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Convex functions

Function f : X → R+∞ is l.s.c convex if and only if

f (x) = sup{h(x) : h is an affine function, h ≤ f }.

−1.5 −1 −0.5 0.5 1 1.5

0.5

1

1.5

2

1

Figure 1: x2.
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Figure 2: Support affine functions of x2,

{2ax − a2 : a ∈ R}.

The space of affine functions

H := {at + b : a, b ∈ R}.
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Nonconvex functions
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Figure 3: x4 + x2.
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Figure 4: Quadratic functions support

x4 + x2.

H := {at + b : a, b ∈ R};
H := {at2 + b : a, b ∈ R}.
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Abstract linear functions

X−nonempty, F := XR−the set of all functions from X to R.

Definition
A space of abstract linear functions, denoted by L, is a subset of F that satisfies

the following properties.

(a) L is closed w.r.t the addition operator i.e. f1, f2 ∈ L =⇒ f1 + f2 ∈ L.

(b) For every l ∈ L and m ∈ N, there exist l1, . . . , lm ∈ L s.t.

l = l1 + . . .+ lm.

If 0 ∈ L and L verifies (a), then L verifies (b).
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Abstract affine functions

X−nonempty, F := XR, L−space of abstract linear functions, f : X → R, C ⊂ L.

Definition

The space of abstract affine functions is defined as H := {l + c : l ∈ L, c ∈ R}.
1 The set supp f := {h ∈ H : h(x) ≤ f (x),∀x ∈ X} is the support set of f .

2 f is H−convex if there is a subset H ⊂ H such that

f (x) = sup
h∈H

h(x), ∀x ∈ X .
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Subdifferentials, infimal convolution and Fenchel conjugate

X−nonempty, F := XR, L−space of abstract linear functions, f : X → R, ε ≥ 0.

Definition
1 Given m functions ψ1, . . . , ψm : X → R+∞, the infimal convolution of the

functions ψ1, . . . , ψm is the function ψ1� . . .�ψm : X → R±∞ defined by

ψ1� . . .�ψm(x) := inf
x1+...+xm=x

{ψ1(x1) + . . .+ ψm(xm)} .

2 The Fenchel conjugate of f is the function f ∗ : L → R±∞, defined as

f ∗(l) := sup
x∈X
{l(x)− f (x)}.

3 The ε−subdifferential of the function f at a point x ∈ dom f is the mapping

∂εf : X ⇒ L defined as

∂εf (x) := {l ∈ L : f (y)− f (x)− (l(y)− l(x)) + ε ≥ 0 for all y ∈ X}.
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Basic properties

1 f is H−convex, f attains global minimum at x̄ iff 0 ∈ ∂f (x̄).

2

sup
h∈supp f

h(x) ≤ f (x) x ∈ X ,

equality holds for all x ∈ X iff f is H−convex.

3 (Fenchel–Moreau)

f ∗∗(x) ≤ f (x),

equality holds for all x ∈ X iff f is H−convex.

4

(
m∑
i=1

fi

)∗
≤ f ∗1 � . . .�f ∗m .

5 Sum rule ⋂
η>0

⋃
εi≥0, i=1,...,n∑m

i=1 εi=ε+η

m∑
i=1

∂εi fi (x)⊂∂ε
(

m∑
i=1

fi

)
(x).

Bui Thi Hoa (Curtin Uni & ITTC) Abstract Convexity Webinar 2020 8 / 29



Basic properties

1 f is H−convex, f attains global minimum at x̄ iff 0 ∈ ∂f (x̄).

2

sup
h∈supp f

h(x) ≤ f (x) x ∈ X ,

equality holds for all x ∈ X iff f is H−convex.

3 (Fenchel–Moreau)

f ∗∗(x) ≤ f (x),

equality holds for all x ∈ X iff f is H−convex.

4

(
m∑
i=1

fi

)∗
≤ f ∗1 � . . .�f ∗m .

5 Sum rule ⋂
η>0

⋃
εi≥0, i=1,...,n∑m

i=1 εi=ε+η

m∑
i=1

∂εi fi (x)⊂∂ε
(

m∑
i=1

fi

)
(x).

Bui Thi Hoa (Curtin Uni & ITTC) Abstract Convexity Webinar 2020 8 / 29



Basic properties

1 f is H−convex, f attains global minimum at x̄ iff 0 ∈ ∂f (x̄).

