g +1r) (x).
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Notations and basic tools

e X is a (real) Hausdorff locally convex space (Hlsc); X*

and X* are paired in duality by (x, x*).

e Given A, B C X (or in X*), we consider the Minkowski sum:
A+B:={a+blacA beB}, A+Q0:=0+A:=0Q.

@ conv A is the convex hull of A, cone A is the convex cone generated by A
(cone® = {0}), and aff A is the affine hull of A.

e int A is the interior of A, clA and A denote indistinctly the closure of A
(w*—closure if A C X*); rint A is the topological relative interior of A (i.e.,
the interior of A in the topology relative to aff A if aff A is closed, and @
otherwise).

is its dual space; X

o Nj(x) is the normal cone to A at x € A.

o A family of convex sets {A;, i € I} such that N;c/A; # @ has the strong
conical hull intersection property (the strong CHIP) at x € N;c A; if

N a,(x) = Ziel Ny, (x)
= {ZieJ aj, aj € Ng,(x), J being finite subset of I} )
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e Given h: X — RU{+co}, dom h and epi h represent its (effective) domain
and epigraph, respectively.

e his proper if dom h # @; it is convex if epih is convex, and h € T'o(X) if it
is proper, lower semicontinuous and convex.

@ convh represents the Isc convex hull of h; i.e., epi(convh) = conv (epih) .

o The e—subdifferential of h at x € h1(R), € > 0, is the w*~closed convex
set in X*

0:h(x) = {x* € X* | h(y) — h(x) > {y — x,x*) —¢, Vy € X}.

o If 3h(x) # @,

h(x) = (L h)(x) and deh(x) = de(cl ) (x). (3)
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The Legendre-Fenchel conjugate of h is the Isc convex function
h*: X* — RU {400} given by

h*(x*) == sup{(x,x™) — h(x) | x € X}.
We have h* = (cl h)* = (convh)*. Moreover,

x* € dh(x) < h(x)+ h"(x") < {x,x*) < h(x) + h"(x*) = (x,x").

The support and the indicator functions of A # @ are respectively

aa(x*) + =sup{(a, x*) | a€ A}, for x* € X*,
L) ={0 ifxeA
A | 4o ifxe X\A

04 is sublinear, Isc, and satisfies 04 = 0conya = g a- Therefore, epicy is a
closed convex cone.
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@ For every family of functions f;, i € I, (I arbitrary), we have
(infies £i)" = sup;es £ (4)
If {f;,i €1} CTo(X) and sup;c f; is proper, then

(supjes fi)* = clconv(inf,¢, f,*) (5)

e For f,g € To(X) such that dom f Ndom g # @, it is well known that
(fOg)" =" +g" (f+g)" = c(f 0g"). (6)
Clearly, (6) and (4) imply that
epi(f + )" = cl(epi f* +epig"), epi(supjc; f})* = ORV(Ujc) epi ).
The closure operation in the first equation is superfluous if one of f and g(|7s)

continuous at some point of dom f N dom g. Then, epif* +epig” is
w*-closed (see, e.g., Zalinescu'02).
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KKT'1 optimality conditions - FM property

We call characteristic cone of T = {f;(x) <0, t € T; x € C} to the convex
cone

K := cone{ U epif UepiUC} = cone{ L epi ft*} +epioc. (8)

teT teT

W

For the linear system (2),

epify = (a;,br) + R (0,1), t€ T,

and
epiocc = epiocx =R, (6,1).

Hence,
K =cone{(a;,bt), t€T; (6,1)} C X* xR. (9)
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Lemma

IFF={xe€C: f(x) <0, te T} #Q, then

epiop = cl K = cone {UteT epif; U epiUC} .

Proof.
[Proof (sketch)] If h:=sup{f;, t € T; Ic}, we have

x €EF & h(x) <0< h(x) =0.
Then, by (5),
h* = {sup{f;, t€ T; Ic}}* =clconv (inf {f, t € T; oc}),

and
epiop © cl(coneepih™) = cl K.

