Old and new results on equilibrium and quasi- equilibrium problems

Michel Théra

XLIM - University of Limoges & CIAO - Federation University

mi.thera@federation.edu.au

Co-authors: John Cotrina and Javier Zúñiga

Variational Analysis and Optimisation Webinars

Benefited from the support of the FMJH Program PGMO and from the support of ARC

 		 100

examples

- 3 Tools : transfer lower continuity Lower semicontinuity regularization -Ekeland variational- type principle for bifunctions
- 4 Equilibrium Problems Definitions Examples
- Quasi-equilibrium problems
- System of quasi-equilibrium problems

J. Cotrina M.T, J. Zúñiga **An existence result for quasi-equilibrium problems via Ekeland's variational principle,** https://hal.archives-ouvertes.fr/hal-02650953 [1]

Short history

examples

- Tools : transfer lower continuity Lower semicontinuity regularization -Ekeland variational- type principle for bifunctions
- 4 Equilibrium Problems Definitions Examples
- 5 Quasi-equilibrium problems
- System of quasi-equilibrium problems

Let *C* be a nonempty subset of a topological space *X* and $f : C \times C \rightarrow \mathbb{R}$, be a given bifunction.

Equilibrium problem:

Find $x \in C$ such that $f(x, y) \ge 0$, for all $y \in C$.

Existence results go back to

- the celebrated Knaster-Kuratowski-Mazurkiewicz (1929)
- and its generalization in finite dimension by Ky-Fan (1961)
- and its extension by Brézis- Nirenberg-Stampacchia to a subset which is not necessarily compact by using a " coercivity-type condition"

Nowadays a great interest is given to the convergence analysis of iteratives methods to reach solutions of equilibrium problems.

Theorem (Fan 's Minimax Principle 72)

Assume C is a compact and convex subset of a Hausdorff topological vector space and suppose that $f : C \times C \rightarrow \mathbb{R}$ satisfies conditions :

(1) $f(x, x) \leq 0$ for all $x \in C$;

(2) For every $x \in C$ the set $\{y \in C : f(x, y) > 0\}$ is convex;

(3) for every y fixed in C, $f(\cdot, y)$ is lower semicontinuous on C.

Then, there exists $x_0 \in C$ such that $f(x_0, y) \leq 0$ for every $y \in C$.

Short history: Brézis-Niremberg-Stampacchia

With the goal to apply to variational inequalities ($f(x, y) = \langle Ax, x - y \rangle$ with A **monotone or pseudo-monotone**) Fan's result was extended by Brézis-Niremberg and Stampacchia

Theorem (Brézis-Niremberg-Stampacchia 1972)

They supposed (1), (2) and

- (3') For every fixed $y \in C$, $f(\cdot, y)$ is lower semicontinuous on the intersection of C with any finite dimensional subspace of X;
- (4) Whenever x, y ∈ C and (x_i) is a net on C converging to x, then the following implication holds:

 $f(x_i, (1-t)x + ty) \le 0$ for every $t \in [0, 1] \implies f(x, y) \le 0$;

(5) There is a compact subset L of X and $y_0 \in L \cap C$ such that $f(x, y_0) > 0$ for $x \in C, y_0 \notin L$.

Then there is $x_0 \in L \cap C$ such that $f(x_0, y) \leq 0$ for all $y \in C$. In particular

 $\inf_{x\in C}\sup_{y\in C}f(x,y)\leq 0.$

The proof is based on a result from Knaster- Kuratowski-Mazurkiewicz and BNS implies the Von Neuman-Sion minimax principle and the Hartman-Stampacchia theorem.

- Mosco introduced implicit variational problems nowadays known as quasi-equilibrium problem
- Blum & Oettli proposed a mixed version of Ky Fan's minimax inequality by perturbing the monotone objective bifunction f by a nonmonotone term. This covers further problems such as the nonconvex and nonsmooth Panagiotopoulos inequalties considered by Chadli, Chbani and Riahi
- Ait Mansour and Riahi studied for example the quantitative stability of equilibrium problems
- relaxed generalized quasimonotonicity and quasiconvexity, for example see Castellani & M. Giuli, Hadjisawas, Bianchi-Kassai-Pini, etc..
- iterative methods for (EP): for example Moudafi extended the Proximal point algorithm (PPA) from variational inequalities to equilibrium problems
- and many other authors.