2

sup
h∈supp f

h(x) ≤ f (x) x ∈ X ,

equality holds for all x ∈ X iff f is H−convex.

3 (Fenchel–Moreau)

f ∗∗(x) ≤ f (x),

equality holds for all x ∈ X iff f is H−convex.

4

(
m∑
i=1

fi

)∗
≤ f ∗1 � . . .�f ∗m .

5 Sum rule ⋂
η>0

⋃
εi≥0, i=1,...,n∑m

i=1 εi=ε+η

m∑
i=1

∂εi fi (x)⊂∂ε
(

m∑
i=1

fi

)
(x).

Bui Thi Hoa (Curtin Uni & ITTC) Abstract Convexity Webinar 2020 8 / 29



Basic properties

1 f is H−convex, f attains global minimum at x̄ iff 0 ∈ ∂f (x̄).

2

sup
h∈supp f

h(x) ≤ f (x) x ∈ X ,

equality holds for all x ∈ X iff f is H−convex.

3 (Fenchel–Moreau)

f ∗∗(x) ≤ f (x),

equality holds for all x ∈ X iff f is H−convex.

4

(
m∑
i=1

fi

)∗
≤ f ∗1 � . . .�f ∗m .

5 Sum rule ⋂
η>0

⋃
εi≥0, i=1,...,n∑m

i=1 εi=ε+η

m∑
i=1

∂εi fi (x)⊂∂ε
(

m∑
i=1

fi

)
(x).

Bui Thi Hoa (Curtin Uni & ITTC) Abstract Convexity Webinar 2020 8 / 29



Basic properties

1 f is H−convex, f attains global minimum at x̄ iff 0 ∈ ∂f (x̄).

2

sup
h∈supp f

h(x) ≤ f (x) x ∈ X ,

equality holds for all x ∈ X iff f is H−convex.

3 (Fenchel–Moreau)

f ∗∗(x) ≤ f (x),

equality holds for all x ∈ X iff f is H−convex.

4

(
m∑
i=1

fi

)∗
≤ f ∗1 � . . .�f ∗m .

5 Sum rule ⋂
η>0

⋃
εi≥0, i=1,...,n∑m

i=1 εi=ε+η

m∑
i=1

∂εi fi (x)⊂∂ε
(

m∑
i=1

fi

)
(x).

Bui Thi Hoa (Curtin Uni & ITTC) Abstract Convexity Webinar 2020 8 / 29



Abstract convex set

Definition

A set C ⊂ L is L−convex if for any l0 /∈ C , there is an x ∈ X such that

l0(x) > sup
l∈C

l(x).

C
l0

A set C ⊂ L is L−convex iff there is an L−convex function f : X → R+∞ such

that C = supp Lf .
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Example

Example

X := R, L := {φa : φa(t) := at2, a ∈ R} is a space of abstract linear functions.

Then, H := {Ψa,b : Ψa,b(t) := at2 + b, a, b ∈ R} is the space of abstract affine

functions.

C := {Ψa,b : b ≤ 1

a
, a < 0} is the support set of function f (x) = −2|x |.
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Figure 5: −2 |x |.
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Figure 6: Support set of −2 |x |.
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Subdifferentials and Fenchel conjugate

The subdifferential and Fenchel conjugate of f

∂f (x) =


∅ x = 0,{
φa : a = − 1

|x |

}
otherwise;

f ∗(φa) = sup
x∈R
{φa(x)− f (x)} =

+∞ a ≥ 0,

−1

a
a < 0;

where φa(t) = at2, a ∈ R.
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More example

Example

X = Rn, L := {a1x21 + . . .+ anx
2
n : a1, . . . , an ∈ R},

H = {a1x21 + . . .+ anx
2
n + b : a1, . . . , an, b ∈ R}.

Example

X = Rn, L =

{
l :=

n∑
i=0

aihi

}
where ai ∈ R, i = 1, . . . , n and

h0(x) = ‖x‖2 , h1(x) = x1, . . . , hn(x) = xn.

Then, H := {h : h =
n∑

i=0

aihi + c , c ∈ R}. If a l.s.c function f is bounded from

below by a function in H, then the function f is H−convex.
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Calculus Rules

∂ε (f + g) (x) ⊃
⋂
η>0

⋃
ε1,ε2≥0

ε1+ε2=ε+η

(∂ε1 f (x) + ∂ε2g(x)).