() follows from Lemma 3.1(b) in Jey 03 (infinite-dimensional version) O
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Theorem (generalized Farkas)
Let ¢, € To(X). Then ¢(x) < (x) for all x € F, assumed non-empty, if and
only if

epi ¢* C cl(epiyp* + K). (10)

Proof.

< Px)Vx€e€F <= ¢ <¢p+1If
& (p+Ip)* <@
& epig” Cepi(p+1Ip)",

@(x)

but applying (7), the previous lemma, and cl(A+ B) = cl(A+clB) :

epi (y +Ig)* = cl(epi¢p* + epiop)
= cl(epiyp™ + clK) = cl(epiyp* + K).
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Corollary

Given (a*,a) € X* x R, the inequality (a*, x) < w holds for all x € F, assumed
non-empty (i.e., <a*, X> < & is a continuous linear consequence of T), if and only if

(a*, &) € clK.

Proof.

Apply the generalized Farkas theorem with ¢ = (a*,-) —« and ¢ = 0. Then,
(a*, x) < a holds for all x € F if and only if

(8% @) +R1(0,1) = epig®
C d(epip*+K)=c (R4(0,1) + K) =l K.

In other words, (a*, x) < & is a consequence of T if and only if (a*,a) € dlK. [

A\
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The following property is crucial in getting KKT-type optimality conditions for
problem (P).

Definition

We say that the consistent system T = {f;(x) <0, t € T; x € C}) is
Farkas-Minkowski (FM, in brief) if K is w*-closed.

Theorem

If T is FM, then every continuous linear consequence (a*, x) < w of T,

(a*,a) € X* X R, (i.e., (a*,x) < « holds for all x € F) is also consequence of a
finite subsystem

Ts:={ft(x) <0, t€S; xe€C}, withSC T and |S| < co.

The converse statement holds if T is linear.
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The following theorem (Dinh, Goberna, Lépez, Son’ 07) provides non-asymptotic
KKT-type optimality conditions for the problem

(P) Min g(x)
st. (x)<0,teT, xec(,

whose constraint system T := {f;(x) <0, t € T; x € C} has a non-empty set of
feasible solutions IF.

Theorem (KKT'1)

Given the problem ('P), assume that T is FM and that g is continuous at some
point of F, and let x € F Ndomg. Then X is a global minimum of (P) if and
only if there exists A € IR(J) such that 9f;(X) # @, Vt € supp A, and the KKT

conditions

0 € 9g(x)+ ) Atdfi(X) + N¢(X) and A¢fi(X) =0, V€ T, (KKT'1)
teT

hold.

Here IR(J) is the space (convex cone) of functions A : T — R which vanishes at
every point of T except at finitely many.
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Proof

[Proof of KKT'1 (sketch)] The point X € IF N dom g is a minimizer of (P) if and
only if

0 €d(g+1p) (%) = 0g(X) + lp(X) = 9g(X) + N (%); (1)

e., if and only if there exists x* € dg(x) such that (x*,x) > (x*,X) is
consequence of T.
(*) Thanks to the continuity of g at some point of IF = dom If.
(=) If X is a minimizer of (P), since T is FM we have

—(x*, (x*,x)) e dK =K = cone{ U epift*} + epiogc,

teT
and 3 A € RY (m . Xg €domf’, ar >0, Vt€ T, z* € domog, > 0, satisfying

(X)) = ) A O () ) + (27, oc (2) + B,
teT
leading to (KKT'1) by the relationship between the subdifferential and the
conjugate.
(<) Straightforward (standard argument). O
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KKT'2 optimality conditions - LFM property

Let us introduce a weaker CQ. Given z € IF, the set of indices corresponding to the
active constraints at z is T(z) := {t € T : f;(z) = 0}. It is easily verified that

Ne(z) + cone (UteT " aft(z)) C Ng(2). (12)

Definition

The consistent constraint system T is locally Farkas-Minkowski (LFM, in short) at
zeFif

NE(z) € Ne(z) + cone (Ufer " Bft(z)) . (13)

T is said to be LFM if it is LFM at every feasible point z € F.

