Zero Duality Gap Conditions via Abstract Convexity

Bui Thi Hoa Regina S. Burachik, Alex Y. Kruger, David T. Yost

Curtin University

ARC Training Center for Transforming Maintaince Through Data Science

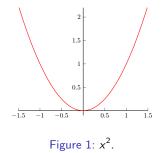
July, 2020

Function $f:X \to \mathbb{R}_{+\infty}$ is l.s.c convex if and only if

 $f(x) = \sup\{h(x) : h \text{ is an affine function}, h \le f\}.$

Function $f:X \to \mathbb{R}_{+\infty}$ is l.s.c convex if and only if

 $f(x) = \sup\{h(x) : h \text{ is an affine function}, h \le f\}.$



Function $f:X \to \mathbb{R}_{+\infty}$ is l.s.c convex if and only if

 $f(x) = \sup\{h(x) : h \text{ is an affine function}, h \leq f\}.$

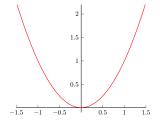


Figure 1: x^2 .

Figure 2: Support affine functions of x^2 , $\{2ax - a^2 : a \in \mathbb{R}\}.$

Function $f:X \to \mathbb{R}_{+\infty}$ is l.s.c convex if and only if

 $f(x) = \sup\{h(x) : h \text{ is an affine function}, h \leq f\}.$

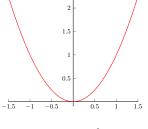


Figure 1: x^2 .

Figure 2: Support affine functions of x^2 , $\{2ax - a^2 : a \in \mathbb{R}\}.$

×705

1.5

0.5

-0.5

The space of affine functions

$$H:=\{at+b:a,b\in\mathbb{R}\}.$$

-1.5

-1

1.5

1

Nonconvex functions

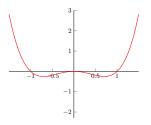
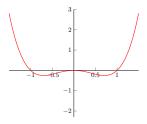


Figure 3: $x^4 + x^2$.

Nonconvex functions



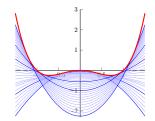
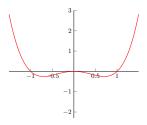


Figure 3: $x^4 + x^2$.

Figure 4: Quadratic functions support $x^4 + x^2$.

Nonconvex functions



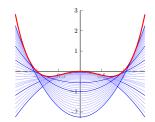


Figure 3: $x^4 + x^2$.

Figure 4: Quadratic functions support $x^4 + x^2$.

$$H := \{at + b : a, b \in \mathbb{R}\};$$

 $\mathcal{H} := \{at^2 + b : a, b \in \mathbb{R}\}.$

Outline

Abstract convex funnctions

2 Sum rules

Bui Thi Hoa (Curtin Uni & ITTC)

X-nonempty, $\mathcal{F} := X^{\mathbb{R}}$ -the set of all functions from X to \mathbb{R} .

Definition

A space of abstract linear functions, denoted by \mathcal{L} , is a subset of \mathcal{F} that satisfies the following properties.

- (a) \mathcal{L} is closed w.r.t the addition operator i.e. $f_1, f_2 \in \mathcal{L} \Longrightarrow f_1 + f_2 \in \mathcal{L}$.
- (b) For every $l \in \mathcal{L}$ and $m \in \mathbb{N}$, there exist $l_1, \ldots, l_m \in \mathcal{L}$ s.t.

$$I=I_1+\ldots+I_m.$$

X-nonempty, $\mathcal{F} := X^{\mathbb{R}}$ -the set of all functions from X to \mathbb{R} .

Definition

A space of abstract linear functions, denoted by \mathcal{L} , is a subset of \mathcal{F} that satisfies the following properties.

- (a) \mathcal{L} is closed w.r.t the addition operator i.e. $f_1, f_2 \in \mathcal{L} \Longrightarrow f_1 + f_2 \in \mathcal{L}$.
- (b) For every $l \in \mathcal{L}$ and $m \in \mathbb{N}$, there exist $l_1, \ldots, l_m \in \mathcal{L}$ s.t.

$$I=I_1+\ldots+I_m.$$

If $0 \in \mathcal{L}$ and \mathcal{L} verifies (a), then \mathcal{L} verifies (b).

X-nonempty, $\mathcal{F} := X^{\mathbb{R}}$, \mathcal{L} -space of abstract linear functions, $f : X \to \mathbb{R}$, $C \subset \mathcal{L}$.

