Can Pourciau's open mapping theorem be derived from Clarke's inverse mapping theorem?

Marián Fabian (joint work with David Bartl)
Mathematical Institute, Czech Academy of Sciences, Prague

Can Pourciau's open mapping theorem be derived from Clarke's inverse mapping theorem?

Marián Fabian (joint work with David Bartl)
Mathematical Institute, Czech Academy of Sciences, Prague

Can Pourciau's open mapping theorem be derived from Clarke's inverse mapping theorem?

Marián Fabian (joint work with David Bartl)
Mathematical Institute, Czech Academy of Sciences, Prague

Can Pourciau's open mapping theorem be derived from Clarke's inverse mapping theorem?

Marián Fabian (joint work with David Bartl)
Mathematical Institute, Czech Academy of Sciences, Prague

Praha - Ballarat
June 30, 2020

Preludium

Statement 1 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a mapping, defined and C^{1}-smooth in a neighborhood of the origin, with $f(0)=0$, and such that the Jacobian $\nabla f(0) \in \mathbb{R}^{n \times n}$ has full rank n.

Preludium

Statement 1 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a mapping, defined and C^{1}-smooth in a neighborhood of the origin, with $f(0)=0$, and such that the Jacobian $\nabla f(0) \in \mathbb{R}^{n \times n}$ has full rank n.
Then f, restricted to a suitable neighborhood of 0 , is a homeomorphism onto a neighborhood of 0 , with a C^{1}-smooth inverse f^{-1} around 0 .

Preludium

Statement 1 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a mapping, defined and C^{1}-smooth in a neighborhood of the origin, with $f(0)=0$, and such that the Jacobian $\nabla f(0) \in \mathbb{R}^{n \times n}$ has full rank n.
Then f, restricted to a suitable neighborhood of 0 , is a homeomorphism onto a neighborhood of 0 , with a C^{1}-smooth inverse f^{-1} around 0 .

Statement 2 Let $m<n$ and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a mapping, defined and C^{1}-smooth around 0 , with $g(0)=0$, and such $\nabla g(0) \in \mathbb{R}^{m \times n}$ has full rank m.

Preludium

Statement 1 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a mapping, defined and C^{1}-smooth in a neighborhood of the origin, with $f(0)=0$, and such that the Jacobian $\nabla f(0) \in \mathbb{R}^{n \times n}$ has full rank n.
Then f, restricted to a suitable neighborhood of 0 , is a homeomorphism onto a neighborhood of 0 , with a C^{1}-smooth inverse f^{-1} around 0 .

Statement 2 Let $m<n$ and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a mapping, defined and C^{1}-smooth around 0 , with $g(0)=0$, and such $\nabla g(0) \in \mathbb{R}^{m \times n}$ has full rank m. Then g has a C^{1}-smooth right inverse in a vicinity of 0 .

Preludium

Statement 1 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a mapping, defined and C^{1}-smooth in a neighborhood of the origin, with $f(0)=0$, and such that the Jacobian $\nabla f(0) \in \mathbb{R}^{n \times n}$ has full rank n.
Then f, restricted to a suitable neighborhood of 0 , is a homeomorphism onto a neighborhood of 0 , with a C^{1}-smooth inverse f^{-1} around 0 .

Statement 2 Let $m<n$ and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a mapping, defined and C^{1}-smooth around 0 , with $g(0)=0$, and such $\nabla g(0) \in \mathbb{R}^{m \times n}$ has full rank m. Then g has a C^{1}-smooth right inverse in a vicinity of 0 .

How to derive Statement 2 from Statement 1?

First method.

Find a matrix $(n-m) \times n$, say

$$
B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right) \in \mathbb{R}^{(n-m) \times n},
$$

such that $\binom{\nabla g(0)}{B} \in \mathbb{R}^{n \times n}$ has full rank n.

First method.
Find a matrix $(n-m) \times n$, say

$$
B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right) \in \mathbb{R}^{(n-m) \times n},
$$

such that $\binom{\nabla g(0)}{B} \in \mathbb{R}^{n \times n}$ has full rank n.
Write g in the form $g(x):=\left(g_{1}(x), \ldots, g_{m}(x)\right)$, where $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

First method.
Find a matrix $(n-m) \times n$, say

$$
B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right) \in \mathbb{R}^{(n-m) \times n},
$$

such that $\left({ }_{B}^{\nabla g(0)}\right) \in \mathbb{R}^{n \times n}$ has full rank n.
Write g in the form $g(x):=\left(g_{1}(x), \ldots, g_{m}(x)\right)$, where $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Define then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
\begin{equation*}
f(x):=\left(g_{1}(x), \ldots, g_{m}(x), \sum_{j=1}^{n} b_{m+1, j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n, j} x_{j}\right) \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ in the domain of g.

First method.
Find a matrix $(n-m) \times n$, say

$$
B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right) \in \mathbb{R}^{(n-m) \times n}
$$

such that $\binom{\nabla g(0)}{B} \in \mathbb{R}^{n \times n}$ has full rank n.
Write g in the form $g(x):=\left(g_{1}(x), \ldots, g_{m}(x)\right)$, where $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Define then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
\begin{equation*}
f(x):=\left(g_{1}(x), \ldots, g_{m}(x), \sum_{j=1}^{n} b_{m+1, j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n, j} x_{j}\right) \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ in the domain of g.
Easy to see that $\nabla f(0)=\binom{\nabla g(0)}{B}$, and hence it has full rank.

First method.
Find a matrix $(n-m) \times n$, say

$$
B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right) \in \mathbb{R}^{(n-m) \times n}
$$

such that $\binom{\nabla g(0)}{B} \in \mathbb{R}^{n \times n}$ has full rank n.
Write g in the form $g(x):=\left(g_{1}(x), \ldots, g_{m}(x)\right)$, where $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Define then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
\begin{equation*}
f(x):=\left(g_{1}(x), \ldots, g_{m}(x), \sum_{j=1}^{n} b_{m+1, j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n, j} x_{j}\right) \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ in the domain of g.
Easy to see that $\nabla f(0)=\binom{\nabla g(0)}{B}$, and hence it has full rank.
By Statement 1, there are neighborhoods V and U of the origins in \mathbb{R}^{m} and \mathbb{R}^{n-m}, respectively, and a C^{1}-smooth mapping $h: V \times U \rightarrow \mathbb{R}^{n}$ such that

$$
f(h(v, u))=(v, u) \quad \text { for every } \quad(v, u) \in V \times U
$$

First method.
Find a matrix $(n-m) \times n$, say

$$
B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right) \in \mathbb{R}^{(n-m) \times n}
$$

such that $\binom{\nabla g(0)}{B} \in \mathbb{R}^{n \times n}$ has full rank n.
Write g in the form $g(x):=\left(g_{1}(x), \ldots, g_{m}(x)\right)$, where $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Define then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
\begin{equation*}
f(x):=\left(g_{1}(x), \ldots, g_{m}(x), \sum_{j=1}^{n} b_{m+1, j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n, j} x_{j}\right) \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ in the domain of g.
Easy to see that $\nabla f(0)=\binom{\nabla g(0)}{B}$, and hence it has full rank.
By Statement 1, there are neighborhoods V and U of the origins in \mathbb{R}^{m} and \mathbb{R}^{n-m}, respectively, and a C^{1}-smooth mapping $h: V \times U \rightarrow \mathbb{R}^{n}$ such that

$$
f(h(v, u))=(v, u) \quad \text { for every } \quad(v, u) \in V \times U
$$

Put $\varphi(v):=h(v, 0)$ for $v \in V$. Clearly, φ is a C^{1}-smooth mapping from $V \subset \mathbb{R}^{m}$ into \mathbb{R}^{n}.

First method.
Find a matrix $(n-m) \times n$, say

$$
B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right) \in \mathbb{R}^{(n-m) \times n}
$$

such that $\binom{\nabla g(0)}{B} \in \mathbb{R}^{n \times n}$ has full rank n.
Write g in the form $g(x):=\left(g_{1}(x), \ldots, g_{m}(x)\right)$, where $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Define then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
\begin{equation*}
f(x):=\left(g_{1}(x), \ldots, g_{m}(x), \sum_{j=1}^{n} b_{m+1, j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n, j} x_{j}\right) \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ in the domain of g.
Easy to see that $\nabla f(0)=\binom{\nabla g(0)}{B}$, and hence it has full rank.
By Statement 1, there are neighborhoods V and U of the origins in \mathbb{R}^{m} and \mathbb{R}^{n-m}, respectively, and a C^{1}-smooth mapping $h: V \times U \rightarrow \mathbb{R}^{n}$ such that

$$
f(h(v, u))=(v, u) \quad \text { for every } \quad(v, u) \in V \times U
$$

Put $\varphi(v):=h(v, 0)$ for $v \in V$. Clearly, φ is a C^{1}-smooth mapping from $V \subset \mathbb{R}^{m}$ into \mathbb{R}^{n}.
Moreover, for every $v \in V$ we have $f(\varphi(v))=f(h(v, 0))=(v, 0)$, and so $g(\varphi(v))=v$.