Short history

- 3 Tools : transfer lower continuity Lower semicontinuity regularization -Ekeland variational- type principle for bifunctions
- 4 Equilibrium Problems Definitions Examples
- 5 Quasi-equilibrium problems
- System of quasi-equilibrium problems

Examples

Let *C* be a non-empty subset of \mathbb{R}^n , $h : \mathbb{R}^n \to \mathbb{R}$ and $T : \mathbb{R}^n \to \mathbb{R}^n$.

3 The *minimization problem* **MIN(**h,C) associated to h and C consists to find $x \in C$ such that

 $h(x) \le h(y)$, for all $y \in C$.

Use f(x, y) = h(x) - h(y)

- \bar{x} solves **MIN**(h, C) $\iff \bar{x}$ solves **EP**(f, C)
- **2** The Stampacchia variational inequality problem SVI(T,C) associated to T and C consists to find $x \in C$ such that

SVI(T,C) Find $\bar{x} \in C$, $\bar{\xi} \in T(x)$ such that $(\bar{\xi}, y - \bar{x}) \ge 0$ for all $y \in C$. Take :

 $f(x, y) = \max_{\xi \in T(x)} \langle \xi, y - x \rangle.$

 \bar{x} solves **SVI(T,C)** $\iff \bar{x}$ solves **EP(**f, C)

③ Let $\mathbb{H} = \mathbb{H}^*$ (Hilbert). Let *T* : $\mathbb{H} \Rightarrow X^*$. be such that *T*(*x*) ≠ Ø, *T*(*x*) ⊂ *C* ⊂ \mathbb{H} .

```
(FP) Find \bar{x} \in C such that \bar{x} \in T(\bar{x}).
```

Take $f(x, y) = \max_{\xi \in T(x)} \langle x - \xi, y - x \rangle$.

 \bar{x} solves **FP** \iff \bar{x} solves **EP(**f, C)

Michel Théra

Saddle point problem

 \mathbb{H}_1 and \mathbb{H}_2 are 2 Hilbert spaces; $C_1 \subset \mathbb{H}_1$ and $C_2 \subset \mathbb{H}_2$ 2 closed convex subsets.

 (x_1, x_2) is a saddle point of $\Theta : C_1 \times C_2 \rightarrow \mathbb{R}$ if:

 $\Theta(x_1, v) \le \Theta(u, x_2)$ for all $(u, v) \in C_1 \times C_2$.

Set
$$C = C_1 \times C_2$$
 and $f : C \times C :\rightarrow R$ given by

 $f(x_1, x_2), (y_1, y_2)) = \Theta(y_1, x_2) - \Theta(x_1, y_2).$

Then, the equilibrium problem associated to f is **equivalent** to the saddle point problem associated to Θ .

Nash equilibrium problem

Given a finite index set $I = \{1, 2, ..., N\}$, Every player *i* has a strategy set C_i and $C = \prod_{i \in I} C_i$ be the product of the strategy sets.

For each $i \in I$, let $f_i : C \to \mathbb{R}$ be the loss function of the i-th player which depends on the strategies of all players.

Set $f: C \to \mathbb{R}$ defined by $f(x) = (f_1(x), f_2(x), \dots, f_N(x))$

$$C_{-i} = \prod_{j \neq i, j=1}^{N} C_j$$
 and $x_{-i} = (x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_N).$

For each x, y, set

 $x(y_i) = (x_1, x_2, \ldots, x_{j-1}, y_i, X_{j+1}, \ldots, x_N).$

The point $\bar{x} \in C$ is a Nash equilibrium if for all $i \in I$ there holds $f_i(\bar{x}) \leq f_i(\bar{x}(y_i)), \forall y \in C_i, \forall i$

Take: $f(x, y) = \sum_{i \in I} (f_i(x(y_i)) - f_i(x)).$ \bar{x} is a Nash equilibrium $\iff \bar{x}$ solves EP(f, C)

We have a Nash Equilibrium when player can reduce his loss by varying his strategy alone

1 Short history

- 3 Tools : transfer lower continuity Lower semicontinuity regularization -Ekeland variational- type principle for bifunctions
 - 4 Equilibrium Problems Definitions Examples
- 5 Quasi-equilibrium problems
- System of quasi-equilibrium problems

Tian & Zhou [JME 95] were interested in the question to know under which minimal conditions

- a function attains its maximum on a compact set;
- the set of maximum point of a function on a compact set is nonempty;
- the maximum correspondance is closed.
- $h: C \to \mathbb{R} \cup \{+\infty\}$ is transfer lower continuous (tlc, for short) if, for each $x, y \in C$ such that h(x) > h(y), there exist $y' \in C$ and V_x a neighbourhood of x such that h(x') > h(y'), for all $x' \in V_x \cap C$.
- $h: C \to \mathbb{R} \cup \{+\infty\}$ is transfer weakly lower continuous (tlc, for short) if, for each $x, y \in C$ such that h(x) > h(y), there exist $y' \in C$ and V_x a neighbourhood of x such that $h(x') \ge h(y')$, for all $x' \in V_x \cap C$.