Definition

The space of abstract affine functions is defined as $\mathcal{H} := \{ l + c : l \in \mathcal{L}, c \in \mathbb{R} \}.$

• The set $\operatorname{supp} f := \{h \in \mathcal{H} : h(x) \le f(x), \forall x \in X\}$ is the support set of f.

2 f is \mathcal{H} -convex if there is a subset $H \subset \mathcal{H}$ such that

$$f(x) = \sup_{h \in H} h(x), \quad \forall x \in X.$$

Subdifferentials, infimal convolution and Fenchel conjugate

X-nonempty, $\mathcal{F} := X^{\mathbb{R}}$, \mathcal{L} -space of abstract linear functions, $f : X \to \mathbb{R}$, $\varepsilon \ge 0$.

Definition

• Given *m* functions $\psi_1, \ldots, \psi_m : X \to \mathbb{R}_{+\infty}$, the infimal convolution of the functions ψ_1, \ldots, ψ_m is the function $\psi_1 \Box \ldots \Box \psi_m : X \to \mathbb{R}_{\pm\infty}$ defined by

$$\psi_1 \Box \ldots \Box \psi_m(x) := \inf_{x_1 + \ldots + x_m = x} \left\{ \psi_1(x_1) + \ldots + \psi_m(x_m) \right\}$$

② The Fenchel conjugate of f is the function $f^* : \mathcal{L} \to \mathbb{R}_{\pm \infty}$, defined as

$$f^*(I) := \sup_{x \in X} \{I(x) - f(x)\}.$$

O The ε-subdifferential of the function f at a point x ∈ dom f is the mapping ∂_εf : X ⇒ L defined as

$$\partial_{\varepsilon}f(x) := \{l \in \mathcal{L} : f(y) - f(x) - (l(y) - l(x)) + \varepsilon \ge 0 \text{ for all } y \in X\}.$$

• f is \mathcal{H} -convex, f attains global minimum at \bar{x} iff $0 \in \partial f(\bar{x})$.

f is H−convex, f attains global minimum at x̄ iff 0 ∈ ∂f(x̄).
sup h(x) ≤ f(x) x ∈ X

 $\sup_{h\in \mathrm{supp}\,f}h(x)\leq f(x)\quad x\in X,$

equality holds for all $x \in X$ iff f is \mathcal{H} -convex.

f is *H*−convex, f attains global minimum at x̄ iff 0 ∈ ∂f(x̄).

$$\sup_{h\in\operatorname{supp} f} h(x) \leq f(x) \quad x \in X,$$

equality holds for all $x \in X$ iff f is \mathcal{H} -convex.

(Fenchel–Moreau)

 $f^{**}(x) \leq f(x),$

equality holds for all $x \in X$ iff f is \mathcal{H} -convex.

• f is \mathcal{H} -convex, f attains global minimum at \bar{x} iff $0 \in \partial f(\bar{x})$. •

$$\sup_{h\in \mathrm{supp}\,f}h(x)\leq f(x)\quad x\in X,$$

equality holds for all $x \in X$ iff f is \mathcal{H} -convex.

(Fenchel–Moreau)

 $f^{**}(x) \leq f(x),$

equality holds for all $x \in X$ iff f is \mathcal{H} -convex.

$$(\sum_{i=1}^m f_i)^* \leq f_1^* \Box \ldots \Box f_m^*.$$

• f is \mathcal{H} -convex, f attains global minimum at \bar{x} iff $0 \in \partial f(\bar{x})$. •

$$\sup_{h\in \mathrm{supp}\,f}h(x)\leq f(x)\quad x\in X,$$

equality holds for all $x \in X$ iff f is \mathcal{H} -convex.

(Fenchel–Moreau)

 $f^{**}(x) \leq f(x),$

equality holds for all $x \in X$ iff f is \mathcal{H} -convex.

$$\left(\sum_{i=1}^m f_i\right)^* \leq f_1^* \Box \ldots \Box f_m^*.$$

Sum rule

$$\bigcap_{\eta>0} \bigcup_{\substack{\varepsilon_i \ge 0, \ i=1,\ldots,n \\ \sum_{i=1}^m \varepsilon_i = \varepsilon + \eta}} \sum_{i=1}^m \partial_{\varepsilon_i} f_i(x) \subset \partial_{\varepsilon} \left(\sum_{i=1}^m f_i \right)(x).$$

