Lifting for simplicity: concise descriptions of convex sets

James Saunderson

Electrical and Computer Systems Engineering, Monash University, Australia

Variational analysis and optimisation seminar, July 15, 2020

Joint work with:

Hamza Fawzi
U. Cambridge

Pablo Parrilo MIT

João Gouveia
U. Coimbra

Rekha Thomas
U. Washington

Linear programming

Minimization of linear functional over polyhedron

Linear program:

$$
\begin{aligned}
& \min _{x}\langle c, x\rangle \\
& \text { s.t. } A x=b, \quad x \geq 0
\end{aligned}
$$

Polyhedron: affine slice of some non-negative orthant
m facets: affine slice of \mathbb{R}_{+}^{m}

Linear programming

Minimization of linear functional over polyhedron with not too many facets

Linear program:

$$
\begin{aligned}
\min _{x} & \langle c, x\rangle \\
\text { s.t. } & A x=b, \quad x \geq 0
\end{aligned}
$$

Polyhedron: affine slice of some non-negative orthant
m facets: affine slice of \mathbb{R}_{+}^{m}

What is the simplest description of an octagon for linear programming?

Linear programming? Projection helps

Minimization of linear functional over projection of polyhedron with not too many facets
[Ben-Tal and Nemirovski]
Equivalent linear program:

$$
\begin{array}{ll}
\min _{x, y} & \langle c, x\rangle+\langle 0, y\rangle \\
\text { s.t. } & A_{1} x+A_{2} y=b \\
& x \geq 0, y \geq 0
\end{array}
$$

Polyhedral lifts of polytopes

lift of $P \quad$ affine slice of \mathbb{R}_{+}^{m}
$\downarrow \pi$
$P \quad$ polytope
P has polyhedral lift of size $m \longleftrightarrow P=\pi\left(\mathbb{R}_{+}^{m} \cap L\right)$

- Key problem: Given polytope P, find smallest lift!

Permutahedron

- n ! vertices
$\Pi_{n}=\operatorname{conv}\{$ all permutations of $(1,2, \ldots, n)\}$
- $2^{n}-2$ facets

Birkhoff polytope
(doubly stochastic matrices)

- $\Pi_{n}=\operatorname{projection}\left(B_{n}\right)$
- Lift of size n^{2}

Permutahedron

- n ! vertices
$\Pi_{n}=\operatorname{conv}\{$ all permutations of $(1,2, \ldots, n)\}$
- $2^{n}-2$ facets

Birkhoff polytope (doubly stochastic matrices) $B_{n}=\left\{X \in \mathbb{R}^{n \times n}: \sum_{i} X_{i j}=1 \forall j=1 \forall \forall i, X_{i j}=1\right\}$

- $\Pi_{n}=\operatorname{projection}\left(B_{n}\right)$
- Lift of size n^{2}

Goemans (2015):
Π_{n} has a size $O(n \log (n))$ lift

Honeycomb lift of the Horn cone

Horn cone: Horn(n)
$\{(\lambda(A), \lambda(B), \lambda(C)): A, B, C$ Hermitian and $A+B+C=0\}$

Knutson-Tao (1999): Horn (n) has polyhedral lift of size $O\left(n^{2}\right)$

- Allows efficient solution of certain decision problems related to representation theory of $G L(n)$

Conic lifts of convex sets

lift of C

affine slice of a closed convex cone K

$$
\downarrow \pi
$$

C convex set
C has a K-lift $\longleftrightarrow C=\pi(K \cap L)$

- Key question: Given C and K, does C have a K-lift?

Semidefinite programming

Min. of linear functional over (not too large) spectrahedron.

$$
\begin{aligned}
\min _{X} & \langle C, X\rangle \\
\text { s.t. } & \mathcal{A}(X)=b, \quad X \succeq 0
\end{aligned}
$$

- Spectrahedron affine slice of some positive semidefinite cone
- ... of size m: affine slice of \mathcal{S}_{+}^{m}

Spectrahedral lifts of convex sets

$\{$ Projections of spectrahedra $\} \supsetneq\{$ spectrahedra $\}$

- Given C, does it have a spectrahedral lift?
- If so find the smallest spectrahedral lift.

Nonnegativity and sums of squares

Nonnegative polynomials

$$
\operatorname{Pol}_{+}(n, 2 d)=\left\{p: p(x) \geq 0 \quad \forall x \in \mathbb{R}^{n}\right\}
$$

In general, hard to check nonnegativity
Sums of squares: $\operatorname{SOS}(n, 2 d)=\left\{p: p(x)=\sum_{i}\left[q_{i}(x)\right]^{2}\right\}$
$\operatorname{SOS}(n, 2 d)$ has a spectrahedral lift of size $\binom{n+d}{d}$

Hilbert: $\operatorname{SOS}(n, 2 d)=\operatorname{Pol}_{+}(n, 2 d)$

$$
\Longleftrightarrow n=1,2 d=2 \text { or }(n, 2 d)=(2,4)
$$

Scheiderer (2018): In every other case $\mathrm{Pol}_{+}(n, 2 d)$ has no spectrahedral lift

