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The problem

We deal with the convex optimization problem

(P) Min g(x)
s.t. ft (x) � 0, t 2 T ,

x 2 C,

where T is an arbitrary (possibly in�nite) index set, C is a non-empty closed
convex subset of a (separated) locally convex vector space X , and
g , ft : X ! R[ f+∞g, t 2 T , are proper lsc convex functions de�ned on X .
We assume that the constraint system

τ := fft (x) � 0, t 2 T ; x 2 Cg, (1)

is consistent; i.e., it has a non-empty set of feasible solutions, which is represented
by F.
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An important particular case is that in which the explicit constraints are a¢ ne and
continuous and there is no constraint set C (equivalently, C = X ), i.e.

τ = fha�t , xi � bt , t 2 Tg, (2)

where a�t 2 X �, t 2 T .
When T is in�nite , the objective function g is linear , and X = Rn , we are
dealing with the so-called linear semi-in�nite optimization problem (LSIP, in brief).
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Our aims:

1 To study, in the framework of in�nite convex systems, some CQ�s as the
Farkas-Minkowski property (FM, in brief) and the local Farkas-Minkowski
property (LFM, in short).

2 To provide optimality conditions by appealing to the properties of the
supremum function of an in�nite family of convex functions and the
characterizations of its subdi¤erential.

3 To formulate weak CQ�s and derive associated optimality conditions.
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Associated unconstrained problems

Let x̄ 2 F, introduce the function

ϕ(x) := supfg(x)� g(x̄); ft (x), t 2 T ; IC(x)g,

and consider the unconstrained problem

inf ϕ, x 2 X , .

For x 2 F one has g(x)� g(x̄) � 0, and so ϕ(x) � ϕ(x̄) = 0. Hence, x̄ is
optimal for (P) =) θ 2 ∂ϕ(x̄).

ϕ is a supremum function, and ∂ϕ can be expressed using the
approximate/exact subdi¤erentials of g and the ft�s.

We also have that x̄ is optimal for (P) if and only if x̄ is optimal for
infx2X (g + IF)(x).
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Notations and basic tools

X is a (real) Hausdor¤ locally convex space (Hlsc); X � is its dual space; X
and X � are paired in duality by hx , x�i.
Given A,B � X (or in X �), we consider the Minkowski sum:
A+ B := fa+ b j a 2 A, b 2 Bg, A+∅ := ∅+ A := ∅.
convA is the convex hull of A, coneA is the convex cone generated by A
(cone ∅ = fθg), and affA is the a¢ ne hull of A.
intA is the interior of A, clA and A denote indistinctly the closure of A
(w��closure if A � X �); rintA is the topological relative interior of A (i.e.,
the interior of A in the topology relative to affA if affA is closed, and ∅
otherwise).

NA(x) is the normal cone to A at x 2 A.
A family of convex sets fAi , i 2 Ig such that \i2IAi 6= ∅ has the strong
conical hull intersection property (the strong CHIP) at x 2 \i2IAi if

N\i2IAi (x) = ∑i2I NAi (x)

:=
n
∑i2J ai , ai 2 NAi (x), J being �nite subset of I

o
.
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Given h : X ! R[ f+∞g, dom h and epi h represent its (e¤ective) domain
and epigraph, respectively.

h is proper if dom h 6= ∅; it is convex if epi h is convex, and h 2 Γ0(X ) if it
is proper, lower semicontinuous and convex.

convh represents the lsc convex hull of h; i.e., epi(convh) = conv (epi h) .

The ε�subdi¤erential of h at x 2 h�1(R), ε � 0, is the w��closed convex
set in X �

∂εh(x) := fx� 2 X � j h(y)� h(x) � hy � x , x�i � ε, 8y 2 Xg.

If ∂h(x) 6= ?,

h(x) = (cl h)(x) and ∂εh(x) = ∂ε(cl h)(x). (3)
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The Legendre-Fenchel conjugate of h is the lsc convex function
h� : X � ! R[ f+∞g given by

h�(x�) := supfhx , x�i � h(x) j x 2 Xg.