Data Science Transforming Maintenance

Definition

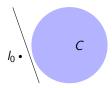
A set $C \subset \mathcal{L}$ is \mathcal{L} -convex if for any $I_0 \notin C$, there is an $x \in X$ such that

 $I_0(x) > \sup_{l \in C} I(x).$

Definition

A set $C \subset \mathcal{L}$ is \mathcal{L} -convex if for any $I_0 \notin C$, there is an $x \in X$ such that

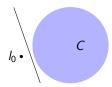
 $I_0(x) > \sup_{l \in C} I(x).$



Definition

A set $C \subset \mathcal{L}$ is \mathcal{L} -convex if for any $I_0 \notin C$, there is an $x \in X$ such that

 $I_0(x) > \sup_{l \in C} I(x).$



A set $C \subset \mathcal{L}$ is \mathcal{L} -convex iff there is an \mathcal{L} -convex function $f : X \to \mathbb{R}_{+\infty}$ such that $C = \operatorname{supp}_{\mathcal{L}} f$.

Example

$X := \mathbb{R}$, $\mathcal{L} := \{\phi_a : \phi_a(t) := at^2, a \in \mathbb{R}\}$ is a space of abstract linear functions.

Example

 $X := \mathbb{R}, \mathcal{L} := \{\phi_a : \phi_a(t) := at^2, a \in \mathbb{R}\}$ is a space of abstract linear functions. Then, $\mathcal{H} := \{\Psi_{a,b} : \Psi_{a,b}(t) := at^2 + b, a, b \in \mathbb{R}\}$ is the space of abstract affine functions.

Example

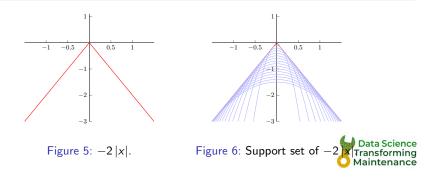
 $X := \mathbb{R}, \mathcal{L} := \{\phi_a : \phi_a(t) := at^2, a \in \mathbb{R}\}$ is a space of abstract linear functions. Then, $\mathcal{H} := \{\Psi_{a,b} : \Psi_{a,b}(t) := at^2 + b, a, b \in \mathbb{R}\}$ is the space of abstract affine functions.

 $C := \{\Psi_{a,b} : b \leq \frac{1}{a}, a < 0\}$ is the support set of function f(x) = -2|x|.

Example

 $X := \mathbb{R}, \mathcal{L} := \{\phi_a : \phi_a(t) := at^2, a \in \mathbb{R}\}$ is a space of abstract linear functions. Then, $\mathcal{H} := \{\Psi_{a,b} : \Psi_{a,b}(t) := at^2 + b, a, b \in \mathbb{R}\}$ is the space of abstract affine functions.

 $C := \{\Psi_{a,b} : b \leq \frac{1}{a}, a < 0\}$ is the support set of function f(x) = -2|x|.



The subdifferential and Fenchel conjugate of f

$$\partial f(x) = \begin{cases} \emptyset & x = 0, \\ \left\{ \phi_a : a = -\frac{1}{|x|} \right\} & \text{otherwise;} \end{cases}$$
$$f^*(\phi_a) = \sup_{x \in \mathbb{R}} \left\{ \phi_a(x) - f(x) \right\} = \begin{cases} +\infty & a \ge 0, \\ -\frac{1}{a} & a < 0; \end{cases}$$

where $\phi_a(t) = at^2$, $a \in \mathbb{R}$.

More example

Example

 $X = \mathbb{R}^n, \mathcal{L} := \{a_1 x_1^2 + \ldots + a_n x_n^2 : a_1, \ldots, a_n \in \mathbb{R}\},\$ $\mathcal{H} = \{a_1 x_1^2 + \ldots + a_n x_n^2 + b : a_1, \ldots, a_n, b \in \mathbb{R}\}.$

More example

Example

$$X = \mathbb{R}^n, \ \mathcal{L} := \{a_1 x_1^2 + \ldots + a_n x_n^2 : a_1, \ldots, a_n \in \mathbb{R}\},\$$
$$\mathcal{H} = \{a_1 x_1^2 + \ldots + a_n x_n^2 + b : a_1, \ldots, a_n, \ b \in \mathbb{R}\}.$$