Results

Theorem (🍟 Weierstrass-type theorem Tian & Zhou [JME 95)

] Let C be a compact subset of a topological space X and $f : C \to \mathbb{R} \cup \{+\infty\}$ be given. Then,

f attains its minimum on $C \iff f$ is transfer weakly tlc.

Theorem (🗳🗳)

Let C be a compact subset of a topological space X and $f: C \to \mathbb{R} \cup \{+\infty\}$ be given. Then,

 $\min_{f} f$ is nonempty and compact $\iff f$ is weakly tlc.

(Fact)

$$h \quad is \ tlc \quad \Longleftrightarrow \quad \bigcap_{x \in C} S_h(h(x)) = \bigcap_{x \in C} \overline{S_h(h(x))},$$

Contrary to lower semicontinuity, tlc is not stable under addition:

Example (Ex. 1)

Take

$$h(x) := \begin{cases} x+1, & x < 0 \\ 2, & x = 0 \\ x+3, & x > 0 \end{cases} \text{ and } g(x) := -x.$$

h and g are tlc. However, h + g **fails** to be tlc at 0.

$$(h+g)(x) = \begin{cases} 1, & x < 0\\ 2, & x = 0\\ 3, & x > 0 \end{cases}$$

see the graph represented below:

Given a nonempty subset *C* of a topological space *X*, every function $h: C \rightarrow \mathbb{R}$ (not necessarily lsc) the largest lower semicontinuous minorant \overline{h} of *h* is called the *lower semicontinuous regularization* of *h*.

Epi $\overline{h} := \overline{\text{Epi} h}$ $\widehat{h}(x) = \liminf_{y \to x} h(y) = \sup_{U} \inf_{y \in U} h(y)$

It is well known that for any $x \in C$ and any $\lambda \in \mathbb{R}$

 $\bigcirc \overline{h}(x) \leq h(x);$

$$\ \, {\bf \underline{S}}_{h}(x) \subset S_{\overline{h}}(x);$$

A lower semicontinuous regularization is well-defined if $\overline{h}(x) > -\infty$, for all $x \in C$.

In other words, if *h* admits a lsc minorant.

Proposition (仚)

Let C be a nonempty subset of a topological space X and $h: C \to \mathbb{R}$ be a function.

If h is tlc, then its lower semicontinuous regularization \overline{h} is well-defined.

Proof.

It is enough to consider the case when *h* is not bounded below. Then, for each $x \in C$ there exists $y \in C$ such that h(x) > h(y). Since *h* is the there exist V_x a neighbourhood of *x* and $y' \in C$ such that h(x') > h(y'), for all $x' \in V_x$, which in turn implies $\overline{h}(x) \ge h(y')$. Therefore, \overline{h} is well-defined.

Proposition (

Let C be a nonempty subset of a topological space X and $h: C \to \mathbb{R}$ be a function. Then, the following holds

 $\inf_{x\in C} h(x) = \inf_{x\in C} \overline{h}(x).$

Proposition (\bigcirc)

Let C be a nonempty subset of a topological space X and $h:C\to \mathbb{R}$ be a function. Then

$$\underset{C}{\operatorname{argmin}} h = \underset{C}{\operatorname{argmin}} \overline{h} \iff h \quad is \ tlc.$$

Transfer lower continuity is essential in the previous result.

Example (Ex. 3)

Let

$$h(x) := \begin{cases} |x|, & x \neq 0\\ 1, & x = 1 \end{cases}$$

Clearly $\overline{h}(x) = |x|$. shows the graphs of h and \overline{h} , respectively.

argmin $h = \emptyset$ and argmin $\overline{h} = \{0\}$.