We have h� = (cl h)� = (convh)�. Moreover,

x� 2 ∂h(x), h(x) + h�(x�) � hx , x�i , h(x) + h�(x�) = hx , x�i .

The support and the indicator functions of A 6= ∅ are respectively

σA(x
�) : = supfha, x�i j a 2 Ag, for x� 2 X �,

IA(x) : =

�
0 if x 2 A,
+∞ if x 2 X n A.

σA is sublinear, lsc, and satis�es σA = σconvA = I�convA . Therefore, epi σA is a
closed convex cone.
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For every family of functions fi , i 2 I , (I arbitrary), we have

(inf i2I fi )
� = supi2I f

�
i . (4)

If ffi , i 2 Ig � Γ0(X ) and supi2I fi is proper, then

(supi2I fi )
� = cl conv(inf i2I f

�
i ). (5)

For f , g 2 Γ0(X ) such that dom f \ dom g 6= ∅, it is well known that

(f�g)� = f � + g�, (f + g)� = cl(f ��g�). (6)

Clearly, (6) and (4) imply that

epi(f + g)� = cl(epi f � + epi g�), epi(supi2I fi )
� = conv([i2I epi f �i ).

(7)
The closure operation in the �rst equation is super�uous if one of f and g is
continuous at some point of dom f \ dom g . Then, epi f � + epi g� is
w�-closed (see, e.g., Zalinescu�02).
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KKT�1 optimality conditions - FM property

De�nition
We call characteristic cone of τ = fft (x) � 0, t 2 T ; x 2 Cg to the convex
cone

K := cone

( [
t2T

epi f �t [ epi σC

)
= cone

( [
t2T

epi f �t

)
+ epi σC. (8)

For the linear system (2),

epi f �t = (a
�
t , bt ) +R+(θ, 1), t 2 T ,

and
epi σC = epi σX = R+(θ, 1).

Hence,
K = cone f(a�t , bt ), t 2 T ; (θ, 1)g � X � �R. (9)
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Lemma
If F = fx 2 C : ft (x) � 0, t 2 Tg 6= ∅, then

epi σF = cl K = cone
n[

t2T epi f �t [ epi σC

o
.

Proof.
[Proof (sketch)] If h := supfft , t 2 T ; ICg, we have

x 2 F , h(x) � 0, h(x) = 0.

Then, by (5),

h� = fsup fft , t 2 T ; ICgg� = cl conv (inf ff �t , t 2 T ; σCg) ,

and

epi σF

(�)
= cl(cone epi h�) = cl K.

(�) follows from Lemma 3.1(b) in Jey�03 (in�nite-dimensional version)
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Theorem (generalized Farkas)

Let ϕ,ψ 2 Γ0(X ). Then ϕ(x) � ψ(x) for all x 2 F, assumed non-empty, if and
only if

epi ϕ� � cl (epi ψ� +K) . (10)

Proof.

ϕ(x) � ψ(x) 8x 2 F () ϕ � ψ+ IF

, (ψ+ IF)
� � ϕ�

, epi ϕ� � epi (ψ+ IF)
�,

but applying (7), the previous lemma, and cl(A+ B) = cl(A+ clB) :

epi (ψ+ IF)
� = cl(epi ψ� + epi σF)

= cl(epi ψ� + cl K) = cl(epi ψ� +K).
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Corollary
Given (a�, α) 2 X � �R, the inequality ha�, xi � α holds for all x 2 F, assumed
non-empty (i.e., ha�, xi � α is a continuous linear consequence of τ), if and only if

(a�, α) 2 cl K.

Proof.
Apply the generalized Farkas theorem with ϕ = ha�, �i � α and ψ � 0. Then,
ha�, xi � α holds for all x 2 F if and only if

(a�, α) +R+(θ, 1) = epi ϕ�

� cl (epi ψ� +K) = cl (R+(θ, 1) +K) = cl K.