First method.
Find a matrix $(n-m) \times n$, say

$$
B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right) \in \mathbb{R}^{(n-m) \times n}
$$

such that $\binom{\nabla g(0)}{B} \in \mathbb{R}^{n \times n}$ has full rank n.
Write g in the form $g(x):=\left(g_{1}(x), \ldots, g_{m}(x)\right)$, where $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Define then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
\begin{equation*}
f(x):=\left(g_{1}(x), \ldots, g_{m}(x), \sum_{j=1}^{n} b_{m+1, j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n, j} x_{j}\right) \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ in the domain of g.
Easy to see that $\nabla f(0)=\binom{\nabla g(0)}{B}$, and hence it has full rank.
By Statement 1, there are neighborhoods V and U of the origins in \mathbb{R}^{m} and \mathbb{R}^{n-m}, respectively, and a C^{1}-smooth mapping $h: V \times U \rightarrow \mathbb{R}^{n}$ such that

$$
f(h(v, u))=(v, u) \quad \text { for every } \quad(v, u) \in V \times U
$$

Put $\varphi(v):=h(v, 0)$ for $v \in V$. Clearly, φ is a C^{1}-smooth mapping from $V \subset \mathbb{R}^{m}$ into \mathbb{R}^{n}.
Moreover, for every $v \in V$ we have $f(\varphi(v))=f(h(v, 0))=(v, 0)$, and so $g(\varphi(v))=v$. Therefore, φ is the desired right inverse for g.

Second method how to get Statement 2 from Statement 1.

Second method how to get Statement 2 from Statement 1.

Find a suitable canonical injection $i: \mathbb{R}^{m} \hookrightarrow \mathbb{R}^{n}$ such that, putting $f:=g \circ i$, the Jacobian $f(0)$ is a square matrix of full rank m.

Second method how to get Statement 2 from Statement 1.

Find a suitable canonical injection $i: \mathbb{R}^{m} \hookrightarrow \mathbb{R}^{n}$ such that, putting $f:=g \circ i$, the Jacobian $f(0)$ is a square matrix of full rank m.
(Yes, if we have the $m \times n$ matrix $\nabla g(0)=:\left(a_{1} a_{2} \ldots a_{n}\right)$ of full rank m, then there exists $1 \leq k_{1}<k_{2}<\cdots<k_{m} \leq n$ such that the square matrix ($a_{k_{1}} a_{k_{2}} \cdots a_{k_{m}}$) has full rank m; this is a deeper fact from linear algebra.)

Second method how to get Statement 2 from Statement 1.
Find a suitable canonical injection $i: \mathbb{R}^{m} \hookrightarrow \mathbb{R}^{n}$ such that, putting $f:=g \circ i$, the Jacobian $f(0)$ is a square matrix of full rank m.
(Yes, if we have the $m \times n$ matrix $\nabla g(0)=:\left(a_{1} a_{2} \ldots a_{n}\right)$ of full rank m, then there exists $1 \leq k_{1}<k_{2}<\cdots<k_{m} \leq n$ such that the square matrix ($a_{k_{1}} a_{k_{2}} \cdots a_{k_{m}}$) has full rank m; this is a deeper fact from linear algebra.)
Apply then Statement 1 for the mapping $f: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m}$.

Second method how to get Statement 2 from Statement 1.
Find a suitable canonical injection $i: \mathbb{R}^{m} \hookrightarrow \mathbb{R}^{n}$ such that, putting $f:=g \circ i$, the Jacobian $f(0)$ is a square matrix of full rank m.
(Yes, if we have the $m \times n$ matrix $\nabla g(0)=:\left(a_{1} a_{2} \ldots a_{n}\right)$ of full rank m, then there exists $1 \leq k_{1}<k_{2}<\cdots<k_{m} \leq n$ such that the square matrix ($a_{k_{1}} a_{k_{2}} \cdots a_{k_{m}}$) has full rank m; this is a deeper fact from linear algebra.)
Apply then Statement 1 for the mapping $f: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m}$.
Thus f^{-1} exist and $\varphi:=i \circ f^{-1}$ is a right inverse to g.

Enthousiasm

For a mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, Lipschitzian in a vicinity of 0 , the Clarke generalized Jacobian $\partial g(0)$ of g at 0 is defined as the (closed) convex hull of all possible limits $\lim _{k \rightarrow \infty} \nabla g\left(x_{k}\right)$, where we take only those $x_{k} \in \mathbb{R}^{n}$ where the derivative $\nabla g\left(x_{k}\right)$ exists.

Enthousiasm

For a mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, Lipschitzian in a vicinity of 0 , the Clarke generalized Jacobian $\partial g(0)$ of g at 0 is defined as the (closed) convex hull of all possible limits $\lim _{k \rightarrow \infty} \nabla g\left(x_{k}\right)$, where we take only those $x_{k} \in \mathbb{R}^{n}$ where the derivative $\nabla g\left(x_{k}\right)$ exists.
[Rademacher's theorem. Every Lipschitzian function on \mathbb{R}^{n} is almost everywhere differentiable];

Enthousiasm

For a mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, Lipschitzian in a vicinity of 0 , the Clarke generalized Jacobian $\partial g(0)$ of g at 0 is defined as the (closed) convex hull of all possible limits $\lim _{k \rightarrow \infty} \nabla g\left(x_{k}\right)$, where we take only those $x_{k} \in \mathbb{R}^{n}$ where the derivative $\nabla g\left(x_{k}\right)$ exists.
[Rademacher's theorem. Every Lipschitzian function on \mathbb{R}^{n} is almost everywhere differentiable]; see F.H. Clarke's monograph [C] for details.]

Enthousiasm

For a mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, Lipschitzian in a vicinity of 0 , the Clarke generalized Jacobian $\partial g(0)$ of g at 0 is defined as the (closed) convex hull of all possible limits $\lim _{k \rightarrow \infty} \nabla g\left(x_{k}\right)$, where we take only those $x_{k} \in \mathbb{R}^{n}$ where the derivative $\nabla g\left(x_{k}\right)$ exists.
[Rademacher's theorem. Every Lipschitzian function on \mathbb{R}^{n} is almost everywhere differentiable]; see F.H. Clarke's monograph [C] for details.]
Theorem 1 (Clarke [C, Theorem 7.1.1], 1976)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a Lipschitzian mapping defined in a neighborhood of 0 , with $f(0)=0$, and such that every matrix from $\partial f(0)$ has rank n.

Enthousiasm

For a mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, Lipschitzian in a vicinity of 0 , the Clarke generalized Jacobian $\partial g(0)$ of g at 0 is defined as the (closed) convex hull of all possible limits $\lim _{k \rightarrow \infty} \nabla g\left(x_{k}\right)$, where we take only those $x_{k} \in \mathbb{R}^{n}$ where the derivative $\nabla g\left(x_{k}\right)$ exists.
[Rademacher's theorem. Every Lipschitzian function on \mathbb{R}^{n} is almost everywhere differentiable]; see F.H. Clarke's monograph [C] for details.]
Theorem 1 (Clarke [C, Theorem 7.1.1], 1976)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a Lipschitzian mapping defined in a neighborhood of 0 , with $f(0)=0$, and such that every matrix from $\partial f(0)$ has rank n. Then f, restricted to a suitable neighborhood of 0 , is a homeomorphism onto a neighborhood of 0 , with f^{-1} Lipschitzian around 0 .

Enthousiasm

For a mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, Lipschitzian in a vicinity of 0 , the Clarke generalized Jacobian $\partial g(0)$ of g at 0 is defined as the (closed) convex hull of all possible limits $\lim _{k \rightarrow \infty} \nabla g\left(x_{k}\right)$, where we take only those $x_{k} \in \mathbb{R}^{n}$ where the derivative $\nabla g\left(x_{k}\right)$ exists.
[Rademacher's theorem. Every Lipschitzian function on \mathbb{R}^{n} is almost everywhere differentiable]; see F.H. Clarke's monograph [C] for details.]
Theorem 1 (Clarke [C, Theorem 7.1.1], 1976)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a Lipschitzian mapping defined in a neighborhood of 0 , with $f(0)=0$, and such that every matrix from $\partial f(0)$ has rank n.
Then f, restricted to a suitable neighborhood of 0 , is a homeomorphism onto a neighborhood of 0 , with f^{-1} Lipschitzian around 0 .

Theorem 2 (Pourciau [P], 1977)
Consider $m, n \in \mathbb{N}$ such that $m<n$ and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a Lipschitzian mapping defined in a neighborhood of 0 , with $g(0)=0$, and such that every matrix from $\partial g(0)$ has full rank m.

Enthousiasm

For a mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, Lipschitzian in a vicinity of 0 , the Clarke generalized Jacobian $\partial g(0)$ of g at 0 is defined as the (closed) convex hull of all possible limits $\lim _{k \rightarrow \infty} \nabla g\left(x_{k}\right)$, where we take only those $x_{k} \in \mathbb{R}^{n}$ where the derivative $\nabla g\left(x_{k}\right)$ exists.
[Rademacher's theorem. Every Lipschitzian function on \mathbb{R}^{n} is almost everywhere differentiable]; see F.H. Clarke's monograph [C] for details.]
Theorem 1 (Clarke [C, Theorem 7.1.1], 1976)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a Lipschitzian mapping defined in a neighborhood of 0 , with $f(0)=0$, and such that every matrix from $\partial f(0)$ has rank n.
Then f, restricted to a suitable neighborhood of 0 , is a homeomorphism onto a neighborhood of 0 , with f^{-1} Lipschitzian around 0 .

