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Framework

We consider multiobjective optimization problems of the form

MOP : min f (x) s.t. g(x) ≤ 0, x ∈ X

with

f : Rn → Rm continuous,

g : Rn → Rk continuous,

X = [x , x ] an n-dimensional box with x , x ∈ Rn, x ≤ x ,

M = {x ∈ X | g(x) ≤ 0}.

No convexity assumptions.
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A missing piece in multiobjective B&B

The branch-and-bound idea from the global solution of single
objective optimization problems has been adapted to MOP
by various authors (see next slide).

In particular, partial lower bounds and overall upper bounds were
introduced to design discarding tests.

However, general overall lower bounds have not been obtained
from partial lower bounds, and the resulting enclosures of the
nondominated set have not been employed for node selection and
termination criteria.

In this talk we propose a way to close this gap.

5 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Single objective branch-and-bound
Multiobjective optimality notions

A missing piece in multiobjective B&B

The branch-and-bound idea from the global solution of single
objective optimization problems has been adapted to MOP
by various authors (see next slide).

In particular, partial lower bounds and overall upper bounds were
introduced to design discarding tests.

However, general overall lower bounds have not been obtained
from partial lower bounds, and the resulting enclosures of the
nondominated set have not been employed for node selection and
termination criteria.

In this talk we propose a way to close this gap.

5 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Single objective branch-and-bound
Multiobjective optimality notions

A missing piece in multiobjective B&B

The branch-and-bound idea from the global solution of single
objective optimization problems has been adapted to MOP
by various authors (see next slide).

In particular, partial lower bounds and overall upper bounds were
introduced to design discarding tests.

However, general overall lower bounds have not been obtained
from partial lower bounds, and the resulting enclosures of the
nondominated set have not been employed for node selection and
termination criteria.

In this talk we propose a way to close this gap.

5 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Single objective branch-and-bound
Multiobjective optimality notions

A missing piece in multiobjective B&B

The branch-and-bound idea from the global solution of single
objective optimization problems has been adapted to MOP
by various authors (see next slide).

In particular, partial lower bounds and overall upper bounds were
introduced to design discarding tests.

However, general overall lower bounds have not been obtained
from partial lower bounds, and the resulting enclosures of the
nondominated set have not been employed for node selection and
termination criteria.

In this talk we propose a way to close this gap.

5 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Single objective branch-and-bound
Multiobjective optimality notions

Literature

Yu. G. Evtushenko, M. A. Posypkin, Method of non-uniform coverages
to solve the multicriteria optimization problems with guaranteed accuracy,
Automation and Remote Control, Vol. 75 (2014), 1025–1040.
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Single objective B&B – optimality

f

xxopt

v

M

xopt is optimal since no x ∈ M satisfies f (x) < f (xopt) =: v .
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Single objective B&B – subdivision of the feasible set

f

xxopt

v

Subdivide M into smaller sets M ′ ...
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Single objective B&B – partial lower bounds

f

xxopt

v

... and on each subset M ′ compute a partial lower bound b̀′ for f .
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Single objective B&B – the overall upper bound

f

ub

xub xxopt

v

f

xxopt

v

Any xub ∈ M generates an overall upper bound ub for v ...
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Single objective B&B – discarding / fathoming / pruning

f

ub

xub xxopt

v

... so that all sets M ′ with b̀′ > ub can be discarded ...
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Single objective B&B – the list

f

ub

xub xxopt

v

L

... and we only need to keep the list L of M ′ with b̀′ ≤ ub.
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Single objective B&B – the overall lower bound

f

ub

xub xxopt

v

L

b̀

b̀ := minM′∈L b̀′ is an overall lower bound for v .
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Single objective B&B – termination criterion

f

ub

xub xxopt

v

L

b̀

Common termination criterion: ub − b̀ < ε
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Single objective B&B – ε-optimality

f

ub

xub xxopt

v

L

b̀

For ub − b̀ < ε we have v ≤ f (xub) ≤ v + ε.
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Single objective B&B – ε-optimality

f

ub

xub xxopt

v

L

b̀

In particular, no x ∈ M satisfies f (x) < f (xub)− ε.
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Single objective B&B – node selection

f

ub

xub xxopt

v

L

b̀

Choose some M ′ with b̀′ = b̀ ...
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Single objective B&B – branching

f

ub

xub xxoptL

b̀
v

... branch it into two smaller sets, compute new lower bounds, ...
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Single objective B&B – improved overall lower bound

f

ub

xub xxoptL

b̀
v

... and update b̀.
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Single objective B&B – improved upper bound

f

ub

xub xxoptL

b̀
v

x̄

If along the way a better feasible point than xub is found, ...
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Single objective B&B – update of the upper bound

f

xxoptL

b̀
v
ub

xub

... then also update xub and ub ...
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Single objective B&B – improved discarding

f

xxoptL

b̀
v
ub

xub

... and, if possible, discard further sets M ′ from L.
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Branching boxes

Branching is usually implemented by using

M = M(X ) = {x ∈ X | g(x) ≤ 0},

just branching the box X by, e.g., halving it into X 1 and X 2,

and setting M1 := M(X 1), M2 := M(X 2).
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B&B output

Upon termination we have

v ∈ [ b̀, ub] with ub − b̀ < ε,⋃
M′∈LM ′ covers the set of globally minimal points,

but we don’t have

the boxes X ′ with M ′ = M(X ′) become small,

the intervals f (M ′) become small,⋃
M′∈LM ′ consists of ε-optimal points.