In other words, ha�, xi � α is a consequence of τ if and only if (a�, α) 2 cl K.
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The following property is crucial in getting KKT-type optimality conditions for
problem (P).

De�nition
We say that the consistent system τ = fft (x) � 0, t 2 T ; x 2 Cg) is
Farkas-Minkowski (FM, in brief) if K is w�-closed.

Theorem
If τ is FM, then every continuous linear consequence ha�, xi � α of τ,
(a�, α) 2 X � �R, (i.e., ha�, xi � α holds for all x 2 F) is also consequence of a
�nite subsystem

τS := fft (x) � 0, t 2 S ; x 2 Cg, with S � T and jS j < ∞.

The converse statement holds if τ is linear.
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The following theorem (Dinh, Goberna, López, Son�07) provides non-asymptotic
KKT-type optimality conditions for the problem

(P) Min g(x)
s.t. ft (x) � 0, t 2 T , x 2 C,

whose constraint system τ := fft (x) � 0, t 2 T ; x 2 Cg has a non-empty set of
feasible solutions F.

Theorem (KKT�1)

Given the problem (P), assume that τ is FM and that g is continuous at some
point of F, and let x 2 F\ dom g. Then x is a global minimum of (P) if and
only if there exists λ 2 R

(T )
+ such that ∂ft (x) 6= ∅, 8t 2 supp λ, and the KKT

conditions

θ 2 ∂g(x) + ∑
t2T

λt∂ft (x) +NC(x) and λt ft (x) = 0, 8t 2 T , (KKT�1)

hold.

Here R
(T )
+ is the space (convex cone) of functions λ : T ! R+ which vanishes at

every point of T except at �nitely many.
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Proof.
[Proof of KKT�1 (sketch)] The point x 2 F\ dom g is a minimizer of (P) if and
only if

θ 2 ∂(g + IF)(x)
(�)
= ∂g(x) + ∂IF(x) = ∂g(x) +NF(x); (11)

i.e., if and only if there exists x� 2 ∂g(x) such that hx�, xi � hx�, xi is
consequence of τ.
(�) Thanks to the continuity of g at some point of F � dom IF.
()) If x is a minimizer of (P), since τ is FM we have

�(x�, hx�, xi) 2 cl K = K = cone

( [
t2T

epi f �t

)
+ epi σC,

and 9 λ 2 R
(T )
+ , x�t 2 dom f �t , αt � 0, 8t 2 T , z� 2 dom σC, β � 0, satisfying

�(x�, hx�, xi) = ∑
t2T

λt (x�t , f
�
t (x

�
t ) + αt ) + (z�, σC (z

�) + β) ,

leading to (KKT�1) by the relationship between the subdi¤erential and the
conjugate.
(() Straightforward (standard argument).
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KKT�2 optimality conditions - LFM property

Let us introduce a weaker CQ. Given z 2 F, the set of indices corresponding to the
active constraints at z is T (z) := ft 2 T : ft (z) = 0g. It is easily veri�ed that

NC(z) + cone
�[

t2T (z ) ∂ft (z)
�
� NF(z). (12)

De�nition
The consistent constraint system τ is locally Farkas-Minkowski (LFM, in short) at
z 2 F if

NF(z) � NC(z) + cone
�[

t2T (z ) ∂ft (z)
�
. (13)

τ is said to be LFM if it is LFM at every feasible point z 2 F.

In LSIP (C = Rn , ft (x) = hat , xi � bt , t 2 T ), (13) becomes
NF(z) � cone fat , t 2 T (z)g .

The LFM property is closely related to the so-called basic constraint quali�cation
at z . In fact, LFM and BCQ are equivalent under the continuity of the function
f := supt2T ft at the reference point z and z 2 int C.
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The following proposition is a LFM counterpart of a similar property for FM
systems.

Theorem
Let z 2 F. If τ is LFM at z and for certain a� 2 X � we have

ha�, xi � ha�, zi , for all x 2 F,

then ha�, xi � ha�, zi is also a consequence of a �nite subsystem of τ. The
converse statement holds provided that τ is linear.