Theorem (Jeyakumar et al, 2007)

Let X be a set and let L be a set of abstract linear functions on X ,

f , g : X → R+∞ be H−convex functions, dom f ∩ dom g 6= ∅. Then, equality

epi f ∗ + epi g∗ = epi (f + g)∗

holds iff for any ε ≥ 0,

∂ε(f + g)(x) =
⋃

ε1+ε2=ε,ε1,ε2≥0

∂ε1 f (x) + ∂ε2g(x), x ∈ dom f ∩ dom g .

epi f ∗ + epi g∗ = epi (f + g)∗ ⇐⇒ (f + g)∗ = f ∗�g∗ with exact infimal.
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Pointwise convergence topology

∂ε (f + g) (x) =
⋂
η>0

cl ∗

 ⋃
ε1,ε2=ε+η
ε1,ε2≥0

(∂ε1 f (x) + ∂ε2g(x))

.

On F , consider the weakest topology that makes all the functions

x : F → R, f 7→ f (x) continuous.

The set L satisfies the following conditions:

A- L is an R−vector space;

B- L is closed in F w.r.s pointwise convergence topology.

Then L is locally convex space.
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Basic properties

1 For any x ∈ X , the function L 3 l 7→ φx(l) := l(x) is continuous;

2 for any function f : X → R+∞, its conjugate function f ∗ is lower

semicontinuous;

3 L−convex sets are closed;

4 H−convex sets are closed;

5 for any f : X → R+∞, x ∈ dom f and ε ≥ 0, the ε-subdifferential ∂εf (x) is

closed;

6 for any functions f , g , x ∈ dom f ∩ dom g , and ε ≥ 0,⋂
η>0

cl
⋃

ε1,ε2≥0
ε1+ε2=ε+η

∂ε1 f (x) + ∂ε2g(x) ⊂ ∂ε (f + g) (x);

7 Let F ,G ∈ F and G ≤ F . Then the set

A := {f ∈ F : G ≤ f ≤ F}

is compact.
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closed;

6 for any functions f , g , x ∈ dom f ∩ dom g , and ε ≥ 0,⋂
η>0

cl
⋃

ε1,ε2≥0
ε1+ε2=ε+η

∂ε1 f (x) + ∂ε2g(x) ⊂ ∂ε (f + g) (x);

7 Let F ,G ∈ F and G ≤ F . Then the set

A := {f ∈ F : G ≤ f ≤ F}

is compact.
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Sum rule

X−nonempty, F := XR, L−space of abstract linear functions, weak∗ closed in F .

Theorem

Given two functions f , g : X → R∞, dom f ∩ dom g 6= ∅, assume that

cl (epi f ∗ + epi g∗) = epi (f + g)∗ .

Then, for any number ε ≥ 0, for all x ∈ dom f ∩ dom g,

∂ε (f + g) (x) =
⋂
η>0

cl

 ⋃
ε1+ε2=ε+η
ε1,ε2≥0

∂ε1 f (x) + ∂ε2g(x)


holds for all x ∈ dom f ∩ dom g.
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Zero Duality Gap

Given m functions f , . . . , fm : X → R+∞ (m ≥ 2), consider the problem

inf

(
m∑
i=1

fi (x)

)
, (P)

s.t. x ∈ X .

The dual problem of (P) is given as follows:

sup

(
m∑
i=1

−f ∗i (li )

)
, (D)

s.t. l1, . . . , lm ∈ L,
l1 + . . .+ lm = 0.

Denote by v(P), v(D), the optimal values of (P) and (D).

Zero duality gap holds if v(P) = v(D). In general, v(P) ≥ v(D).
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Zero Duality Gap and Infimal Convolution

v(P) = inf
x∈X

(
m∑
i=1

fi (x)

)
= −

(
m∑
i=1

fi

)∗
(0); (P1)

v(D) = sup
l1+...+lm=0

(
m∑
i=1

−f ∗i (li )

)
= −(f ∗1 � . . .�f ∗m)(0). (D1)

Recall: −
(

m∑
i=1

fi

)∗
≥ −f ∗1 � . . .�f ∗m . Thus, the zero duality gap is equivalent to(

m∑
i=1

fi

)∗
(0) = (f ∗1 � . . .�f ∗m)(0).

Borwein, Burachik and Yao (2014)(
m∑
i=1

fi

)∗
= f ∗1 � . . .�f ∗m .
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Conditions for Zero Duality Gap I

X−nonempty, F := XR, L−space of abstract linear functions.