Theorem 2 (Pourciau [P], 1977)
Consider $m, n \in \mathbb{N}$ such that $m<n$ and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a Lipschitzian mapping defined in a neighborhood of 0 , with $g(0)=0$, and such that every matrix from $\partial g(0)$ has full rank m.
Then g has near 0 a right inverse, that is, there are a neighbourhood V of 0 in \mathbb{R}^{m} and a mapping $\varphi: V \rightarrow \mathbb{R}^{n}$ such that $g(\varphi(v))=v$ for every $v \in V$.

Theorem 2 can be easily obtained from Theorem 1 via the following.

Theorem 2 can be easily obtained from Theorem 1 via the following.
Lemma 3
Consider $m, n \in \mathbb{N}$ such that $m<n$ and let \mathcal{A} be a convex compact set in $\mathbb{R}^{m \times n}$ consisting of $m \times n$ matrices, each having full rank m. Then
(i) there exists a matrix $B \in \mathbb{R}^{(n-m) \times n}$ of full rank $n-m$ such that for every $A \in \mathcal{A}$ the augmented square matrix $\binom{A}{B}$ has full rank n, or

Theorem 2 can be easily obtained from Theorem 1 via the following.
Lemma 3
Consider $m, n \in \mathbb{N}$ such that $m<n$ and let \mathcal{A} be a convex compact set in $\mathbb{R}^{m \times n}$ consisting of $m \times n$ matrices, each having full rank m. Then
(i) there exists a matrix $B \in \mathbb{R}^{(n-m) \times n}$ of full rank $n-m$ such that for every $A \in \mathcal{A}$ the augmented square matrix $\binom{A}{B}$ has full rank n, or
(ii) there exists a linear subspace $0 \in W \subset \mathbb{R}^{n \times 1}$, of dimension m, such that for every $A \in \mathcal{A}$ the mapping $A_{\mid W}: W \longrightarrow \mathbb{R}^{m \times 1}$ is surjective.

Theorem 2 can be easily obtained from Theorem 1 via the following.
Lemma 3
Consider $m, n \in \mathbb{N}$ such that $m<n$ and let \mathcal{A} be a convex compact set in $\mathbb{R}^{m \times n}$ consisting of $m \times n$ matrices, each having full rank m. Then
(i) there exists a matrix $B \in \mathbb{R}^{(n-m) \times n}$ of full rank $n-m$ such that for every $A \in \mathcal{A}$ the augmented square matrix $\binom{A}{B}$ has full rank n, or
(ii) there exists a linear subspace $0 \in W \subset \mathbb{R}^{n \times 1}$, of dimension m, such that for every $A \in \mathcal{A}$ the mapping $A_{\mid W}: W \longrightarrow \mathbb{R}^{m \times 1}$ is surjective.

Proof of Theorem 2 by using Theorem 1 and Lemma 3 (i).

Assume that g has the form $g(x)=:\left(g_{1}(x), \ldots, g_{m}(x)\right)$ whenever $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ belongs to the domain of g. Let $B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right)$ be the matrix found for the (convex compact) set $\mathcal{A}:=\partial g(0)$ by Lemma 3 .

Theorem 2 can be easily obtained from Theorem 1 via the following.

Lemma 3

Consider $m, n \in \mathbb{N}$ such that $m<n$ and let \mathcal{A} be a convex compact set in $\mathbb{R}^{m \times n}$ consisting of $m \times n$ matrices, each having full rank m. Then
(i) there exists a matrix $B \in \mathbb{R}^{(n-m) \times n}$ of full rank $n-m$ such that for every $A \in \mathcal{A}$ the augmented square matrix $\binom{A}{B}$ has full rank n, or
(ii) there exists a linear subspace $0 \in W \subset \mathbb{R}^{n \times 1}$, of dimension m, such that for every $A \in \mathcal{A}$ the mapping $A_{\mid W}: W \longrightarrow \mathbb{R}^{m \times 1}$ is surjective.

Proof of Theorem 2 by using Theorem 1 and Lemma 3 (i).

Assume that g has the form $g(x)=:\left(g_{1}(x), \ldots, g_{m}(x)\right)$ whenever
$x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ belongs to the domain of g. Let
$B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right)$ be the matrix found for the (convex compact) set $\mathcal{A}:=\partial g(0)$ by Lemma 3. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by
$f(x):=\left(g_{1}(x), \ldots, g_{m}(x), \sum_{j=1}^{n} b_{m+1, j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n, j} x_{j}\right)$
for all $x \in \mathbb{R}^{n}$ in the domain of g. It is easy to verify that $\partial f(0)=\binom{\partial g(0)}{B}$, and hence, by Lemma 3, each element of the latter has rank n.

Theorem 2 can be easily obtained from Theorem 1 via the following.
Lemma 3
Consider $m, n \in \mathbb{N}$ such that $m<n$ and let \mathcal{A} be a convex compact set in $\mathbb{R}^{m \times n}$ consisting of $m \times n$ matrices, each having full rank m. Then
(i) there exists a matrix $B \in \mathbb{R}^{(n-m) \times n}$ of full rank $n-m$ such that for every $A \in \mathcal{A}$ the augmented square matrix $\binom{A}{B}$ has full rank n, or
(ii) there exists a linear subspace $0 \in W \subset \mathbb{R}^{n \times 1}$, of dimension m, such that for every $A \in \mathcal{A}$ the mapping $A_{\mid W}: W \longrightarrow \mathbb{R}^{m \times 1}$ is surjective.

Proof of Theorem 2 by using Theorem 1 and Lemma 3 (i).

Assume that g has the form $g(x)=:\left(g_{1}(x), \ldots, g_{m}(x)\right)$ whenever
$x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ belongs to the domain of g. Let
$B=:\left(b_{i, j}: m+1 \leq i \leq n, 1 \leq j \leq n\right)$ be the matrix found for the (convex compact) set $\mathcal{A}:=\partial g(0)$ by Lemma 3. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by
$f(x):=\left(g_{1}(x), \ldots, g_{m}(x), \sum_{j=1}^{n} b_{m+1, j} x_{j}, \ldots, \sum_{j=1}^{n} b_{n, j} x_{j}\right)$
for all $x \in \mathbb{R}^{n}$ in the domain of g. It is easy to verify that $\partial f(0)=\binom{\partial g(0)}{B}$, and hence, by Lemma 3, each element of the latter has rank n.
Now, Theorem 1 provides neighborhoods V and U of the origins in \mathbb{R}^{m} and \mathbb{R}^{n-m}, respectively, and a continuous mapping $h: V \times U \rightarrow \mathbb{R}^{n}$ such that $f(h(v, u))=(v, u)$ for every $(v, u) \in V \times U$. Put $\varphi(v):=h(v, 0), v \in V$.

Proof of Theorem 2 by using Theorem 1 and Lemma 3 (ii).

Similar to the second method of derivation of Statement 2 from Statement 1.

Cooling down

The proof of Lemma 3 in full generality seems to be not easy;

Cooling down

The proof of Lemma 3 in full generality seems to be not easy; even for convex compact bodies $\mathcal{A} \subset \mathbb{R}^{2 \times 3}$.

Cooling down

The proof of Lemma 3 in full generality seems to be not easy; even for convex compact bodies $\mathcal{A} \subset \mathbb{R}^{2 \times 3}$. After a non-negligible and longer effort, we gave up

Cooling down

The proof of Lemma 3 in full generality seems to be not easy; even for convex compact bodies $\mathcal{A} \subset \mathbb{R}^{2 \times 3}$. After a non-negligible and longer effort, we gave up and found finally a COUNTEREXAMPLE

Cooling down

The proof of Lemma 3 in full generality seems to be not easy; even for convex compact bodies $\mathcal{A} \subset \mathbb{R}^{2 \times 3}$. After a non-negligible and longer effort, we gave up and found finally a COUNTEREXAMPLE

Proposition 4

There does exists a convex compact set $\mathcal{B} \subset \mathbb{R}^{2 \times 3}$ such that:
(i) each matrix $M \in \mathcal{B}$ has full rank 2;

Cooling down

The proof of Lemma 3 in full generality seems to be not easy; even for convex compact bodies $\mathcal{A} \subset \mathbb{R}^{2 \times 3}$. After a non-negligible and longer effort, we gave up and found finally a COUNTEREXAMPLE

Proposition 4

There does exists a convex compact set $\mathcal{B} \subset \mathbb{R}^{2 \times 3}$ such that:
(i) each matrix $M \in \mathcal{B}$ has full rank 2;
(ii) for every vector $v \in \mathbb{R}^{3}$ there is a matrix $M \in \mathcal{B}$ such that the augmented square matrix $\binom{M}{v} \in \mathbb{R}^{3 \times 3}$ is singular,