In LSIP (C =R", fr(x) = (at,x) — bt, t € T), (13) becomes
Np(z) C cone{a;, t € T(z2)}.
The LFM property is closely related to the so-called basic constraint qualification

at z. In fact, LFM and BCQ are equivalent under the continuity of the function
f := supsc T fr at the reference point z and z € intC.
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The following proposition is a LFM counterpart of a similar property for FM
systems.

Let z € E. If T is LFM at z and for certain a* € X* we have

(a*,x) < (a*,z), forall x € F,

then (a*,x) < (a*, z) is also a consequence of a finite subsystem of T. The
converse statement holds provided that T is linear.

The converse statement in the last proposition does not hold in general for convex
systems without any additional assumption.

Obviously,
Tis FM = 7 is LFM at any z € F.
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The following theorem provides a second KKT-type optimality conditions for the
problem
(P) Ming(x) st fr(x)<0,teT, xeC.

Theorem (KKT'2)

Given the problem (73) and x € FNdom g, assume that T is LFM at X, and that
g Is continuous at some point of . Then X is a global minimum of (P) if and

only if there exists A € IR(J) such that 0f;(X) # @, Vt € supp A, and the KKT
conditions hold

6 € 9g(X) + Y Atdfi(x) + Ne(X) and A¢f(X) =0, Vt € T. (KKT'2)
teT

Proof
According to Pshenichnyi-Rockafellar theorem (e.g. Zal’'02 [Th. 2.9.1]),

X is optimal for (P) < 9g(X) N (—Ng(x)) # @
S AS ag(?) + Ng(X)

g ¢ agx)+ ), Ataft ) + N (x).
teT(x
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KKT'3 asymptotic optimality conditions

Theorem (KKT'3)

Given the problem (77) let us assume that X is a Banach reflexive space, that T
is FM and (dom g) Nrint(FF) # @. Then, x € (domg) N is optimal for (P) if

and only if for each ¢ > 0 there exists \* € ]RSLT) such that supp A® C T(X) and
the following condition holds:

0 € 0:8(X) + Y gupp a0 A20%(X) + Ne(X) + eBx-. (14)

Proof

[Sketch of the proof] (=) Since (dom g) Nrint(IF) # @, Cor. 5 in Correa,
Hantoute, Lopez'16 yields

g +1Ir) (%) = [, , cl(9g:(X) + Ng(X)).

Then,
X is optimal for (P) < 6 € ﬂ cl(9ge(x) + NEg(x)).
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Proof

[Sketch of the proof]
Since X is reflexive, cl(0g:(X) + Np(X)) coincides with the closure of
0g:(X) + NE(X) for the topology of the (dual) norm in X* and, so, for every
o >0,

0 € 9ge(X) + Np(X) + pBx-.

Thus, taking p = ¢, there exists a; € Np(X) such that
6 € 9ge(X) + a; +eBx-.

Since a} € NE(X) is equivalent to say that (a}, x) < (a},X) is a consequence of
the FM system T, we conclude the existence of A® € ]RS_T), supp AEC T(Y), such
that
ai € ) AL (X) +Ne(x).
supp A
The necessity is proved.
(<) Straightforward (standard arguments). O

Marco A. Lépez (University of Alicante) Optimality theory in convex optimization.