The converse statement in the last proposition does not hold in general for convex
systems without any additional assumption.

Obviously,
τ is FM ) τ is LFM at any z 2 F.
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The following theorem provides a second KKT-type optimality conditions for the
problem

(P) Min g(x) s.t. ft (x) � 0, t 2 T , x 2 C.

Theorem (KKT�2)

Given the problem (P) and x 2 F\ dom g , assume that τ is LFM at x, and that
g is continuous at some point of F. Then x is a global minimum of (P) if and
only if there exists λ 2 R

(T )
+ such that ∂ft (x) 6= ∅, 8t 2 supp λ, and the KKT

conditions hold

θ 2 ∂g(x) + ∑
t2T

λt∂ft (x) +NC(x) and λt ft (x) = 0, 8t 2 T . (KKT�2)

Proof.
According to Pshenichnyi-Rockafellar theorem (e.g. Zal�02 [Th. 2.9.1]),

x is optimal for (P) , ∂g(x) \ (�NF(x)) 6= ∅
, θ 2 ∂g(x) +NF(x)

LFM, θ 2 ∂g(x) + ∑
t2T (x )

λt∂ft (x) +NC(x).
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KKT�3 asymptotic optimality conditions

Theorem (KKT�3)

Given the problem (P), let us assume that X is a Banach re�exive space, that τ
is FM and (dom g) \ rint(F) 6= ∅. Then, x 2 (dom g) \F is optimal for (P) if
and only if for each ε > 0 there exists λε 2 R

(T )
+ such that supp λε � T (x) and

the following condition holds:

θ 2 ∂εg(x) +∑supp λρ λε
t∂ft (x) +NC(x) + εBX � . (14)

Proof.
[Sketch of the proof] ()) Since (dom g) \ rint(F) 6= ∅, Cor. 5 in Correa,
Hantoute, López�16 yields

∂(g + IF)(x) =
\

ε>0
cl(∂gε(x) +NF(x)).

Then,
x is optimal for (P), θ 2

\
ε>0

cl(∂gε(x) +NF(x)).
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Proof.
[Sketch of the proof]
Since X is re�exive, cl(∂gε(x) +NF(x)) coincides with the closure of
∂gε(x) +NF(x) for the topology of the (dual) norm in X � and, so, for every
ρ > 0,

θ 2 ∂gε(x) +NF(x) + ρBX � .

Thus, taking ρ = ε, there exists a�ε 2 NF(x) such that

θ 2 ∂gε(x) + a�ε + εBX � .

Since a�ε 2 NF(x) is equivalent to say that ha�ε , xi � ha�ε , xi is a consequence of
the FM system τ, we conclude the existence of λε 2 R

(T )
+ , supp λε � T (x), such

that
a�ε 2 ∑

supp λε

λε
t∂ft (x) +NC(x).

The necessity is proved.
(() Straightforward (standard arguments).

Marco A. López (University of Alicante) Optimality theory in convex optimization.
24-06-2020 Variational Analysis and Optimisation Webinar CIAO, Federation University, Australia 22

/ 32



Subdi¤erential calculus rules for the sum

First results for the sum:
a) Suppose that one of the following conditions hold:

i) X = Rn and rint(dom f ) \ rint(dom g) 6= ∅,
ii) X is a Hlcs and (dom g) \ (cont f ) 6= ∅ (cont f = int(dom f ) if X

is Banach and f is proper).
Then

∂(f + g)(x) = ∂f (x) + ∂g(x).

b) If f , g 2 Γ0(X ) one has (Hiriart-Urruty, Phelps�93)

∂(f + g)(x) =
T

ε>0 cl(∂εf (x) + ∂εg(x)).

c) If (dom g) \ rint(dom f ) 6= ∅, and fjaff(dom f ) is continuous on
rint(dom f ) then (Th.12 in Correa, Hantoute, López�16) yields

∂(f + g)(x) =
\

ε>0
cl(∂f (x) + ∂gε(x)).
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Subdi¤erential of the supremum function