Example

$$X = \mathbb{R}^{n}, \mathcal{L} = \left\{ I := \sum_{i=0}^{n} a_{i}h_{i} \right\} \text{ where } a_{i} \in \mathbb{R}, i = 1, \dots, n \text{ and}$$
$$h_{0}(x) = ||x||^{2}, \quad h_{1}(x) = x_{1}, \dots, h_{n}(x) = x_{n}.$$
Then, $\mathcal{H} := \{h : h = \sum_{i=0}^{n} a_{i}h_{i} + c, c \in \mathbb{R}\}.$ If a l.s.c function f is bounded from below by a function in \mathcal{H} , then the function f is \mathcal{H} -convex.

$$\partial_{\varepsilon} (f+g)(x) \supset \bigcap_{\eta > 0} \bigcup_{\substack{\varepsilon_1, \varepsilon_2 \ge 0 \\ \varepsilon_1 + \varepsilon_2 = \varepsilon + \eta}} (\partial_{\varepsilon_1} f(x) + \partial_{\varepsilon_2} g(x)).$$

Bui Thi Hoa (Curtin Uni & ITTC)

$$\partial_{\varepsilon} \left(f+g\right)(x) \supset \bigcap_{\eta>0} \bigcup_{\substack{\varepsilon_1, \varepsilon_2 \geq 0\\ \varepsilon_1+\varepsilon_2=\varepsilon+\eta}} (\partial_{\varepsilon_1}f(x) + \partial_{\varepsilon_2}g(x)).$$

Theorem (Jeyakumar et al, 2007)

Let X be a set and let \mathcal{L} be a set of abstract linear functions on X, $f,g: X \to \mathbb{R}_{+\infty}$ be \mathcal{H} -convex functions, dom $f \cap \text{dom } g \neq \emptyset$. Then, equality

 $\operatorname{epi} f^* + \operatorname{epi} g^* = \operatorname{epi} (f + g)^*$

holds iff for any $\varepsilon \geq 0$,

$$\partial_{\varepsilon}(f+g)(x) = \bigcup_{\varepsilon_1+\varepsilon_2=\varepsilon,\varepsilon_1,\varepsilon_2\geq 0} \partial_{\varepsilon_1}f(x) + \partial_{\varepsilon_2}g(x), \quad x\in \mathrm{dom}\, f\cap\mathrm{dom}\, g.$$

$$\partial_{\varepsilon} \left(f+g\right)(x) \supset \bigcap_{\eta>0} \bigcup_{\substack{\varepsilon_1, \varepsilon_2 \geq 0\\ \varepsilon_1+\varepsilon_2=\varepsilon+\eta}} (\partial_{\varepsilon_1}f(x) + \partial_{\varepsilon_2}g(x)).$$

Theorem (Jeyakumar et al, 2007)

Let X be a set and let \mathcal{L} be a set of abstract linear functions on X, f,g: $X \to \mathbb{R}_{+\infty}$ be \mathcal{H} -convex functions, dom $f \cap \text{dom } g \neq \emptyset$. Then, equality

 $\operatorname{epi} f^* + \operatorname{epi} g^* = \operatorname{epi} (f + g)^*$

holds iff for any $\varepsilon \geq 0$,

$$\partial_{\varepsilon}(f+g)(x) = \bigcup_{arepsilon_1+arepsilon_2=arepsilon,arepsilon_1+arepsilon_2=arepsilon, arepsilon_{arepsilon_1}f(x) + \partial_{arepsilon_2}g(x), \quad x\in \mathrm{dom}\, f\cap \mathrm{dom}\, g.$$

 $\operatorname{epi} f^* + \operatorname{epi} g^* = \operatorname{epi} (f + g)^* \iff (f + g)^* = f^* \Box g^*$ with exact infinitenance

Pointwise convergence topology

$$\partial_{\varepsilon} \left(f+g
ight)(x) = igcap_{\eta>0} \mathbf{cl}^* \left(igcup_{arepsilon_1,arepsilon_2=arepsilon+\eta} (\partial_{arepsilon_1}f(x)+\partial_{arepsilon_2}g(x))
ight).$$

$$\partial_arepsilon\left(f+g
ight)(x) = igcap_{\eta>0} \mathbf{cl}^* \left(igcup_{arepsilon_1,arepsilon_2=arepsilon+\eta}(\partial_{arepsilon_1}f(x)+\partial_{arepsilon_2}g(x))
ight).$$

On \mathcal{F} , consider the weakest topology that makes all the functions $x : \mathcal{F} \to \mathbb{R}, f \mapsto f(x)$ continuous.

$$\partial_arepsilon\left(f+g
ight)(x) = igcap_{\eta>0} \mathbf{cl}^* \left(igcup_{arepsilon_1,arepsilon_2=arepsilon+\eta}(\partial_{arepsilon_1}f(x)+\partial_{arepsilon_2}g(x))
ight).$$

On \mathcal{F} , consider the weakest topology that makes all the functions $x : \mathcal{F} \to \mathbb{R}, f \mapsto f(x)$ continuous.