Cooling down

The proof of Lemma 3 in full generality seems to be not easy; even for convex compact bodies $\mathcal{A} \subset \mathbb{R}^{2 \times 3}$. After a non-negligible and longer effort, we gave up and found finally a COUNTEREXAMPLE

Proposition 4

There does exists a convex compact set $\mathcal{B} \subset \mathbb{R}^{2 \times 3}$ such that:
(i) each matrix $M \in \mathcal{B}$ has full rank 2;
(ii) for every vector $v \in \mathbb{R}^{3}$ there is a matrix $M \in \mathcal{B}$ such that the augmented square matrix $\binom{M}{v} \in \mathbb{R}^{3 \times 3}$ is singular, that is, v belongs to the linear hull of the rows of M; and

Cooling down

The proof of Lemma 3 in full generality seems to be not easy; even for convex compact bodies $\mathcal{A} \subset \mathbb{R}^{2 \times 3}$. After a non-negligible and longer effort, we gave up and found finally a COUNTEREXAMPLE

Proposition 4

There does exists a convex compact set $\mathcal{B} \subset \mathbb{R}^{2 \times 3}$ such that:
(i) each matrix $M \in \mathcal{B}$ has full rank 2;
(ii) for every vector $v \in \mathbb{R}^{3}$ there is a matrix $M \in \mathcal{B}$ such that the augmented square matrix $\binom{M}{v} \in \mathbb{R}^{3 \times 3}$ is singular, that is, v belongs to the linear hull of the rows of M; and
(iii) for every plane $0 \in W \subset \mathbb{R}^{3}$ there is an $M \in \mathcal{B}$ such that the dimension of the subspace $M(W):=\{M(w): w \in W\} \subset \mathbb{R}^{2}$ is 1 .

Cooling down

The proof of Lemma 3 in full generality seems to be not easy; even for convex compact bodies $\mathcal{A} \subset \mathbb{R}^{2 \times 3}$.
After a non-negligible and longer effort, we gave up and found finally a COUNTEREXAMPLE

Proposition 4

There does exists a convex compact set $\mathcal{B} \subset \mathbb{R}^{2 \times 3}$ such that:
(i) each matrix $M \in \mathcal{B}$ has full rank 2;
(ii) for every vector $v \in \mathbb{R}^{3}$ there is a matrix $M \in \mathcal{B}$ such that the augmented square matrix $\binom{M}{v} \in \mathbb{R}^{3 \times 3}$ is singular, that is, v belongs to the linear hull of the rows of M; and
(iii) for every plane $0 \in W \subset \mathbb{R}^{3}$ there is an $M \in \mathcal{B}$ such that the dimension of the subspace $M(W):=\{M(w): w \in W\} \subset \mathbb{R}^{2}$ is 1 .

Proof.
Put $\mathcal{B}:=\operatorname{co}\{O, A, B, C\}$, where

$$
O:=\binom{+1,1,0}{-1,1,0}, \quad A:=\binom{+1,1,1}{0,0,1}, \quad B:=\binom{0,0,1}{-1,1,1}, \quad C:=\binom{+1,0,-1}{-1,0,-1} .
$$

Cooling down

The proof of Lemma 3 in full generality seems to be not easy; even for convex compact bodies $\mathcal{A} \subset \mathbb{R}^{2 \times 3}$.
After a non-negligible and longer effort, we gave up and found finally a COUNTEREXAMPLE

Proposition 4

There does exists a convex compact set $\mathcal{B} \subset \mathbb{R}^{2 \times 3}$ such that:
(i) each matrix $M \in \mathcal{B}$ has full rank 2;
(ii) for every vector $v \in \mathbb{R}^{3}$ there is a matrix $M \in \mathcal{B}$ such that the augmented square matrix $\binom{M}{v} \in \mathbb{R}^{3 \times 3}$ is singular, that is, v belongs to the linear hull of the rows of M; and
(iii) for every plane $0 \in W \subset \mathbb{R}^{3}$ there is an $M \in \mathcal{B}$ such that the dimension of the subspace $M(W):=\{M(w): w \in W\} \subset \mathbb{R}^{2}$ is 1 .

Proof.
Put $\mathcal{B}:=\operatorname{co}\{O, A, B, C\}$, where

$$
O:=\binom{+1,1,0}{-1,1,0}, \quad A:=\binom{+1,1,1}{0,0,1}, \quad B:=\binom{0,0,1}{-1,1,1}, \quad C:=\binom{+1,0,-1}{-1,0,-1} .
$$

The verification of (i) and (ii) amounts to a lot of (boring) work, sometimes facing to solve quadratic equations.

Cooling down

The proof of Lemma 3 in full generality seems to be not easy; even for convex compact bodies $\mathcal{A} \subset \mathbb{R}^{2 \times 3}$.
After a non-negligible and longer effort, we gave up and found finally a COUNTEREXAMPLE

Proposition 4

There does exists a convex compact set $\mathcal{B} \subset \mathbb{R}^{2 \times 3}$ such that:
(i) each matrix $M \in \mathcal{B}$ has full rank 2;
(ii) for every vector $v \in \mathbb{R}^{3}$ there is a matrix $M \in \mathcal{B}$ such that the augmented square matrix $\binom{M}{v} \in \mathbb{R}^{3 \times 3}$ is singular, that is, v belongs to the linear hull of the rows of M; and
(iii) for every plane $0 \in W \subset \mathbb{R}^{3}$ there is an $M \in \mathcal{B}$ such that the dimension of the subspace $M(W):=\{M(w): w \in W\} \subset \mathbb{R}^{2}$ is 1 .

Proof.
Put $\mathcal{B}:=\operatorname{co}\{O, A, B, C\}$, where

$$
O:=\binom{+1,1,0}{-1,1,0}, \quad A:=\binom{+1,1,1}{0,0,1}, \quad B:=\binom{0,0,1}{-1,1,1}, \quad C:=\binom{+1,0,-1}{-1,0,-1} .
$$

The verification of (i) and (ii) amounts to a lot of (boring) work, sometimes facing to solve quadratic equations. (iii) follows from (ii) easily.

Freezing

¿Does there exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\mathcal{B}$?

Freezing

¿Does there exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\mathcal{B}$? We still do not know!

Freezing

¿Does there exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\mathcal{B}$? We still do not know!

However we have a good/bad news:

Freezing

¿Does there exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\mathcal{B}$? We still do not know!
However we have a good/bad news:
The extra matrix

$$
P:=\binom{+1,0,1}{-1,1,1}
$$

helps in the sense that:

Freezing

¿Does there exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\mathcal{B}$? We still do not know!

However we have a good/bad news:
The extra matrix

$$
P:=\binom{+1,0,1}{-1,1,1}
$$

helps in the sense that:
Theorem 5
The augmented 5 -gone $\operatorname{co}\{\mathcal{B}, P\}=\operatorname{co}\{O, A, B, C, P\}=: \mathcal{C}$ still possesses the properties from Proposition 4, that is:

Freezing

¿Does there exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\mathcal{B}$? We still do not know!
However we have a good/bad news:
The extra matrix

$$
P:=\binom{+1,0,1}{-1,1,1}
$$

helps in the sense that:
Theorem 5
The augmented 5 -gone $\operatorname{co}\{\mathcal{B}, P\}=\operatorname{co}\{O, A, B, C, P\}=: \mathcal{C}$ still possesses the properties from Proposition 4, that is:
each $M \in \mathcal{C}$ has full rank 2;

Freezing

¿Does there exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\mathcal{B}$? We still do not know!

However we have a good/bad news:
The extra matrix

$$
P:=\binom{+1,0,1}{-1,1,1}
$$

helps in the sense that:

Theorem 5

The augmented 5 -gone $\operatorname{co}\{\mathcal{B}, P\}=\operatorname{co}\{O, A, B, C, P\}=: \mathcal{C}$ still possesses the properties from Proposition 4, that is: each $M \in \mathcal{C}$ has full rank 2; $\forall v \in \mathbb{R}^{3} \exists\binom{m_{1}}{m_{2}} \in \mathcal{C}$ such that $v \in \operatorname{lin}\left\{m_{1}, m_{2}\right\}$, and

Freezing

¿Does there exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\mathcal{B}$? We still do not know!
However we have a good/bad news:
The extra matrix

$$
P:=\binom{+1,0,1}{-1,1,1}
$$

helps in the sense that:

Theorem 5

The augmented 5 -gone $\operatorname{co}\{\mathcal{B}, P\}=\operatorname{co}\{O, A, B, C, P\}=: \mathcal{C}$ still possesses the properties from Proposition 4, that is: each $M \in \mathcal{C}$ has full rank 2; $\forall v \in \mathbb{R}^{3} \exists\binom{m_{1}}{m_{2}} \in \mathcal{C}$ such that $v \in \operatorname{lin}\left\{m_{1}, m_{2}\right\}$, and $\forall W \subset \mathbb{R}^{3} \exists M \in \mathcal{C}$ such that $\operatorname{dim} M(W)=1$.