In particular, B&B focuses on the approximation of v ,
but not of optimal points.
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B&B output

f

xxoptL

b̀
v
ub

xub

No small boxes,⋃
M′∈LM ′ does not only consist of ε-optimal points.

25 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Single objective branch-and-bound
Multiobjective optimality notions

Multiobjective optimality notions

f2

f1

f (M)

Appropriate generalization of ‘ f (x) ≥ f (x̄) ∀ x ∈ M ’ ?
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Multiobjective optimality notions

f2

f1

f (M)

It is not ‘ f (x) ≥ f (x̄) ∀ x ∈ M ’.
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Multiobjective optimality notions

f2

f1

f (M)

Better generalization: ‘ f (x) < f (x̄) for no x ∈ M ’.
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Multiobjective optimality notions

f2

f1

f (M)
YwN

This leads to the weakly nondominated set YwN .
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Multiobjective optimality notions

f2

f1

f (M)

Even better: ‘ f (x) ≤ f (x̄), f (x) 6= f (x̄) for no x ∈ M ’.
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Multiobjective optimality notions

f2

f1

f (M)

x̄ is then called efficient, and f (x̄) nondominated.
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Multiobjective optimality notions

f2

f1

f (M)YN

The nondominated set YN hence plays the role of v .
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Multiobjective optimality notions

f2

f1

f (M)

Y ε
N

ε-efficiency: f (x) ≤ f (x̄)− εe, f (x) 6= f (x̄)− εe for no x ∈ M.
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Enclosing YN

f2

f1

YN

Generalization of the sandwiching property b̀ ≤ v ≤ ub ?
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Enclosing YN

f

ub

x

v

b̀

b̀ ≤ v ≤ ub ⇔ {v} ⊆ ( b̀ + R+) ∩ (ub − R+)
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Enclosing YN

f2

f1

YN

UB

LB

Let us construct nonempty and compact sets LB, UB
with YN ⊆ (LB + Rm

+) ∩ (UB − Rm
+).
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Enclosing YN

f2

f1

YN

For some width measure w(LB,UB) of (LB + Rm
+) ∩ (UB − Rm

+)
the natural termination criterion then would be w(LB,UB) < ε.
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The provisional nondominated set

f2

f1

YN
f (Xub)

There is not a single best known feasible point with ub = f (xub),
but a whole set Xub and its image set f (Xub).
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The provisional nondominated set

f2

f1

YN

F

At least we can ignore the dominated points among f (Xub).
The remaining set F is the provisional nondominated set.
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The provisional nondominated set

f2

f1

YN

F

Unfortunately, F − Rm
+ does not necessarily contain YN ,

so that the choice UB := F is not possible.
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The search region

f2

f1

YN

F

F (X )

Instead, given F we consider the search region
of points which are not dominated by any point from F .
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Local upper bounds

f2

f1

YN

F
lub(F)

F (X )

The search region may be described as lub(F)− Rm
++

with the computable finite set of local upper bounds lub(F).
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The upper bounding set

f2

f1

YN

F
lub(F)

F (X )

In view of YN ⊆ lub(F)− Rm
+ we may put UB := lub(F).
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Subdivision of f (M)

f2

f1

Subdivision of M induces subdivision of f (M)
(tesselation of M does not necessarily induce one of f (M)).
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Discarding

f2

f1

f (M ′)

How to decide that M ′ can be discarded?
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Discarding

f

ub

x

v

f (M ′)

M ′

ub < minx∈M′ f (x) ⇔ {ub} ∩ (f (M ′) + R+) = ∅
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Discarding

f2

f1

f (M ′) + Rm
+

Indeed: M ′ can be discarded if lub(F) ∩ (f (M ′) + Rm
+) = ∅.

To check this, one needs a tractable description of f (M ′) + Rm
+.
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Discarding

f

ub

x

v

f (M ′)

M ′

b̀′

Discard M ′ if ub < b̀′ ≤ minx∈M′ f (x)
with the partial lower bound b̀′.
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Discarding

f2

f1

f (M ′) + Rm
+LB ′

We call a compact set LB ′ with f (M ′) + Rm
+ ⊆ LB ′ + Rm

+

a partial lower bounding set for f (M ′).
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Discarding

f2

f1

f (M ′) + Rm
+LB ′

Hence M ′ can be discarded if lub(F) ∩ (LB ′ + Rm
+) = ∅.
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f (M ′)

F (M ′)

Sources of LB ′: interval arithmetic, ...
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f (M ′)

Sources of LB ′: RLT
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Say M ′ and its partial image set can be discarded, ...
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... as well as several other partial image sets.
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New attainable points

f2

f1

For the sets M ′ which have to be kept in L, possibly new
attainable points are computed during the failed discarding tests.
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Then we update F ...
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... as well as lub(F) and L.
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Partial lower bounds from L
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f1