Michel Théra

Quasi-equilibrium problems

Proposition (+)

Let C be a nonempty subset of a topological space X and $h : C \to \mathbb{R}$ be a tlc function. If there exists $x \in C$ such that

 $\overline{h}(x) \le h(y)$, for all $y \in C$;

then $x \in \underset{C}{\operatorname{argmin}} h$.

Proof.

Since *h* is tlc, its lower semicontinuous regularization \overline{h} is well-defined, due to Proposition (**). Clearly, Epi(*h*) $\subset C \times \left[\overline{h}(x), +\infty\right[$. Thus, we deduce that $x \in \underset{C}{\operatorname{argmin}} \overline{h}$. The result follows from Proposition [\bigoplus].

Ekeland Variational Principle for bifunctions

Oettli & Th (1993), Bianchi et al. (2005), Alleche & Radulescu (2015),... The approach given in all these results is based on the assumption that the equilibrium bifunction should satisfy the triangle inequality property:

 $f(x,y) \leq f(x,z) + f(z,y), \, \forall x,y,z \in C.$

Theorem (Castellani & Giuli)

Let C be a nonempty closed subset of a complete metric space (X, d) and $f: C \times C \to \mathbb{R}$ be a bifunction. Assume that there exists a function $h: C \to \mathbb{R}$, bounded from below and lower semicontinuous such that

 $f(x,y) \ge h(y) - h(x), \ \forall \ x, y \in C.$

Then, for every $\varepsilon > 0$ and for every $x_0 \in C$ there exists $\overline{x} \in C$ such that (a) $h(\overline{x}) \le h(x_0) - \varepsilon d(x_0, \overline{x});$ (b) $f(\overline{x}, y) + \varepsilon d(\overline{x}, y) > 0$, for every $y \in C \setminus {\overline{x}}.$

(Remark)

 $f(x, y) = \phi(x) - \phi(y)$ gives the original Ekeland Theorem

Let us restate **EVP** in terms of lower semicontinuous regularizations.

Theorem (▲)

Let C be a nonempty closed subset of the complete metric space (X, d), and $h: C \to \mathbb{R}$ be a function bounded from below. For every $\varepsilon > 0$, and for any $x_0 \in C$, there exists $\hat{x} \in C$ such that

 $h(\hat{x}) + \varepsilon d(x_0, \hat{x}) \le h(x_0)$, and

 $h(x) + \varepsilon d(x, \hat{x}) > \overline{h}(\hat{x})$, for all $x \in C \setminus {\hat{x}}$.

Theorem (🕿)

Theorems **EVP** through Theorem (\blacktriangle) are equivalent.

As a direct consequence of Theorem (**) we have the following corollary.

Corollary ($\Delta\Delta$)

Let C be a nonempty closed subset of a complete metric space (X, d) and $f : C \times C \rightarrow \mathbb{R}$ be a bifunction. Assume that there exists a bifunction $g : C \times C \rightarrow \mathbb{R}$ such that:

 $I f \geq g;$

2 g is bounded from below and lsc with respect to its second argument;

g vanishes on the diagonal of C × C;

g satisfies the triangle inequality property.

Then, for all $\varepsilon > 0$, and all $x_0 \in C$, there exists $\hat{x} \in C$ such that

 $g(x_0, \hat{x}) + \varepsilon d(x_0, \hat{x}) \leq 0$

 $f(\hat{x}, x) + \varepsilon d(x, \hat{x}) > 0 \text{ for every } x \in C \setminus \{\hat{x}\}.$

Some definitions related to bifunctions

- A bifunction $f : C \times C \rightarrow \mathbb{R}$ is said:
 - to have the *triangle inequality property* on C if, for all $x, y, z \in C$ the following holds

 $f(x,y) \leq f(x,z) + f(z,y);$

• to be *cyclically monotone* on *C* [Bianchi, Kasay and Pini [2] (2005)] if, for all $n \in \mathbb{N}$ and all $x_0, x_1, \ldots, x_n \in C$ the following holds,

 $\sum_{i=0}^n f(x_i, x_{i+1}) \leq 0,$

with $x_{n+1} = x_0$; Extends Rockafellar's classical definition given for set-valued mappings [3].