Freezing

¿Does there exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\mathcal{B}$? We still do not know!
However we have a good/bad news:
The extra matrix

$$
P:=\binom{+1,0,1}{-1,1,1}
$$

helps in the sense that:

Theorem 5

The augmented 5 -gone $\operatorname{co}\{\mathcal{B}, P\}=\operatorname{co}\{O, A, B, C, P\}=: \mathcal{C}$ still possesses the properties from Proposition 4, that is: each $M \in \mathcal{C}$ has full rank 2; $\forall v \in \mathbb{R}^{3} \exists\binom{m_{1}}{m_{2}} \in \mathcal{C}$ such that $v \in \operatorname{lin}\left\{m_{1}, m_{2}\right\}$, and $\forall W \subset \mathbb{R}^{3} \exists M \in \mathcal{C}$ such that $\operatorname{dim} M(W)=1$. Moreover, there does exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\operatorname{co}\{O, A, B, C, P\}$.

Freezing

¿Does there exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\mathcal{B}$? We still do not know!
However we have a good/bad news:
The extra matrix

$$
P:=\binom{+1,0,1}{-1,1,1}
$$

helps in the sense that:

Theorem 5

The augmented 5 -gone $\operatorname{co}\{\mathcal{B}, P\}=\operatorname{co}\{O, A, B, C, P\}=: \mathcal{C}$ still possesses the properties from Proposition 4, that is: each $M \in \mathcal{C}$ has full rank 2; $\forall v \in \mathbb{R}^{3} \exists\binom{m_{1}}{m_{2}} \in \mathcal{C}$ such that $v \in \operatorname{lin}\left\{m_{1}, m_{2}\right\}$, and $\forall W \subset \mathbb{R}^{3} \exists M \in \mathcal{C}$ such that $\operatorname{dim} M(W)=1$. Moreover, there does exist a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)=\operatorname{co}\{O, A, B, C, P\}$.

Continuous contact

Explain verbally troubles in constructing $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)$ equals to an a priori given patata.

Continuous contact

Explain verbally troubles in constructing $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)$ equals to an a priori given patata.
A continuous contact between two matrices $M, N \in \mathbb{R}^{2 \times n}$,

Continuous contact

Explain verbally troubles in constructing $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)$ equals to an a priori given patata.
A continuous contact between two matrices $M, N \in \mathbb{R}^{2 \times n}$, means that the rank of the difference $M-N$ is just 1 .

Continuous contact

Explain verbally troubles in constructing $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)$ equals to an a priori given patata.
A continuous contact between two matrices $M, N \in \mathbb{R}^{2 \times n}$, means that the rank of the difference $M-N$ is just 1 .
Observation: If $M:=\binom{m_{1}}{m_{2}}, N:=\binom{n_{1}}{n_{2}} \in \mathbb{R}^{2 \times 3}$ have a continuous contact, then putting for every $x \in \mathbb{R}^{3}$

$$
g(x):= \begin{cases}M(x) & \text { if }\left\langle m_{1}, x\right\rangle \geq\left\langle n_{1}, x\right\rangle \\ N(x) & \text { if }\left\langle m_{1}, x\right\rangle \leq\left\langle n_{1}, x\right\rangle\end{cases}
$$

we have $\partial g(0)=\operatorname{co}\{M, N\}$.

Continuous contact

Explain verbally troubles in constructing $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)$ equals to an a priori given patata.
A continuous contact between two matrices $M, N \in \mathbb{R}^{2 \times n}$, means that the rank of the difference $M-N$ is just 1 .
Observation: If $M:=\binom{m_{1}}{m_{2}}, N:=\binom{n_{1}}{n_{2}} \in \mathbb{R}^{2 \times 3}$ have a continuous contact, then putting for every $x \in \mathbb{R}^{3}$

$$
g(x):= \begin{cases}M(x) & \text { if }\left\langle m_{1}, x\right\rangle \geq\left\langle n_{1}, x\right\rangle \\ N(x) & \text { if }\left\langle m_{1}, x\right\rangle \leq\left\langle n_{1}, x\right\rangle\end{cases}
$$

we have $\partial g(0)=\operatorname{co}\{M, N\}$.
If M, N do not have a continuous contact, then we do not know how to construct g such that $\partial g(0)=\operatorname{co}\{M, N\}$.

Continuous contact

Explain verbally troubles in constructing $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)$ equals to an a priori given patata.
A continuous contact between two matrices $M, N \in \mathbb{R}^{2 \times n}$, means that the rank of the difference $M-N$ is just 1 .
Observation: If $M:=\binom{m_{1}}{m_{2}}, N:=\binom{n_{1}}{n_{2}} \in \mathbb{R}^{2 \times 3}$ have a continuous contact, then putting for every $x \in \mathbb{R}^{3}$

$$
g(x):= \begin{cases}M(x) & \text { if }\left\langle m_{1}, x\right\rangle \geq\left\langle n_{1}, x\right\rangle \\ N(x) & \text { if }\left\langle m_{1}, x\right\rangle \leq\left\langle n_{1}, x\right\rangle\end{cases}
$$

we have $\partial g(0)=\operatorname{co}\{M, N\}$.
If M, N do not have a continuous contact, then we do not know how to construct g such that $\partial g(0)=\operatorname{co}\{M, N\}$.
(Secrete fact: P has a continuous contact with each matrix from the cortege $O, A, B, C!)$

Continuous contact

Explain verbally troubles in constructing $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ such that $\partial g(0)$ equals to an a priori given patata.
A continuous contact between two matrices $M, N \in \mathbb{R}^{2 \times n}$, means that the rank of the difference $M-N$ is just 1 .
Observation: If $M:=\binom{m_{1}}{m_{2}}, N:=\binom{n_{1}}{n_{2}} \in \mathbb{R}^{2 \times 3}$ have a continuous contact, then putting for every $x \in \mathbb{R}^{3}$

$$
g(x):= \begin{cases}M(x) & \text { if }\left\langle m_{1}, x\right\rangle \geq\left\langle n_{1}, x\right\rangle \\ N(x) & \text { if }\left\langle m_{1}, x\right\rangle \leq\left\langle n_{1}, x\right\rangle\end{cases}
$$

we have $\partial g(0)=\operatorname{co}\{M, N\}$.
If M, N do not have a continuous contact, then we do not know how to construct g such that $\partial g(0)=\operatorname{co}\{M, N\}$.
(Secrete fact: P has a continuous contact with each matrix from the cortege $O, A, B, C!)$

PICTURE

Ray-fish lemma(ta)

Ray-fish lemma(ta)

(The graph of) the mapping g promised in Theorem 5 will look as a "flat ocean", controlled by the matrix P, together with countably many ray-fish, floating on the ocean and converging to the origin.

Ray-fish lemma(ta)

(The graph of) the mapping g promised in Theorem 5 will look as a "flat ocean", controlled by the matrix P, together with countably many ray-fish, floating on the ocean and converging to the origin.

PICTURE

$$
0<\delta<1
$$

2D RAY-FISH

$$
P, Q, M_{n_{j}}, M_{\lambda_{j} \in \mathbb{R}^{2 \times 2}}
$$

Lemma 6 (2D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 2}$ be two matrices with a continuous contact.

Lemma 6 (2D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 2}$ be two matrices with a continuous contact. Pick an r_{0} in the doubleton $(P-Q)^{-1}(0) \cap S_{\mathbb{R}^{2}}$, put $S_{0}:=-r_{0}$, and pick a u in the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{2}}$.

Lemma 6 (2D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 2}$ be two matrices with a continuous contact. Pick an r_{0} in the doubleton $(P-Q)^{-1}(0) \cap S_{\mathbb{R}^{2}}$, put $s_{0}:=-r_{0}$, and pick a u in the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{2}}$. Consider any $\delta \in(0,1)$ and let r_{δ} and s_{δ} be the two elements of the doubleton $\left((P-Q)^{-1}(0)-\delta u\right) \cap S_{\mathbb{R}^{2}}$ such that $r_{\delta} \in \widehat{-u, r_{0}}$ and $s_{\delta} \in \widehat{-u, s_{0}}$.

Lemma 6 (2D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 2}$ be two matrices with a continuous contact. Pick an r_{0} in the doubleton $(P-Q)^{-1}(0) \cap S_{\mathbb{R}^{2}}$, put $s_{0}:=-r_{0}$, and pick a u in the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{2}}$. Consider any $\delta \in(0,1)$ and let r_{δ} and s_{δ} be the two elements of the doubleton $\left((P-Q)^{-1}(0)-\delta u\right) \cap S_{\mathbb{R}^{2}}$ such that $r_{\delta} \in \widehat{-u, r_{0}}$ and $s_{\delta} \in \widehat{-u, s_{0}}$.
Then there exist unique matrices $M_{r_{\delta}}, M_{s_{\delta}} \in \mathbb{R}^{2 \times 2}$ such that
$M_{r_{\delta}}\left(r_{\delta}\right)=Q\left(r_{\delta}\right), \quad M_{s_{\delta}}\left(s_{\delta}\right)=Q\left(s_{\delta}\right), \quad M_{r_{\delta}}(u)=M_{s_{\delta}}(u)=P(u)+\delta(P-Q)(u)$.