Subdifferential calculus rules for the sum

@ First results for the sum:
a) Suppose that one of the following conditions hold:
i) X =R" and rint(dom f) Nrint(dom g) # @,
i) X is a Hlcs and (dom g) N (contf) # @ (cont f = int(dom f) if X
is Banach and f is proper).
Then

A(f +g)(x) = of (x) + 9g(x).
b) If f, g € To(X) one has (Hiriart-Urruty, Phelps’ 93)

I(f + &) (x) = Neso l(9ef (x) + 9eg(x)).

c) If (domg) Nrint(dom f) # @, and f,5(qom ) is continuous on
rint(dom f) then (Th.12 in Correa, Hantoute, Lépez'16) yields

A(f +8)(x) = ., cl(OF (x) + g x)).
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Subdifferential of the supremum function

o Let fr : X - RU{+oo}, ff €To(X), t €T, and f :=supsc1 f. Let x € X
be such that for some ¢y > 0,
(i) Tey(x):={t e T: fi(x) > f(x) —ep} is compact,
(if) Vz € domf, t + ft(z) is usc on Tg,(x),
Then (Correa, Hantoute, Lopez'19)

of (x) = NLer(x) cONV (UteT(x) o(fr +Imdomf)(><)) :

where F(x) := {L is a finite-dimensional subspace of X such that x € L}
e If f is continuous at some point ,

of (x) = conv (UtET(X) aft(X)) + Naom £ (x).

o If f is continuous at x,

of (x) = conv (UtET(X) aft(x)> X conv (UteT(x) aft(x)) :
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KKT'4 conditions for SIP under compacity/continuity

Given the convex SIP problem (P) we define

D := dom g Ndom(supse7 ft).

(Correa, Hantoute, Lopez'19) Let X be a feasible point of (P), with T (x) # @,
and assume that 9 ¢y > 0 such that:

(i) the set Tey(x) :={t € T | fy(x) > —€p} is compact,
(if) for each z € ID N C, the function t — f+(z) is usc on Ty, (X).
Then, if X is optimal for (P) the following conditions holds:

On € cogdg(x)U |J 9f(X) p +Npnc(x),
teT (x)

provided that

rint(dom f;) Nrint(IDNC) # @, Vt € T(x),
rint(dom g) Nrint(D N C) # @.
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Theorem

(Correa, Hantoute, Lopez'19) Suppose that T is compact, for each z € D N C
the function t — ft(z) is usc on T, and the family {C, domf;, t € T, domg}
has the strong CHIP at x. Then, if x, with T (x) # @, is optimal for (P) the
following inclusion holds

On € conv ag()_() U U aft(;() +NC( )+Nd0mg Z Ndomft( )
teT(x) teT

If, additionally, the following Slater-type CQ holds
supscT fr(xp) < 0 for some xg € CNdomg,

then there exist a (possibly empty) finite set T(x) C T(x) such that 3f;(X) # @
for t € T(x) and scalars Ay > 0 for t € T(x), satisfying

0n € dg(x 2 Atdfe(x) + Ne(%) + ) Naom £, (%), (15)
I‘GT ) teT

with the convention that Y 5 = {0}.
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Bibliographic comments

@ The closedness of KK was introduced in Charnes, Cooper, Kortanek'65 as a
general assumption for the duality theory in LSIP (see also Goberna,
Lopez'98).

@ The FM property for convex systems was first studied in Jeyakumar, Lee,
Dinh’04, with X being Banach and all the functions finite valued, under the
name of closed cone constraint qualification. The FM property is strictly
weaker than several known interior type reguality conditions.

@ The LFM property, under the name of basic constraint qualification (BCQ),
appeared in Hiriart-Urruty, Lemaréchal’93, relatively to the ordinary convex
programming problem, with equality and inequality constraints.

@ It was extended in Puente, Vera de Serio’99 to the setting of linear
semi-infinite systems. The consequences of its extension to convex
semi-infinite systems were analyzed in Fajardo, Lépez’'99.

@ For a deep analysis of BCQ and related conditions see also Li, Nahak,
Singer’00 and Li, Ng'05. An extensive comparative analysis of constraints
qualifications for (P) is also given in Li, Ng, Pong'08.
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