• to be *monotone* on C if, for all $x, y \in C$ the following holds

 $f(x,y) + f(y,x) \le 0;$

• to be *pseudo-monotone* on C if, for all $x, y \in C$ the following implication holds

 $f(x, y) \ge 0 \implies f(y, x) \le 0.$

Example (Hadjisavvas & Khatibzadeh -2007-)

Let C be a nonempty subset of a topological space X and let $h: C \to \mathbb{R}$ be a function with a well-defined lsc regularization. Consider

$$g(x, y) := h(y) - h(x)$$
 and $f(x, y) := \overline{h}(y) - h(x)$. (1)

f is cyclically monotone and *g* satisfies the triangular inequality property. Moreover, $g(x, y) \ge f(x, y)$ for all $x, y \in C$.

Take $f : C \times C \to \mathbb{R}$, and use $\hat{f} : C \times C \to \mathbb{R}$ by $\hat{f}(x, y) := -f(y, x)$.

If f verifies the triangle inequality property, then \hat{f} is cyclically monotone.

Cyclic monotonicity of \hat{f} is equivalent to the existence of a function $h: C \to \mathbb{R}$ such that

$$\hat{f}(x,y) \leq h(y) - h(x), \ \forall x,y \in C.$$

Moreover,

$$f(x, y) \ge h(y) - h(x) \ge \hat{f}(x, y).$$

In addition, f monotone \implies $f(x,y)=h(y)-h(x), \forall x, y \in C \implies f$ cyclically monotone.

Short history

examples

Tools : transfer lower continuity - Lower semicontinuity regularization -Ekeland variational- type principle for bifunctions

Equilibrium Problems - Definitions - Examples

- 5 Quasi-equilibrium problems
- System of quasi-equilibrium problems

Let *C* be a nonempty subset of a topological space *X* and $f : C \times C \rightarrow \mathbb{R}$, be a given bifunction. We denote by **EP**(*f*, *C*) the solution set of the equilibrium problem:

Find $x \in C$ such that $f(x, y) \ge 0$, for all $y \in C$. (2) In a similar way, **MEP**(f, C) denotes the *solution set* of the so-called *Minty equilibrium problem*:

Find $x \in C$ such that $f(y, x) \le 0$, for all $y \in C$. (3)

If $\hat{f}(x, y) := -f(y, x)$, then

$$\mathbf{EP}(f, C) = \mathbf{MEP}(\hat{f}, C)$$
 and $\mathbf{EP}(\hat{f}, C) = \mathbf{MEP}(f, C)$.

Provided that $f(x, y) \ge h(y) - h(x)$, which implies that \hat{f} is cyclically monotone, we may observe that

$$\mathbf{MEP}(f,C) \subset \underset{C}{\operatorname{argmin}} h \subset \mathbf{EP}(f,C).$$
(4)

Moreover, if f is pseudo-monotone, then the above inclusions are actually equalities.

Remark

If the bifunction f vanishes on the diagonal of $C \times C$, then

 $x \in EP(f, C) \Leftrightarrow x \in \operatorname{argmin}_{C} f(x, \cdot) \text{ and } x \in MEP(f, C) \Leftrightarrow x \in \operatorname{argmin}_{C} \hat{f}(x, \cdot).$

Moreover,

$$\mathbf{EP}(f,C) \subset \bigcup_{x \in C} \operatorname{argmin} f(x,\cdot) \text{ and } \mathbf{MEP}(f,C) \subset \bigcup_{y \in C} \operatorname{argmin} \hat{f}(y,\cdot).$$

Theorem (\$)

Let C be a compact and nonempty subset of a topological space X, and $f : C \times C \rightarrow \mathbb{R}$ be a bifunction. If there exists a tlc function $h : C \rightarrow \mathbb{R}$ with

 $f(x, y) \ge h(y) - h(x)$, for all $x, y \in C$;

then, the set EP(f, C) is nonempty.

Quasi-equilibrium problems

Given *C* a subset of \mathbb{R}^n , a set-valued map $K : C \rightrightarrows C$ and a function $f : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$, we consider the quasi-equilibrium problem (**QEP**) associated to *f* and *K*:

Find $x \in K(x)$ such that $f(x, y) \ge 0$, for all $y \in K(x)$ (QEP)

In a similar way, **MEP**(f, C) denotes the *solution set* of the so-called *Minty equilibrium problem*

Find $x \in C$ such that $f(y, x) \le 0$, for all $y \in C$. (5)

$$\hat{f}(x,y) := -f(y,x).$$

Clearly, they satisfy

$$\mathbf{EP}(f, C) = \mathbf{MEP}(\hat{f}, C)$$
 and $\mathbf{EP}(\hat{f}, C) = \mathbf{MEP}(f, C)$.