Lemma 6 (2D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 2}$ be two matrices with a continuous contact. Pick an r_{0} in the doubleton $(P-Q)^{-1}(0) \cap S_{\mathbb{R}^{2}}$, put $s_{0}:=-r_{0}$, and pick a u in the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{2}}$. Consider any $\delta \in(0,1)$ and let r_{δ} and s_{δ} be the two elements of the doubleton $\left((P-Q)^{-1}(0)-\delta u\right) \cap S_{\mathbb{R}^{2}}$ such that $r_{\delta} \in \widehat{-u, r_{0}}$ and $s_{\delta} \in \widehat{-u, s_{0}}$.
Then there exist unique matrices $M_{r_{\delta}}, M_{s_{\delta}} \in \mathbb{R}^{2 \times 2}$ such that
$M_{r_{\delta}}\left(r_{\delta}\right)=Q\left(r_{\delta}\right), \quad M_{s_{\delta}}\left(s_{\delta}\right)=Q\left(s_{\delta}\right), \quad M_{r_{\delta}}(u)=M_{s_{\delta}}(u)=P(u)+\delta(P-Q)(u)$.
Moreover, putting

$$
f(x):= \begin{cases}P(x) & \text { if } x \in \mathbb{R}^{2} \backslash \operatorname{co}\left\{r_{\delta}, s_{\delta}, u\right\},\left(\subset \mathbb{R}^{2} \backslash B_{\mathbb{R}^{2}}\right) \\ Q(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{r_{\delta}, s_{\delta}, 0\right\}, \\ M_{r_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{r_{\delta}, u, 0\right\}, \\ M_{s_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \cos \left\{s_{\delta}, u, 0\right\},\end{cases}
$$

Lemma 6 (2D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 2}$ be two matrices with a continuous contact. Pick an r_{0} in the doubleton $(P-Q)^{-1}(0) \cap S_{\mathbb{R}^{2}}$, put $s_{0}:=-r_{0}$, and pick a u in the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{2}}$. Consider any $\delta \in(0,1)$ and let r_{δ} and s_{δ} be the two elements of the doubleton $\left((P-Q)^{-1}(0)-\delta u\right) \cap S_{\mathbb{R}^{2}}$ such that $r_{\delta} \in \widehat{-u, r_{0}}$ and $s_{\delta} \in \widehat{-u, s_{0}}$.
Then there exist unique matrices $M_{r_{\delta}}, M_{s_{\delta}} \in \mathbb{R}^{2 \times 2}$ such that
$M_{r_{\delta}}\left(r_{\delta}\right)=Q\left(r_{\delta}\right), \quad M_{s_{\delta}}\left(s_{\delta}\right)=Q\left(s_{\delta}\right), \quad M_{r_{\delta}}(u)=M_{s_{\delta}}(u)=P(u)+\delta(P-Q)(u)$.
Moreover, putting

$$
f(x):= \begin{cases}P(x) & \text { if } x \in \mathbb{R}^{2} \backslash \cos \left\{r_{\delta}, s_{\delta}, u\right\}, \quad\left(\subset \mathbb{R}^{2} \backslash B_{\mathbb{R}^{2}}\right) \\ Q(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{r_{\delta}, s_{\delta}, 0\right\} \\ M_{r_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \cos \left\{r_{\delta}, u, 0\right\} \\ M_{s_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \cos \left\{s_{\delta}, u, 0\right\}\end{cases}
$$

this is a well defined, piecewise linear, mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with a Lipschitzian constant max $\left\{\|P\|,\|Q\|,\left\|M_{r_{\delta}}\right\|,\left\|M_{s_{\delta}}\right\|\right\}=: L_{\delta}$,

Lemma 6 (2D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 2}$ be two matrices with a continuous contact. Pick an r_{0} in the doubleton $(P-Q)^{-1}(0) \cap S_{\mathbb{R}^{2}}$, put $s_{0}:=-r_{0}$, and pick a u in the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{2}}$. Consider any $\delta \in(0,1)$ and let r_{δ} and s_{δ} be the two elements of the doubleton $\left((P-Q)^{-1}(0)-\delta u\right) \cap S_{\mathbb{R}^{2}}$ such that $r_{\delta} \in \widehat{-u, r_{0}}$ and $s_{\delta} \in \widehat{-u, s_{0}}$.
Then there exist unique matrices $M_{r_{\delta}}, M_{s_{\delta}} \in \mathbb{R}^{2 \times 2}$ such that
$M_{r_{\delta}}\left(r_{\delta}\right)=Q\left(r_{\delta}\right), \quad M_{s_{\delta}}\left(s_{\delta}\right)=Q\left(s_{\delta}\right), \quad M_{r_{\delta}}(u)=M_{s_{\delta}}(u)=P(u)+\delta(P-Q)(u)$.
Moreover, putting

$$
f(x):= \begin{cases}P(x) & \text { if } x \in \mathbb{R}^{2} \backslash \cos \left\{r_{\delta}, s_{\delta}, u\right\}, \quad\left(\subset \mathbb{R}^{2} \backslash B_{\mathbb{R}^{2}}\right) \\ Q(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{r_{\delta}, s_{\delta}, 0\right\} \\ M_{r_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \cos \left\{r_{\delta}, u, 0\right\} \\ M_{s_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \cos \left\{s_{\delta}, u, 0\right\}\end{cases}
$$

this is a well defined, piecewise linear, mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with a Lipschitzian constant max $\left\{\|P\|,\|Q\|,\left\|M_{r_{\delta}}\right\|,\left\|M_{s_{\delta}}\right\|\right\}=: L_{\delta}$, and such that

$$
\left\{\nabla f(x): f \text { is differentiable at } x \in \mathbb{R}^{2}\right\}=\left\{P, Q, M_{r_{\delta}}, M_{s_{\delta}}\right\} .
$$

Lemma 6 (2D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 2}$ be two matrices with a continuous contact. Pick an r_{0} in the doubleton $(P-Q)^{-1}(0) \cap S_{\mathbb{R}^{2}}$, put $s_{0}:=-r_{0}$, and pick a u in the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{2}}$. Consider any $\delta \in(0,1)$ and let r_{δ} and s_{δ} be the two elements of the doubleton $\left((P-Q)^{-1}(0)-\delta u\right) \cap S_{\mathbb{R}^{2}}$ such that $r_{\delta} \in \widehat{-u, r_{0}}$ and $s_{\delta} \in \widehat{-u, s_{0}}$.
Then there exist unique matrices $M_{r_{\delta}}, M_{s_{\delta}} \in \mathbb{R}^{2 \times 2}$ such that
$M_{r_{\delta}}\left(r_{\delta}\right)=Q\left(r_{\delta}\right), \quad M_{s_{\delta}}\left(s_{\delta}\right)=Q\left(s_{\delta}\right), \quad M_{r_{\delta}}(u)=M_{s_{\delta}}(u)=P(u)+\delta(P-Q)(u)$.
Moreover, putting

$$
f(x):= \begin{cases}P(x) & \text { if } x \in \mathbb{R}^{2} \backslash \cos \left\{r_{\delta}, s_{\delta}, u\right\}, \quad\left(\subset \mathbb{R}^{2} \backslash B_{\mathbb{R}^{2}}\right) \\ Q(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{r_{\delta}, s_{\delta}, 0\right\} \\ M_{r_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \cos \left\{r_{\delta}, u, 0\right\} \\ M_{s_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \cos \left\{s_{\delta}, u, 0\right\}\end{cases}
$$

this is a well defined, piecewise linear, mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with a Lipschitzian constant $\max \left\{\|P\|,\|Q\|,\left\|M_{r_{\delta}}\right\|,\left\|M_{s_{\delta}}\right\|\right\}=: L_{\delta}$, and such that

$$
\left\{\nabla f(x): f \text { is differentiable at } x \in \mathbb{R}^{2}\right\}=\left\{P, Q, M_{r_{\delta}}, M_{s_{\delta}}\right\} .
$$

Finally, for $\delta \downarrow 0$ we have $M_{r_{\delta}} \longrightarrow P, M_{s_{\delta}} \longrightarrow P$, and $L_{\delta} \longrightarrow \max \left\{\|P\|_{\&}\|Q\|_{\underline{\underline{s}}}\right.$.

PROOF

$$
\begin{aligned}
M_{r_{\delta}}\left(r_{\delta} \mu\right)= & \left(Q r_{\delta} P \mu+\delta(P-Q) \mu\right) \\
M_{r_{\delta}}= & \left(Q r_{\delta} P \mu+\delta(P-Q) \mu\right)\left(r_{\delta} \mu\right)^{-1} \\
& \nmid \text { as } \delta \psi_{0} \\
& \left(Q r_{0} P \mu\right)\left(r_{0} \mu\right)^{-1} \\
& \| \\
& \left(P r_{0} P \mu\right)\left(r_{0} \mu\right)^{-1}=P
\end{aligned}
$$

Formally we profit from the calculus with matrices:

Formally we profit from the calculus with matrices:
The operation $M \longmapsto M^{-1}$ is continuous, and the multiplication of matrices observes the associative law.