The set \mathcal{L} satisfies the following conditions:

A- \mathcal{L} is an \mathbb{R} -vector space;

B- \mathcal{L} is closed in \mathcal{F} w.r.s pointwise convergence topology.

Then \mathcal{L} is locally convex space.

• For any $x \in X$, the function $\mathcal{L} \ni I \mapsto \phi_x(I) := I(x)$ is continuous;

- For any $x \in X$, the function $\mathcal{L} \ni I \mapsto \phi_x(I) := I(x)$ is continuous;
- for any function $f: X \to \mathbb{R}_{+\infty}$, its conjugate function f^* is lower semicontinuous;

- For any $x \in X$, the function $\mathcal{L} \ni I \mapsto \phi_x(I) := I(x)$ is continuous;
- for any function $f: X \to \mathbb{R}_{+\infty}$, its conjugate function f^* is lower semicontinuous;

- For any $x \in X$, the function $\mathcal{L} \ni I \mapsto \phi_x(I) := I(x)$ is continuous;
- for any function $f: X \to \mathbb{R}_{+\infty}$, its conjugate function f^* is lower semicontinuous;
- \mathcal{H} -convex sets are closed;

- **9** For any $x \in X$, the function $\mathcal{L} \ni I \mapsto \phi_x(I) := I(x)$ is continuous;
- for any function $f: X \to \mathbb{R}_{+\infty}$, its conjugate function f^* is lower semicontinuous;
- \mathcal{H} -convex sets are closed;
- for any $f: X \to \mathbb{R}_{+\infty}$, $x \in \text{dom } f$ and $\varepsilon \ge 0$, the ε -subdifferential $\partial_{\varepsilon} f(x)$ is closed;

- **9** For any $x \in X$, the function $\mathcal{L} \ni I \mapsto \phi_x(I) := I(x)$ is continuous;
- Ø for any function $f: X → \mathbb{R}_{+\infty}$, its conjugate function f^* is lower semicontinuous;
- \mathcal{H} -convex sets are closed;
- for any f : X → ℝ_{+∞}, x ∈ dom f and ε ≥ 0, the ε-subdifferential ∂_εf(x) is closed;
- **(**) for any functions $f, g, x \in \operatorname{dom} f \cap \operatorname{dom} g$, and $\varepsilon \geq 0$,

$$\bigcap_{\eta>0} \operatorname{cl} \bigcup_{\substack{\varepsilon_1,\varepsilon_2\geq 0\\\varepsilon_1+\varepsilon_2=\varepsilon+\eta}} \partial_{\varepsilon_1} f(x) + \partial_{\varepsilon_2} g(x) \subset \partial_{\varepsilon} \left(f+g\right)(x);$$

- **9** For any $x \in X$, the function $\mathcal{L} \ni I \mapsto \phi_x(I) := I(x)$ is continuous;
- for any function $f: X \to \mathbb{R}_{+\infty}$, its conjugate function f^* is lower semicontinuous;
- \mathcal{H} -convex sets are closed;
- for any f : X → ℝ_{+∞}, x ∈ dom f and ε ≥ 0, the ε-subdifferential ∂_εf(x) is closed;
- for any functions $f, g, x \in \operatorname{dom} f \cap \operatorname{dom} g$, and $\varepsilon \geq 0$,

$$\bigcap_{\eta>0} \operatorname{cl} \bigcup_{\substack{\varepsilon_1,\varepsilon_2\geq 0\\\varepsilon_1+\varepsilon_2=\varepsilon+\eta}} \partial_{\varepsilon_1}f(x) + \partial_{\varepsilon_2}g(x) \subset \partial_{\varepsilon}\left(f+g\right)(x);$$

• Let $F, G \in \mathcal{F}$ and $G \leq F$. Then the set

$$A := \{f \in \mathcal{F} : G \le f \le F\}$$

is compact.

Sum rule

X-nonempty, $\mathcal{F} := X^{\mathbb{R}}$, \mathcal{L} -space of abstract linear functions, weak^{*} closed in \mathcal{F} .