Let fi : X → R+∞ where (i = 1, . . . ,m) (m ≥ 2) with
m⋂
i=1

dom fi 6= ∅. Consider

the following five conditions:

1

(
m∑
i=1

fi

)∗
= f ∗1 � . . .�f ∗m in L;

2 For every x ∈ X and ε ≥ 0,

∂ε(f1 + . . .+ fm)(x) =
⋂
η>0

 ⋃
ε1+...+εm=ε+η

εi≥0

(∂ε1 f1(x) + . . .+ ∂εm fm(x))

 .
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Conditions for Zero Duality Gap II

3 There exists K > 0 such that for every x ∈
m⋂
i=1

dom fi , and every ε > 0

∂ε

(
m∑
i=1

fi

)
(x) ⊂

m∑
i=1

∂Kεfi (x).

4 There exists K > 0 such that for every x ∈
m⋂
i=1

dom fi , and every ε > 0

cl

[
m∑
i=1

∂εfi (x)

]
⊂

m∑
i=1

∂Kεfi (x).

5 f ∗1 � . . .�f ∗m is lower semicontinuous;

We have (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇒ (v).

Bui Thi Hoa (Curtin Uni & ITTC) Abstract Convexity Webinar 2020 20 / 29



Conditions for Zero Duality Gap

If the sum rule

∂ε (f + g) (x) =
⋂
η>0

cl

 ⋃
ε1+ε2=ε+η
ε1,ε2≥0

∂ε1 f (x) + ∂ε2g(x)


holds, then all five statements are equivalent.
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Sufficient and necessary conditions

X−nonempty, F := XR, L−space of abstract linear functions. Let fi : X → R+∞

(i = 1, . . . ,m) (m ≥ 2) with
m⋂
i=1

dom fi 6= ∅.

Theorem
The following conditions are equivalent.

1 For all ε > 0, there exists an x ∈ X such that

∂εf1(x) + . . .+ ∂εfm(x) 3 0.

2

(
m∑
i=1

fi

)∗
(0) = f ∗1 � . . .�f ∗m(0) < +∞.
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dom fi 6= ∅.
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The following conditions are equivalent. Furthermore, the x for which condition

(*) holds is a solution of problem (P).
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Example

Example

X := R, L := {φa : φa(t) := at2, a ∈ R} is a space of abstract linear functions.

H := {Ψa,b : Ψa,b(t) := at2 +b, a, b ∈ R} is the space of abstract affine functions.

Let f , g be any H−convex functions, we have cl (supp f + supp g) is H−convex.

Consequently,

cl (epi f ∗ + epi g∗) = epi (f + g)∗.

The sum rule holds for every H−convex functions.
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Example

Consider three H−convex functions

f1(x) := x4 − x2;

f2(x) := 1− 2 |x | ;

f3(x) :=

1− 2 |x | −0.5 ≤ x ≤ 0.5,

0 otherwise.
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Figure 7: Support set of f1.
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Figure 8: Support set of f2.
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Figure 9: Support set of f3.
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Examples

Their conjugate functions

f ∗1 (φa) = sup
x∈R
{φa(x)− f1(x)} =


(a + 1)2

4
a ≥ −1,

0 a < −1;

f ∗2 (φa) = sup
x∈R
{φa(x)− f2(x)} =

+∞ a ≥ 0,

−1− 1

a
a < 0;

f ∗3 (φa) = sup
x∈R
{φa(x)− f3(x)} =


+∞ a > 0,
a

4
a ∈ [−2, 0],

−1− 1

a
a < −2.
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Figure 10: Sum function f1 + f2 + f3. Figure 11: Dual function

−f ∗1 − f ∗2 − f ∗3 in the subspace

φa1 + φa2 + φa3 = 0.

The minimization problem

v(p) := min (f1 + f2 + f3) , (p)

has the dual problem

v(d) := sup
φa1

+φa2
+φa3

=0
(−f ∗1 (φa1)− f ∗2 (φa2)− f ∗3 (φa3)) . (d)

Apply condition (*) for x = ±1, we have the zero duality gap holds, moreover

x = ±1 are the solutions of (p).
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Thank You!

Bui Thi Hoa (Curtin Uni & ITTC) Abstract Convexity Webinar 2020 29 / 29


	Abstract convex funnctions
	Sum rules
	Zero duality gap
	Example