Formally we profit from the calculus with matrices:
The operation $M \longmapsto M^{-1}$ is continuous, and the multiplication of matrices observes the associative law.

The lemma above worked for 2×2 matrices. But we need a lemma for 2×3 matrices.

Formally we profit from the calculus with matrices:
The operation $M \longmapsto M^{-1}$ is continuous, and the multiplication of matrices observes the associative law.

The lemma above worked for 2×2 matrices. But we need a lemma for 2×3 matrices.
It looks as follows

Lemma 7 (3D Ray-fish)
Let $P, Q \in \mathbb{R}^{2 \times 3}$ be two matrices with a continuous contact. Let u be an element of the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{3}}$ and pick three points r_{0}, s_{0}, t_{0} in the circle $\left((P-Q)^{-1}(0)\right) \cap S_{\mathbb{R}^{3}}$ such that co $\left\{r_{0}, s_{0}, t_{0}\right\}$ forms an equilateral triangle. Consider any $\delta \in(0,1)$ and let $r_{\delta} \in \widehat{-u, r_{0}}, s_{\delta} \in \widehat{-u, s_{0}}$, $t_{\delta} \in \widehat{-u, t_{0}}$ be the unique points lying in the circle $\left((P-Q)^{-1}(0)-\delta u\right) \cap S_{\mathbb{R}^{3}}$.

Lemma 7 (3D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 3}$ be two matrices with a continuous contact. Let u be an element of the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{3}}$ and pick three points r_{0}, s_{0}, t_{0} in the circle $\left((P-Q)^{-1}(0)\right) \cap S_{\mathbb{R}^{3}}$ such that co $\left\{r_{0}, s_{0}, t_{0}\right\}$ forms an equilateral triangle. Consider any $\delta \in(0,1)$ and let $r_{\delta} \in \widehat{-u, r_{0}}, s_{\delta} \in \widehat{-u, s_{0}}$, $t_{\delta} \in \widehat{-u, t_{0}}$ be the unique points lying in the circle $\left((P-Q)^{-1}(0)-\delta u\right) \cap S_{\mathbb{R}^{3}}$. Then there exist unique matrices $M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} r_{\delta}} \in \mathbb{R}^{2 \times 3}$ such that $M_{r_{\delta} s_{\delta}}\left(r_{\delta}\right)=M_{t_{\delta} r_{\delta}}\left(r_{\delta}\right)=Q\left(r_{\delta}\right), \quad M_{s_{\delta} t_{\delta}}\left(s_{\delta}\right)=M_{r_{\delta} s_{\delta}}\left(s_{\delta}\right)=Q\left(s_{\delta}\right)$,

$$
\begin{gathered}
M_{t_{\delta} r_{\delta}}\left(t_{\delta}\right)=M_{s_{\delta} t_{\delta}}\left(t_{\delta}\right)=Q\left(t_{\delta}\right) \\
M_{r_{\delta} s_{\delta}}(u)=M_{s_{\delta} t_{\delta}}(u)=M_{t_{\delta} r_{\delta}}(u)=P(u)+\delta(P-Q)(u)
\end{gathered}
$$

Lemma 7 (3D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 3}$ be two matrices with a continuous contact. Let u be an element of the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{3}}$ and pick three points r_{0}, s_{0}, t_{0} in the circle $\left((P-Q)^{-1}(0)\right) \cap S_{\mathbb{R}^{3}}$ such that co $\left\{r_{0}, s_{0}, t_{0}\right\}$ forms an equilateral triangle. Consider any $\delta \in(0,1)$ and let $r_{\delta} \in \widehat{-u, r_{0}}, s_{\delta} \in \widehat{-u, s_{0}}$, $t_{\delta} \in \widehat{-u, t_{0}}$ be the unique points lying in the circle $\left((P-Q)^{-1}(0)-\delta u\right) \cap S_{\mathbb{R}^{3}}$. Then there exist unique matrices $M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} r_{\delta}} \in \mathbb{R}^{2 \times 3}$ such that $M_{r_{\delta} s_{\delta}}\left(r_{\delta}\right)=M_{t_{\delta} r_{\delta}}\left(r_{\delta}\right)=Q\left(r_{\delta}\right), \quad M_{s_{\delta} t_{\delta}}\left(s_{\delta}\right)=M_{r_{\delta} s_{\delta}}\left(s_{\delta}\right)=Q\left(s_{\delta}\right)$,

$$
\begin{gathered}
M_{t_{\delta} r_{\delta}}\left(t_{\delta}\right)=M_{s_{\delta} t_{\delta}}\left(t_{\delta}\right)=Q\left(t_{\delta}\right) \\
M_{r_{\delta} s_{\delta}}(u)=M_{s_{\delta} t_{\delta}}(u)=M_{t_{\delta} r_{\delta}}(u)=P(u)+\delta(P-Q)(u)
\end{gathered}
$$

Moreover, putting
$f(x):= \begin{cases}P(x) & \text { if } x \in \mathbb{R}^{3} \backslash \operatorname{co}\left\{r_{\delta}, s_{\delta}, t_{\delta}, u\right\} \quad\left(\subset \mathbb{R}^{3} \backslash B_{\mathbb{R}^{3}}\right), \\ Q(x)-\delta(P-Q) u & \text { if } x \in \operatorname{co}\left\{r_{\delta}, s_{\delta}, t_{\delta}, 0\right\}, \\ M_{r_{\delta} s_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{r_{\delta}, s_{\delta}, u, 0\right\}, \\ M_{s_{\delta} t_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{s_{\delta}, t_{\delta}, u, 0\right\}, \\ M_{t_{\delta} r_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{t_{\delta}, r_{\delta}, u, 0\right\}\end{cases}$
this is a well defined, piecewise linear, Lipschitzian mapping $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, with $\left\{\nabla f(x): f\right.$ is differentiable at $\left.x \in \mathbb{R}^{3}\right\}=\left\{P, Q, M_{r_{\delta} s_{\delta \bar{~}}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta \xi_{\delta}}}\right\}$.

Lemma 7 (3D Ray-fish)

Let $P, Q \in \mathbb{R}^{2 \times 3}$ be two matrices with a continuous contact. Let u be an element of the doubleton $\left((P-Q)^{-1}(0)\right)^{\perp} \cap S_{\mathbb{R}^{3}}$ and pick three points r_{0}, s_{0}, t_{0} in the circle $\left((P-Q)^{-1}(0)\right) \cap S_{\mathbb{R}^{3}}$ such that co $\left\{r_{0}, s_{0}, t_{0}\right\}$ forms an equilateral triangle. Consider any $\delta \in(0,1)$ and let $r_{\delta} \in \widehat{-u, r_{0}}, s_{\delta} \in \widehat{-u, s_{0}}$, $t_{\delta} \in \widehat{-u, t_{0}}$ be the unique points lying in the circle $\left((P-Q)^{-1}(0)-\delta u\right) \cap S_{\mathbb{R}^{3}}$. Then there exist unique matrices $M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} r_{\delta}} \in \mathbb{R}^{2 \times 3}$ such that $M_{r_{\delta} s_{\delta}}\left(r_{\delta}\right)=M_{t_{\delta}} r_{\delta}\left(r_{\delta}\right)=Q\left(r_{\delta}\right), \quad M_{s_{\delta} t_{\delta}}\left(s_{\delta}\right)=M_{r_{\delta} s_{\delta}}\left(s_{\delta}\right)=Q\left(s_{\delta}\right)$,

$$
\begin{gathered}
M_{t_{\delta} r_{\delta}}\left(t_{\delta}\right)=M_{s_{\delta} t_{\delta}}\left(t_{\delta}\right)=Q\left(t_{\delta}\right) \\
M_{r_{\delta} s_{\delta}}(u)=M_{s_{\delta} t_{\delta}}(u)=M_{t_{\delta} r_{\delta}}(u)=P(u)+\delta(P-Q)(u)
\end{gathered}
$$

Moreover, putting
$f(x):= \begin{cases}P(x) & \text { if } x \in \mathbb{R}^{3} \backslash \operatorname{co}\left\{r_{\delta}, s_{\delta}, t_{\delta}, u\right\} \quad\left(\subset \mathbb{R}^{3} \backslash B_{\mathbb{R}^{3}}\right), \\ Q(x)-\delta(P-Q) u & \text { if } x \in \operatorname{co}\left\{r_{\delta}, s_{\delta}, t_{\delta}, 0\right\}, \\ M_{r_{\delta} s_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{r_{\delta}, s_{\delta}, u, 0\right\}, \\ M_{s_{\delta} t_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{s_{\delta}, t_{\delta}, u, 0\right\}, \\ M_{t_{\delta} r_{\delta}}(x)-\delta(P-Q)(u) & \text { if } x \in \operatorname{co}\left\{t_{\delta}, r_{\delta}, u, 0\right\}\end{cases}$
this is a well defined, piecewise linear, Lipschitzian mapping $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, with $\left\{\nabla f(x): f\right.$ is differentiable at $\left.x \in \mathbb{R}^{3}\right\}=\left\{P, Q, M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} f_{\delta}}\right\}$.