Theorem

Given two functions $f, g: X \to \mathbb{R}_{\infty}$, dom $f \cap \text{dom } g \neq \emptyset$, assume that

cl (epi f^* + epi g^*) = epi $(f + g)^*$.

Then, for any number $\varepsilon \geq 0$, for all $x \in \operatorname{dom} f \cap \operatorname{dom} g$,

$$\partial_{\varepsilon} (f+g)(x) = \bigcap_{\eta > 0} \operatorname{cl} \left(\bigcup_{\substack{\varepsilon_1 + \varepsilon_2 = \varepsilon + \eta \\ \varepsilon_1, \varepsilon_2 \ge 0}} \partial_{\varepsilon_1} f(x) + \partial_{\varepsilon_2} g(x) \right)$$

holds for all $x \in \operatorname{dom} f \cap \operatorname{dom} g$.

Zero Duality Gap

Given m functions $f, \ldots, f_m : X \to \mathbb{R}_{+\infty}$ $(m \ge 2)$, consider the problem

$$\inf\left(\sum_{i=1}^{m} f_i(x)\right),\tag{P}$$

s.t. $x \in X$.

Zero Duality Gap

Given m functions $f, \ldots, f_m : X \to \mathbb{R}_{+\infty}$ $(m \ge 2)$, consider the problem

$$\inf\left(\sum_{i=1}^{m} f_i(x)\right), \tag{P}$$
s.t. $x \in X$.

The dual problem of (P) is given as follows:

$$\sup\left(\sum_{i=1}^{m} -f_{i}^{*}(l_{i})\right),$$

s.t. $l_{1}, \ldots, l_{m} \in \mathcal{L},$
 $l_{1} + \ldots + l_{m} = 0.$

Data Science Transforming Maintenance

(D)

Zero Duality Gap

Given m functions $f,\ldots,f_m:X o\mathbb{R}_{+\infty}$ $(m\geq 2)$, consider the problem

$$\inf\left(\sum_{i=1}^{m} f_i(x)\right),\tag{P}$$
s.t. $x \in X$.

The dual problem of (P) is given as follows:

$$\sup\left(\sum_{i=1}^{m} -f_{i}^{*}(l_{i})\right), \qquad (D)$$
s.t. $l_{1}, \dots, l_{m} \in \mathcal{L},$
 $l_{1} + \dots + l_{m} = 0.$
optimal values of (P) and (D).

Denote by v(P), v(D), the optimal values of (P) and (D). Zero duality gap holds if v(P) = v(D). In general, $v(P) \ge v(D)$.

Bui Thi Hoa (Curtin Uni & ITTC)

Abstract Convexity

$$v(P) = \inf_{x \in X} \left(\sum_{i=1}^{m} f_i(x) \right) = -\left(\sum_{i=1}^{m} f_i \right)^* (0);$$
(P1)
$$v(D) = \sup_{l_1 + \dots + l_m = 0} \left(\sum_{i=1}^{m} -f_i^*(l_i) \right) = -(f_1^* \Box \dots \Box f_m^*)(0).$$
(D1)

$$v(P) = \inf_{x \in X} \left(\sum_{i=1}^{m} f_i(x) \right) = -\left(\sum_{i=1}^{m} f_i \right)^* (0);$$
(P1)
$$v(D) = \sup_{l_1 + \dots + l_m = 0} \left(\sum_{i=1}^{m} -f_i^*(l_i) \right) = -(f_1^* \Box \dots \Box f_m^*)(0).$$
(D1)

Recall:
$$-\left(\sum_{i=1}^{m} f_i\right)^* \ge -f_1^*\Box\ldots\Box f_m^*$$
.

$$v(P) = \inf_{x \in X} \left(\sum_{i=1}^{m} f_i(x) \right) = -\left(\sum_{i=1}^{m} f_i \right)^* (0);$$
(P1)
$$v(D) = \sup_{l_1 + \dots + l_m = 0} \left(\sum_{i=1}^{m} -f_i^*(l_i) \right) = -(f_1^* \Box \dots \Box f_m^*)(0).$$
(D1)

Recall: $-\left(\sum_{i=1}^{m} f_i\right)^* \ge -f_1^* \Box \ldots \Box f_m^*$. Thus, the zero duality gap is equivalent to $\left(\sum_{i=1}^{m} f_i\right)^* (0) = (f_1^* \Box \ldots \Box f_m^*)(0).$

$$v(P) = \inf_{x \in X} \left(\sum_{i=1}^{m} f_i(x) \right) = -\left(\sum_{i=1}^{m} f_i \right)^* (0);$$
(P1)
$$v(D) = \sup_{l_1 + \dots + l_m = 0} \left(\sum_{i=1}^{m} -f_i^*(l_i) \right) = -(f_1^* \Box \dots \Box f_m^*)(0).$$
(D1)