Provided that $f(x, y) \ge h(y) - h(x)$, which implies that \hat{f} is cyclically monotone, we may observe that

$$\mathsf{MEP}(f,C) \subset \underset{C}{\operatorname{argmin}} h \subset \mathsf{EP}(f,C). \tag{6}$$

Moreover, if f is pseudo-monotone, then the above inclusions are actually equalities.

Michel Théra

Quasi-equilibrium problems

Remark

If the bifunction f vanishes on the diagonal of $C \times C$, then

 $x \in EP(f, C) \iff x \in \operatorname{argmin}_{C} f(x, \cdot) \text{ and } x \in MEP(f, C) \iff x \in \operatorname{argmin}_{C} \hat{f}(x, \cdot).$

Moreover,

$$\boldsymbol{EP}(f,C) \subset \bigcup_{x \in C} \underset{C}{\operatorname{argmin}} f(x,\cdot) \quad and \quad \boldsymbol{MEP}(f,C) \subset \bigcup_{y \in C} \underset{C}{\operatorname{argmin}} \hat{f}(y,\cdot).$$

Theorem (©)

Let C be a compact subset of a topological space X, and $f : C \times C \rightarrow \mathbb{R}$ be a bifunction. If there exists a tlc function $h : C \rightarrow \mathbb{R}$ with

 $f(x, y) \ge h(y) - h(x)$, for all $x, y \in C$;

then, the set EP(f, C) is nonempty.

Proof. From Theorem ($\stackrel{\bullet}{•}$) the set argmin *h* is nonempty. The result follows from (6).

The previous result was given in Castellini & Guili 2016 Theorem 3.11, but instead of considering the transfer lower continuity of h, the authors assumed lower semicontinuity.

Example (Ex. 5) Take $h(x) := \begin{cases} x, & 0 \le x < 1 \\ 2, & x = 1 \\ x + 2, & 1 < x \le 2 \end{cases}$ 4 2 1 2

Michel Théra

Quasi-equilibrium problems

As a direct consequence we have the following corollary, which is generalization of Giuli 2017, Theorem 3.1.

Corollary ($\Delta \Delta \Delta$)

Let C be a compact subset of a topological space X, and $f : C \times C \rightarrow \mathbb{R}$ be a bifunction. If there exists a tlc function $h : C \rightarrow \mathbb{R}$ with

 $f(x, y) \le h(y) - h(x)$, for all $x, y \in C$;

then, the set MEP(f, C) is nonempty.

Short history

2 examples

- Tools : transfer lower continuity Lower semicontinuity regularization -Ekeland variational- type principle for bifunctions
- 4 Equilibrium Problems Definitions Examples
- Quasi-equilibrium problems
 - System of quasi-equilibrium problems

Given a nonempty subset *C* of a complete metric space (*X*, *d*), a bifunction $f : C \times C \rightarrow \mathbb{R}$ and a set-valued mapping $K : C \rightrightarrows C$, we denote by **QEP**(*f*, *K*) the solution set of the so-called *quasi-equilibrium problem*:

Find $x \in C$ such that $x \in K(x) \land f(x, y) \ge 0$, for all $y \in K(x)$. (7)

Lemma ())

Let C be a nonempty subset of a complete metric space (X, d), $K : C \rightrightarrows C$ be a set-valued mapping and $h : C \rightarrow \mathbb{R}$ be a function bounded from below. We assume that for every $\varepsilon > 0$, and for any $x_0 \in C$ the following implication holds:

$$\overline{h}(x) + \varepsilon d(x, x_0) \le h(x_0) \implies \exists y \in K(x), \ h(y) + \varepsilon d(x, y) \le \overline{h}(x).$$

Then, there exists $\hat{x} \in Fix(K)$ satisfying

$$\begin{aligned} h(\hat{x}) + \varepsilon d(x_0, \hat{x}) &\leq h(x_0), \\ and \\ h(x) + \varepsilon d(x, \hat{x}) &> \overline{h}(\hat{x}), \text{ for all } x \in C \setminus \{\hat{x}\} \end{aligned}$$

Associated to f and K, we notice that if there exists a function $h : C \to \mathbb{R}$ such that $f(x, y) \ge h(y) - h(x)$ (in other words, \hat{f} is cyclically monotone), then

$$\operatorname{argmin}_{\mathcal{A}} h \cap \operatorname{Fix}(K) \subset \operatorname{QEP}(f, K).$$
(8)

Theorem (🏶)

Let C be a nonempty closed subset of a complete metric space (X, d), let $K : C \Rightarrow C$ be a set-valued mapping, and let $f : C \times C \rightarrow \mathbb{R}$ be a bifunction. Assume that the following conditions hold.