Each M ′ ∈ L is accompanied by some LB ′, say a singleton.
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Enclosure of YN from the literature
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In the literature the enclosure YN ⊆
⋃

M′∈L F (M ′) is used,
where F (M ′) is some box with f (M ′) ⊆ F (M ′).
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f2
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Common termination criterion: ‘all boxes F (M ′), M ′ ∈ L, are small’
which is not consistent with single objective B&B.
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Overall lower bounding set

f2

f1

While for an overall lower bound the choice LB :=
⋃

M′∈L LB ′

is possible, many LB ′ in this union are redundant.
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LB

Instead we consider the sublist LN of M ′ ∈ L such that LB ′ is
nondominated and define LB :=

⋃
M′∈LN

LB ′.
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LB

This is in analogy to setting b̀ := minM′∈L b̀′

in the single objective case.

70 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

The enclosing idea
Local upper bounds and the upper bounding set
Partial lower bounding sets and discarding tests
The enclosure from literature
Overall lower bounding set

The sandwich

f2

f1

It results in the desired enclosure
YN ⊆ (LB + Rm

+) ∩ (lub(F)− Rm
+) =: E (LB, lub(F)).
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Theorem 1: YN ∪ F ⊆ E (LB, lub(F)).
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The sandwich width (geometrical definition)
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Let us measure the width of w(LB, lub(F)) of E (LB, lub(F))
with respect to the direction e, ...
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The sandwich width (geometrical definition)

f2

f1

w(LB, lub(F)) :=
max{‖(y + te)− y‖2/

√
m | t ≥ 0, y , y + te ∈ E (LB, lub(F))}.
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The sandwich boxes

f2

f1

The enclosure E (LB, lub(F)) may be written as the union of boxes⋃
{[a, p] | a ∈ LB, p ∈ lub(F), a ≤ p}.
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The sandwich boxes

f2

f1

For a box [a, p] let s(a, p) := minj=1,...,m(pj − aj)
denote the shortest edge length.
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The sandwich width (tractable formula)
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√
2w(LB, lub(F))

Lemma:
w(LB, lub(F)) = max{s(a, p) | a ∈ LB, p ∈ lub(F), a ≤ p}
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ε-nondominated F

f2

f1

Theorem 2:
ε > w(LB, lub(F)) ⇒ all q ∈ F are ε-nondominated.
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ε-nondominated F
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f (M)

Y ε
N

Theorem 2:
ε > w(LB, lub(F)) ⇒ all q ∈ F are ε-nondominated.
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Width based termination criterion

f2

f1

Theorem 2 (termination criterion):
ε > w(LB, lub(F)) ⇒ all q ∈ F are ε-nondominated.

83 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Selection rule
Branching step

Choosing a set to branch

f2
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a

p

Node selection: Choose some sandwich box [a, p] with
s(a, p) = w(LB, lub(F))
and branch the set M ′

a with partial lower bounding set {a}.
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Branching step

f2

f1

a

Compute new partial lower bounding sets, ...
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Branching step

f2

f1

... try to discard, obtain new attainable points, update LB, ...
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Branching step
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f1

... update F , update lub(F).
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Convergence

f2

f1
Theorem 3: Lower bounding by IA, αBB, RLT, or other
convergent procedures + computability of feasible points if they
exist ⇒ for any ε B&B terminates after finitely many iterations.
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Example 1 – Fonseca-Fleming problem

FF : min

(
1− exp(−(x1 − 1/

√
2)2 − (x2 − 1/

√
2)2)

1− exp(−(x1 + 1/
√

2)2 − (x2 + 1/
√

2)2)

)

s.t. − 4 ≤ x1, x2 ≤ 4.
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Example 1 – Provisional nondominated set, ε = 0.1
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Example 1 – Provisional nondominated set, ε = 0.05
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Example 1 – Enclosure, ε = 0.1
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Example 2 – DEB2DK

DEB2DK : min

(
r(x) sin(x1π/2)
r(x) cos(x1π/2)

)

s.t. 0 ≤ x1, x2 ≤ 1

with r(x) = (5 + 10(x1 − 0.5)2 + cos(4πx1)) (1 + 9x2).

95 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Convergence
Numerical illustrations
Open questions

Example 2 – Attainable points

96 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Convergence
Numerical illustrations
Open questions

Example 2 – Provisional nondominated set, ε = 0.1

97 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Convergence
Numerical illustrations
Open questions

Example 2 – Provisional nondominated set, ε = 0.05

98 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Convergence
Numerical illustrations
Open questions

Example 2 – Enclosure, ε = 0.1

99 / 101 Oliver Stein (KIT) B&B for global multiobjective optimization



Introduction
Sandwiching the nondominated set

A termination criterion
Node selection
Performance

Convergence
Numerical illustrations
Open questions

Open questions

f2

f1
YN is in general disconnected, while E (LB, lub(F)) seems to
converge to the seemingly connected weakly nondominated set of
f (M) + Rm

+.
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