Let ft : X ! R[ f+∞g, ft 2 Γ0(X ), t 2 T , and f := supt2T ft . Let x 2 X
be such that for some ε0 > 0,
(i) Tε0 (x) := ft 2 T : ft (x) � f (x)� ε0g is compact,
(ii) 8z 2 dom f , t 7! ft (z) is usc on Tε0 (x),
Then (Correa, Hantoute, López�19)

∂f (x) =
T
L2F (x ) conv

�S
t2T (x ) ∂(ft + IL\dom f )(x)

�
,

where F (x) := fL is a �nite-dimensional subspace of X such that x 2 Lg
If f is continuous at some point ,

∂f (x) = conv
�S

t2T (x ) ∂ft (x)
�
+Ndom f (x).

If f is continuous at x ,

∂f (x) = conv
�S

t2T (x ) ∂ft (x)
�
X=Rn
= conv

�S
t2T (x ) ∂ft (x)

�
.
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KKT�4 conditions for SIP under compacity/continuity

Given the convex SIP problem (P) we de�ne
D := dom g \ dom(supt2T ft ).

Theorem
(Correa, Hantoute, López�19) Let x̄ be a feasible point of (P), with T (x̄) 6= ∅,
and assume that 9 ε0 > 0 such that:
(i) the set Tε0 (x̄) := ft 2 T j ft (x̄) � �ε0g is compact,
(ii) for each z 2 D\C, the function t 7! ft (z) is usc on Tε0 (x̄).
Then, if x̄ is optimal for (P) the following conditions holds:

0n 2 co

8<:∂g(x̄) [
[

t2T (x̄ )
∂ft (x̄)

9=;+ND\C(x̄),

provided that

rint(dom ft ) \ rint(D\C) 6= ∅, 8t 2 T (x̄),
rint(dom g) \ rint(D\C) 6= ∅.
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Theorem
(Correa, Hantoute, López�19) Suppose that T is compact, for each z 2 D\C

the function t 7! ft (z) is usc on T , and the family fC, dom ft , t 2 T , dom gg
has the strong CHIP at x̄ . Then, if x̄ , with T (x̄) 6= ∅, is optimal for (P) the
following inclusion holds

0n 2 conv

8<:∂g(x̄) [
[

t2T (x̄ )
∂ft (x̄)

9=;+NC(x̄) +Ndom g (x̄) + ∑
t2T

Ndom ft (x̄).

If, additionally, the following Slater-type CQ holds

supt2T ft (x0) < 0 for some x0 2 C\ dom g ,

then there exist a (possibly empty) �nite set bT (x̄) � T (x̄) such that ∂ft (x̄) 6= ∅
for t 2 bT (x̄) and scalars λt > 0 for t 2 bT (x̄), satisfying

0n 2 ∂g(x̄) + ∑
t2 bT (x̄ ) λt∂ft (x̄) +NC(x̄) + ∑

t2T
Ndom ft (x̄), (15)

with the convention that ∑∅ = f0ng.
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Bibliographic comments

The closedness of K was introduced in Charnes, Cooper, Kortanek�65 as a
general assumption for the duality theory in LSIP (see also Goberna,
López�98).

The FM property for convex systems was �rst studied in Jeyakumar, Lee,
Dinh�04, with X being Banach and all the functions �nite valued, under the
name of closed cone constraint quali�cation. The FM property is strictly
weaker than several known interior type reguality conditions.

The LFM property, under the name of basic constraint quali�cation (BCQ),
appeared in Hiriart-Urruty, Lemaréchal�93, relatively to the ordinary convex
programming problem, with equality and inequality constraints.

It was extended in Puente, Vera de Serio�99 to the setting of linear
semi-in�nite systems. The consequences of its extension to convex
semi-in�nite systems were analyzed in Fajardo, López�99.

For a deep analysis of BCQ and related conditions see also Li, Nahak,
Singer�00 and Li, Ng�05. An extensive comparative analysis of constraints
quali�cations for (P) is also given in Li, Ng, Pong�08.
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