- Fix(K) is compact and nonempty;
- 2 there exists a tsc function bounded below $h: C \rightarrow \mathbb{R}$ such that

 $f(x, y) \ge h(y) - h(x)$, for all $x, y \in C$.

Suppose that for each $\varepsilon > 0$ and each $x_0 \in X$ the following implication holds:

 $\overline{h}(x) + \varepsilon d(x, x_0) \le h(x_0) \implies \exists y \in K(x), \ h(y) + \varepsilon d(x, y) \le \overline{h}(x).$

Then, the set QEP(f, K) is nonempty.

The previous result is related to Castellini & Guili 2016 but instead of transfer lower continuity, the authors assumed lower semi-continuity.

As a direct consequence of Theorem (*) we derive.

Corollary (

Let C be a nonempty closed subset of a complete metric space (X, d), $K : C \Rightarrow C$ be a set-valued mapping, and let $h : C \rightarrow \mathbb{R}$ be a function. Assume that the following conditions hold.

• Fix(K) is compact and nonempty;

• h is a tlc function bounded from below.

Suppose that for each $\varepsilon > 0$, and each $x_0 \in X$ the following implication holds:

 $\overline{h}(x) + \varepsilon d(x, x_0) \le h(x_0) \implies \exists y \in K(x), \ h(y) + \varepsilon d(x, y) \le \overline{h}(x).$

Then, there exists $\hat{x} \in Fix(K)$ such that

 $h(\hat{x}) \le h(x)$, for all $x \in K(\hat{x})$.

Short history

2 examples

- Tools : transfer lower continuity Lower semicontinuity regularization -Ekeland variational- type principle for bifunctions
- 4 Equilibrium Problems Definitions Examples
- Quasi-equilibrium problems

System of quasi-equilibrium problems

Let *I* be an index set. For each $i \in I$, we consider a complete metric space (X_i, d_i) , a nonempty closed subset C_i of X_i and a set-valued mapping $K_i : C_i \rightrightarrows C_i$. We define the set-valued mapping $K : C \rightrightarrows C$ by

$$K(\mathbf{x}) := \prod_{i \in I} K_i(\mathbf{x}_i),$$

where $C = \prod C_i$ and $x = (x^i)_{i \in I}$. By a system of quasi-equilibrium problems we understand the problem of finding

(\blacklozenge) $\hat{x} \in \mathbf{Fix}(K)$ such that $f_i(\hat{x}, y^i) \ge 0$ for all $y \in K(\hat{x})$, (9)

where $f_i : C \times C_i \rightarrow \mathbb{R}$. It is important to observe that

$$\mathbf{Fix}(\mathcal{K}) = \prod_{i \in I} \mathbf{Fix}(\mathcal{K}_i).$$

The following result generalizes Castellani-Giuli 2016 (Theorem 4.2], Alech-Radulescu 2015 (Proposition 4.2) and Bianchi-Kassai-Pini 2005 (Proposition 2)

Theorem (恷)

For each $i \in I$, let C_i be a nonempty closed subset of a topological space X_i , and let $f_i : C \times C_i \to \mathbb{R}$ be a bifunction such that

$$(\clubsuit) \quad f_i(x, y^i) \ge h_i(y^i) - h_i(x^i), \ \forall x, y \in C$$

$$(10)$$

holds for some transfer lower continuous function $h_i : C_i \to \mathbb{R}$ that is also bounded from below. Then, the system of equilibrium problems admits at least a solution.

Remark

Condition (\clubsuit) is equivalent to the following: for any $x_1, x_2, ..., x_m \in C$ it holds

$$(\bigstar) \qquad \sum_{j=1}^{m} f_{i}(x_{j}, x_{j+1}^{i}) \ge 0 \tag{11}$$

where $x_{m+1} = x_1$. It follows from the same steps of the proof of [5, Proposition 5.1].

We denote by **SEP**(f_i , C_i , I) the solution set of (9), when $K_i(x^i) = C_i$, for all $x^i \in C_i$. If I is a finite index set, as a particular case, we define the bifunction $f : C \times C \rightarrow \mathbb{R}$ by

$$(\bigstar) \quad f(x,y) := \sum_{i \in I} f_i(x,y^i). \tag{12}$$

Proposition (\bullet)

Assume that I is a finite index set. Then $SEP(f_i, C_i, I) \subset EP(f, C)$. The equality holds provided that $f_i(x, x^i) = 0$, for all $i \in I$.