Simplified 3D Rey fish Lemma 7: Given $P, Q \in \mathbb{R}^{2 \times 3}$ and $\delta \in(0,1)$, there are matrices $M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} r_{\delta}} \in \mathbb{R}^{2 \times 3}$ such that they converge to the matrix P and....

PICTURE

PICTURE

$T(\beta, \gamma):=\left\{v \in \mathbb{R}^{3}: \beta \leq\|v\| \leq \gamma\right\}$

PICTURE

$T(\beta, \gamma):=\left\{v \in \mathbb{R}^{3}: \beta \leq\|v\| \leq \gamma\right\}$
Lemma 8
(Corona) Let $\delta, P, Q, r_{\delta}, s_{\delta}, t_{\delta}, M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} r_{\delta}}$ be as in Lemma 7.

PICTURE

$T(\beta, \gamma):=\left\{v \in \mathbb{R}^{3}: \beta \leq\|v\| \leq \gamma\right\}$
Lemma 8
(Corona) Let $\delta, P, Q, r_{\delta}, s_{\delta}, t_{\delta}, M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} r_{\delta}}$ be as in Lemma 7. Then there exist numbers $0<\beta<\gamma$ and a Lischitzian mapping $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that

PICTURE

$T(\beta, \gamma):=\left\{v \in \mathbb{R}^{3}: \beta \leq\|v\| \leq \gamma\right\}$

Lemma 8

(Corona) Let $\delta, P, Q, r_{\delta}, s_{\delta}, t_{\delta}, M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} r_{\delta}}$ be as in Lemma 7. Then there exist numbers $0<\beta<\gamma$ and a Lischitzian mapping $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $h(x)=P(x)$ whenever $x \in \mathbb{R}^{3} \backslash T(\beta, \gamma)$, that
$\{\nabla h(x): h$ is differentiable at $x \in T(\beta, \gamma)\}=\left\{P, Q, M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} r_{\delta}}\right\}$,
and that,

PICTURE

$T(\beta, \gamma):=\left\{v \in \mathbb{R}^{3}: \beta \leq\|v\| \leq \gamma\right\}$

Lemma 8

(Corona) Let $\delta, P, Q, r_{\delta}, s_{\delta}, t_{\delta}, M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} r_{\delta}}$ be as in Lemma 7. Then there exist numbers $0<\beta<\gamma$ and a Lischitzian mapping $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $h(x)=P(x)$ whenever $x \in \mathbb{R}^{3} \backslash T(\beta, \gamma)$, that
$\{\nabla h(x): h$ is differentiable at $x \in T(\beta, \gamma)\}=\left\{P, Q, M_{r_{\delta} s_{\delta}}, M_{s_{\delta} t_{\delta}}, M_{t_{\delta} r_{\delta}}\right\}$, and that, for every $0 \neq x \in \mathbb{R}^{3}$ there exists an $\alpha>0$ such that $\alpha x \in T(\beta, \gamma)$, the mapping h is differentiable at αx and $\nabla h(\alpha x)=Q$.

Theorem 9

There exists a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, such that:

Theorem 9

There exists a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, such that: (0) the Clarke generalized Jacobian $\partial g(0)=\operatorname{co}\{O, A, B, C, P\}$,

Theorem 9

There exists a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, such that:
(0) the Clarke generalized Jacobian $\partial g(0)=\operatorname{co}\{O, A, B, C, P\}$,
(i) every matrix in $\partial g(0)$ has rank 2 ,

Theorem 9

There exists a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, such that:
(0) the Clarke generalized Jacobian $\partial g(0)=\operatorname{co}\{O, A, B, C, P\}$,
(i) every matrix in $\partial g(0)$ has rank 2,
(ii) for every $v \in \mathbb{R}^{1 \times 3}$ there is a matrix $M \in \partial g(0)$ such that the 3×3 matrix $\binom{M}{v}$ is singular, and

Theorem 9

There exists a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, such that:
(0) the Clarke generalized Jacobian $\partial g(0)=c o\{O, A, B, C, P\}$,
(i) every matrix in $\partial g(0)$ has rank 2 ,
(ii) for every $v \in \mathbb{R}^{1 \times 3}$ there is a matrix $M \in \partial g(0)$ such that the 3×3 matrix $\binom{M}{v}$ is singular, and
(iii) for every 2-dimensional subspace $0 \in W \subset \mathbb{R}^{3 \times 1}$ we have

$$
\begin{equation*}
\partial\left(g_{\mid W}\right)(0)=\operatorname{co}\left\{O_{\mid W}, A_{\mid W}, B_{\mid W}, C_{\mid W}, P_{\mid W}\right\}, \tag{2}
\end{equation*}
$$

Theorem 9

There exists a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, such that:
(0) the Clarke generalized Jacobian $\partial g(0)=c o\{O, A, B, C, P\}$,
(i) every matrix in $\partial g(0)$ has rank 2 ,
(ii) for every $v \in \mathbb{R}^{1 \times 3}$ there is a matrix $M \in \partial g(0)$ such that the 3×3 matrix $\binom{M}{v}$ is singular, and
(iii) for every 2-dimensional subspace $0 \in W \subset \mathbb{R}^{3 \times 1}$ we have

$$
\begin{equation*}
\partial\left(g_{\mid W}\right)(0)=\operatorname{co}\left\{O_{\mid W}, A_{\mid W}, B_{\mid W}, C_{\mid W}, P_{\mid W}\right\}, \tag{2}
\end{equation*}
$$

and thus, there exists an $L \in \partial\left(g_{\mid W}\right)(0)$ such that $\operatorname{dim} L(W)=1$.

Theorem 9

There exists a Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, such that:
(0) the Clarke generalized Jacobian $\partial g(0)=c o\{O, A, B, C, P\}$,
(i) every matrix in $\partial g(0)$ has rank 2,
(ii) for every $v \in \mathbb{R}^{1 \times 3}$ there is a matrix $M \in \partial g(0)$ such that the 3×3 matrix $\binom{M}{v}$ is singular, and
(iii) for every 2-dimensional subspace $0 \in W \subset \mathbb{R}^{3 \times 1}$ we have

$$
\begin{equation*}
\partial\left(g_{\mid W}\right)(0)=\operatorname{co}\left\{O_{\mid W}, A_{\mid W}, B_{\mid W}, C_{\mid W}, P_{\mid W}\right\}, \tag{2}
\end{equation*}
$$

and thus, there exists an $L \in \partial\left(g_{\mid W}\right)(0)$ such that $\operatorname{dim} L(W)=1$.

Proof.

Consider countably many diminishing coronas converging to the origin.

Conclusion

By Pourciau's Theorem 2, the Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, provided by Theorem 9 , admits a right inverse in the vicinity of 0 .

Conclusion

By Pourciau's Theorem 2, the Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, provided by Theorem 9 , admits a right inverse in the vicinity of 0 .

Yet, this fact could not be obtained using Clarke's Theorem 1 "by augmenting" $\partial g(0)$ to a set of 3×3 matrices.

Conclusion

By Pourciau's Theorem 2, the Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, provided by Theorem 9 , admits a right inverse in the vicinity of 0 .

Yet, this fact could not be obtained using Clarke's Theorem 1 "by augmenting" $\partial g(0)$ to a set of 3×3 matrices.

Neither Theorem 1 is helpful if we restrict our g to some plane $0 \in W \subset \mathbb{R}^{3}$, because then $g_{\mid W}$ maps the 2 -dimensional space W into \mathbb{R}^{2}, but, by (iii), there is an $L \in \partial\left(g_{\mid w}\right)(0)$, whose range $L(W)$ has dimension 1 .

Conclusion

By Pourciau's Theorem 2, the Lipschitzian mapping $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, with $g(0)=0$, provided by Theorem 9 , admits a right inverse in the vicinity of 0 .

Yet, this fact could not be obtained using Clarke's Theorem 1 "by augmenting" $\partial g(0)$ to a set of 3×3 matrices.
Neither Theorem 1 is helpful if we restrict our g to some plane $0 \in W \subset \mathbb{R}^{3}$, because then $g_{\mid W}$ maps the 2-dimensional space W into \mathbb{R}^{2}, but, by (iii), there is an $L \in \partial\left(g_{\mid W}\right)(0)$, whose range $L(W)$ has dimension 1 .

In particular, for $W:=\left\{\left(x_{1}, x_{2}, 0\right): x_{1}, x_{2} \in \mathbb{R}\right\}$, we find $M \in \partial g(0)$ such that $(0,0,1) \in \operatorname{lin}\left\{m_{1}, m_{2}\right\}$; then $L(w):=M w, w \in W$, "works".

References

- F.H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley \& Sons, New York, ... Singapore 1983.
- B.H. Pourciau, Analysis and optimization of Lipschitz continuous mappings, J. Optimization Theory Appl. 22 (1977), no. 3, 311-351.

References

- F.H. Clarke, Optimization and Nonsmooth Analysis, J. Wiley \& Sons, New York, ... Singapore 1983.
- B.H. Pourciau, Analysis and optimization of Lipschitz continuous mappings, J. Optimization Theory Appl. 22 (1977), no. 3, 311-351.

Thank you for your attention