Recall: $-\left(\sum_{i=1}^{m} f_i\right)^* \ge -f_1^* \Box \ldots \Box f_m^*$. Thus, the zero duality gap is equivalent to $\left(\sum_{i=1}^{m} f_i\right)^* (\mathbf{0}) = (f_1^* \Box \ldots \Box f_m^*)(\mathbf{0}).$

Borwein, Burachik and Yao (2014)

$$\left(\sum_{i=1}^m f_i\right)^* = f_1^* \Box \ldots \Box f_m^*.$$

X-nonempty, $\mathcal{F} := X^{\mathbb{R}}$, \mathcal{L} -space of abstract linear functions.

Let $f_i: X \to \mathbb{R}_{+\infty}$ where (i = 1, ..., m) $(m \ge 2)$ with $\bigcap_{i=1}^{m} \text{dom } f_i \neq \emptyset$. Consider

the following five conditions:

$$(\sum_{i=1}^m f_i)^* = f_1^* \Box \ldots \Box f_m^* \text{ in } \mathcal{L};$$

2 For every $x \in X$ and $\varepsilon \ge 0$,

$$\partial_{\varepsilon}(f_1 + \ldots + f_m)(x) = \bigcap_{\eta > 0} \left[\bigcup_{\substack{\varepsilon_1 + \ldots + \varepsilon_m = \varepsilon + \eta \\ \varepsilon_i \ge 0}} (\partial_{\varepsilon_1} f_1(x) + \ldots + \partial_{\varepsilon_m} f_m(x)) \right].$$

Conditions for Zero Duality Gap II

• There exists K > 0 such that for every $x \in \bigcap_{i=1}^{m} \text{dom } f_i$, and every $\varepsilon > 0$

$$\partial_{\varepsilon}\left(\sum_{i=1}^{m}f_{i}\right)(x)\subset\sum_{i=1}^{m}\partial_{K\varepsilon}f_{i}(x).$$

• There exists K > 0 such that for every $x \in \bigcap_{i=1}^{m} \operatorname{dom} f_i$, and every $\varepsilon > 0$

$$\operatorname{cl}\left[\sum_{i=1}^m \partial_{\varepsilon} f_i(x)\right] \subset \sum_{i=1}^m \partial_{K\varepsilon} f_i(x).$$

• $f_1^* \Box \ldots \Box f_m^*$ is lower semicontinuous; We have (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Rightarrow (v).

If the sum rule

$$\partial_{\varepsilon} \left(f+g
ight)(x) = igcap_{\eta>0} \operatorname{cl} \left(igcup_{arepsilon_1+arepsilon_2=arepsilon+\eta} \partial_{arepsilon_1} f(x) + \partial_{arepsilon_2} g(x)
ight)$$

holds, then all five statements are equivalent.

X-nonempty,
$$\mathcal{F} := X^{\mathbb{R}}$$
, \mathcal{L} -space of abstract linear functions. Let $f_i : X \to \mathbb{R}_{+\infty}$
 $(i = 1, ..., m) \ (m \ge 2)$ with $\bigcap_{i=1}^{m} \operatorname{dom} f_i \neq \emptyset$.

Theorem

The following conditions are equivalent.

9 For all $\varepsilon > 0$, there exists an $x \in X$ such that

$$\partial_{\varepsilon}f_1(x) + \ldots + \partial_{\varepsilon}f_m(x) \ni 0.$$

$$(\sum_{i=1}^m f_i)^* (0) = f_1^* \Box \ldots \Box f_m^* (0) < +\infty.$$

Sufficient and necessary conditions

X-nonempty,
$$\mathcal{F} := X^{\mathbb{R}}$$
, \mathcal{L} -space of abstract linear functions. Let $f_i : X \to \mathbb{R}_{+\infty}$
 $(i = 1, ..., m) \ (m \ge 2)$ with $\bigcap_{i=1}^{m} \operatorname{dom} f_i \neq \emptyset$.

Theorem

The following conditions are equivalent. Furthermore, the x for which condition (*) holds is a solution of problem (P).