Remark

Assume that I is a finite index set. If for each $i \in I$ the function f_i satisfies condition (\blacklozenge) then the function \hat{f} is cyclically monotone, where f is defined as ($\check{\blacktriangle}$).

Given a finite index set *I* and for each $i \in I$, we consider a subset C_i of a topological space and a function $f_i : C \times C_i \to \mathbb{R}$. We say that the family of functions $\{f_i\}_{i \in I}$ have the *transfer lower continuity property* if there exists a tlc function $h : C \to \mathbb{R}$ such that the bifunction f defined by (\bigstar) satisfies

 $f(x,y) \geq h(y) - h(x).$

Remark

A few remarks are needed.

- Let f be associated to a family of functions with the transfer lower continuity property and defined in (▲). Then, the bifunction f̂ is cyclically monotone;
- ② If for each *i* ∈ *I*, the function f_i is usc in its second argument; then the familty of function $\{f_i\}_{i \in I}$ has the transfer lower continuity property. It is due to Castellani & Giuli Theorem 2.16.

Theorem (

Assume that I is a finite index set and the family of functions $\{f_i\}_{i \in I}$ has the transfer lower continuity property. If $f_i(x, x^i) = 0$, for all $x = (x^i, x^{-i}) \in C$ and all $i \in I$, then the set **SEP** (f_i, C_i, I) admits at least an element.

The following example shows us that Theorem (\blacktriangle) is not a consequence of Theorem (\mathfrak{G})

Example (Ex. 6)

Consider $C_1 = C_2 = C$ both compact and nonempty subsets of \mathbb{R} and the functions $f_1, f_2 : C^2 \times C \to \mathbb{R}$ defined as

 $f_1(x^1, x^2, y^1) := y^1 - x^2$ and $f_2(x^1, x^2, y^2) := y^2 - x^1$.

Neither f_1 nor f_2 satisfy condition (\clubsuit). However, the bifunction f defined in (\bigstar) is given by

$$f_1(x^1, x^2, y^1) + f_2(x^1, x^2, y^2) = \sum_{i=1}^2 y^i - \sum_{i=1}^2 x^i.$$

Therefore, the existence of solution of the system of equilibrium problems follows from Theorem \blacktriangle and not from Theorem \circlearrowright .

Michel Théra

Quasi-equilibrium problems

Theorem (🗸)

For each $i \in I$, let C_i be a nonempty closed subset of a complete metric space (X_i, d_i) , $K_i : C_i \Rightarrow C_i$ be a set-valued mapping, and let $f_i : C \times C_i \rightarrow \mathbb{R}$ be a function such that (\clubsuit) holds for some transfer lower continuous function $h_i : C_i \rightarrow \mathbb{R}$ that is also bounded from below. Assume

Fix(K) is compact;

2 for any $\varepsilon > 0$, any $x_0 \in C$, and any $i \in I$ the following implication holds:

 $\overline{h}_i(x^i) + \varepsilon d_i(x^i, x_0^i) \le h_i(x_0^i) \implies \exists y^i \in K_i(x^i), \ h_i(y^i) + \varepsilon d_i(x^i, y^i) \le \overline{h}_i(x^i).$

Then () has a solution.

- J. Cotrina, M. Théra, and J. Zúñiga, "An existence result for quasi-equilibrium problems via ekeland's variational principle," Submited, 2020.
- M. Bianchi, G. Kassay, and R. Pini, "Existence of equilibria via Ekeland's principle," J. Math. Anal., vol. 305, pp. 502–512, 2005.
- R. T. Rockafellar, "Characterization of the subdifferentials of convex functions," *Pacific J. Math*, vol. 17, pp. 497–510, 1966.
- M. Castellani and M. Giuli, "Ekeland's principle for cyclically monotone equilibrium problems," *Nonlinear Anal. RWA*, vol. 32, pp. 213–228, 2016.
- N. Hadjisavvas and H. Khatibzadeh, "Maximal monotonicity of bifunctions," *Optimization*, vol. 59, no. 2, pp. 147–160, 2010.

Thank you

DVI-	- 1		 L 2	
	С	1e	П÷	га