• There exists an $x \in X$ such that

$$\partial_{\varepsilon}f_1(x) + \ldots + \partial_{\varepsilon}f_m(x) \ni 0.$$

(*)

Example

 $X := \mathbb{R}, \ \mathcal{L} := \{\phi_a : \phi_a(t) := at^2, a \in \mathbb{R}\}$ is a space of abstract linear functions. $\mathcal{H} := \{\Psi_{a,b} : \Psi_{a,b}(t) := at^2 + b, a, b \in \mathbb{R}\}$ is the space of abstract affine functions.

Example

 $X := \mathbb{R}, \ \mathcal{L} := \{\phi_a : \phi_a(t) := at^2, a \in \mathbb{R}\}$ is a space of abstract linear functions. $\mathcal{H} := \{\Psi_{a,b} : \Psi_{a,b}(t) := at^2 + b, a, b \in \mathbb{R}\}$ is the space of abstract affine functions.

Let f, g be any \mathcal{H} -convex functions, we have $\operatorname{cl}(\operatorname{supp} f + \operatorname{supp} g)$ is \mathcal{H} -convex. Consequently,

$$\operatorname{cl}(\operatorname{epi} f^* + \operatorname{epi} g^*) = \operatorname{epi}(f + g)^*.$$

The sum rule holds for every \mathcal{H} -convex functions.

Example

Consider three $\mathcal{H}-\text{convex}$ functions

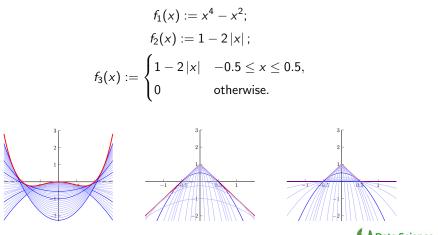


Figure 7: Support set of f_1 . Figure 8: Support set of f_2 . Figure 9: Support set and forming

Examples

Their conjugate functions

$$f_1^*(\phi_a) = \sup_{x \in \mathbb{R}} \{\phi_a(x) - f_1(x)\} = \begin{cases} \frac{(a+1)^2}{4} & a \ge -1, \\ 0 & a < -1; \end{cases}$$
$$f_2^*(\phi_a) = \sup_{x \in \mathbb{R}} \{\phi_a(x) - f_2(x)\} = \begin{cases} +\infty & a \ge 0, \\ -1 - \frac{1}{a} & a < 0; \end{cases}$$
$$f_3^*(\phi_a) = \sup_{x \in \mathbb{R}} \{\phi_a(x) - f_3(x)\} = \begin{cases} +\infty & a > 0, \\ \frac{a}{4} & a \in [-2, 0], \\ -1 - \frac{1}{a} & a < -2. \end{cases}$$

Figure 10: Sum function $f_1 + f_2 + f_3$. Figure 11: Dual function $-f_1^* - f_2^* - f_3^*$ in the subspace $\phi_{a_1} + \phi_{a_2} + \phi_{a_3} = 0.$

The minimization problem

$$v(p) := \min(f_1 + f_2 + f_3),$$
 (p)

has the dual problem

$$v(d) := \sup_{\phi_{a_1} + \phi_{a_2} + \phi_{a_3} = 0} \left(-f_1^*(\phi_{a_1}) - f_2^*(\phi_{a_2}) - f_3^*(\phi_{a_3}) \right). \tag{d}$$

Transforming Maintenance

Figure 10: Sum function $f_1 + f_2 + f_3$. Figure 11: Dual function $-f_1^* - f_2^* - f_3^*$ in the subspace $\phi_{a_1} + \phi_{a_2} + \phi_{a_3} = 0.$

The minimization problem

$$v(p) := \min(f_1 + f_2 + f_3),$$
 (p)

has the dual problem

$$v(d) := \sup_{\phi_{a_1} + \phi_{a_2} + \phi_{a_3} = 0} \left(-f_1^*(\phi_{a_1}) - f_2^*(\phi_{a_2}) - f_3^*(\phi_{a_3}) \right). \tag{d}$$

Apply condition (*) for $x = \pm 1$, we have the zero duality gap holds, the para Science $x = \pm 1$ are the solutions of (p).

- Hoa T. Bui, Regina S. Burachik, Alexander Y. Kruger, David T. Yost, *Characterizations of Zero Duality Gap via Abstract Convexity*, arxiv: 1910.08156
- Alexander. M. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Dordrecht, 2000.
- Ivan Singer, Abstract convex analysis, Wiley-Interscience, New York, 2006.

Thank You!