Epigraphs of SOS-convex polynomials

Convex polynomial: first-order characterization

$$
D_{p}(x, y)=p(x)-[p(y)+\langle\nabla p(y), x-y\rangle] \in \mathrm{Pol}_{+}(2 n, 2 d)
$$

SOS-convex polynomial: $D_{p}(x, y) \in \operatorname{SOS}(2 n, 2 d)$

Epigraph:

$$
\operatorname{epi}(p)=\{(x, t): p(x) \leq t\}
$$

(FGPST 2020): If p is SOS convex then

$$
\operatorname{epi}(p)=\{(x, t): t-[p(y)+\langle\nabla p(y), x-y\rangle] \in \operatorname{SOS}(n, 2 d)\}
$$ gives a spectrahedral lift of size $\binom{n+d}{d}$

Slack matrices

Polytope
$P=\left\{x:\left\langle f_{j}, x\right\rangle \leq 1, j \in[f]\right\}$

- v vertices
- f facets

Example: regular hexagon

Slack matrix

$$
\left[S_{P}\right]_{i j}=1-\left\langle f_{j}, v_{i}\right\rangle
$$

- $v \times f$ matrix
- entry-wise nonnegative

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

Cone factorization

Dual cone: $K^{*}=\{y:\langle y, x\rangle \geq 0$ for all $x \in K\}$
K-factorization of S_{P}

- a map from vertices to K
- b map from facets to K^{*}
such that

$$
\left[S_{P}\right]_{i j}=1-\left\langle f_{j}, v_{i}\right\rangle=\left\langle b_{j}, a_{i}\right\rangle \forall i, j
$$

Note: \mathbb{R}_{+}^{m}-factorization is same as non-negative factorization

Yannakakis (1991):

P has \mathbb{R}_{+}^{m}-lift $\Longleftrightarrow S_{P}$ has \mathbb{R}_{+}^{m}-factorization

Inequality description:

$$
\begin{aligned}
\pm x \pm y / \sqrt{3} & \leq 1 \\
\pm 2 y / \sqrt{3} & \leq 1
\end{aligned}
$$

\mathbb{R}_{+}^{5}-factorization
$S_{P}=\left[\begin{array}{llllll}0 & 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 1 & 0\end{array}\right]=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0\end{array}\right]\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 2 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
\Longrightarrow Regular hexagon has \mathbb{R}_{+}^{5}-lift

$$
\left\{y \in \mathbb{R}_{+}^{5}: \begin{array}{c}
y_{1}+y_{2}+y_{3}+y_{5}=2 \\
y_{3}+y_{4}+y_{5}=1
\end{array}\right\}
$$

Characterizing K-lifts

Given

- convex body C and
- closed convex cone K
when is $C=\pi(K \cap L)$?

Gouveia, Parrilo, Thomas (2010): If K is 'nice'
C has a K-lift $\Longleftrightarrow S_{C}$ has a K-factorization

- Generalizes Yannakakis' theorem
- \rightarrow systematic way to find constructions and obstructions

Slack operator: $S_{C}: \operatorname{ext}(C) \times \operatorname{ext}\left(C^{\circ}\right) \rightarrow \mathbb{R}$,

$$
S_{C}(x, y)=1-\langle y, x\rangle
$$

$\operatorname{ext}(C):[-\sqrt{2}, \sqrt{2}] \ni t \mapsto\left(1-t^{2}, t\left(2-t^{2}\right)\right)$

$$
\operatorname{ext}\left(C^{\circ}\right):[-\sqrt{2}, \sqrt{2}] \ni s \mapsto\left(\frac{2-3 s^{2}}{s^{4}+\left(2-s^{2}\right)}, \frac{2 s}{s^{4}+\left(2-s^{2}\right)}\right)
$$

$$
S_{C}(s, t)=\frac{(t-s)^{2}\left(\left(2-t^{2}\right)+(s+t)^{2}\right)}{s^{4}+\left(2-s^{2}\right)}
$$

Slack operator: $S_{C}: \operatorname{ext}(C) \times \operatorname{ext}\left(C^{\circ}\right) \rightarrow \mathbb{R}$,

$$
S_{C}(x, y)=1-\langle y, x\rangle
$$

\mathcal{S}_{+}^{3}-factorization: $\Longrightarrow \mathcal{S}_{+}^{3}$-lift
$\left.A(t)=\left[\begin{array}{ccc}1 & 0 & 1-t^{2} \\ 0 & 2-t^{2} \\ 1-t^{2} & t\left(2-t^{2}\right) & 1\end{array}\right] \quad \begin{array}{l}\left(2-t^{2}\right)\end{array}\right] \forall t \in[-\sqrt{2}, \sqrt{2}]$
\mathcal{S}_{+}^{3}-factorization: $\Longrightarrow \mathcal{S}_{+}^{3}$-lift

$$
B(s)=\frac{1}{s^{4}+\left(2-s^{2}\right)}\left[\begin{array}{c}
s^{2}-1 \\
-s \\
1
\end{array}\right]\left[\begin{array}{cc}
{\left[s^{2}-1-s\right.} & 1]
\end{array} \forall s \in[-\sqrt{2}, \sqrt{2}]\right.
$$

$$
S_{C}(s, t)=\frac{(t-s)^{2}\left(\left(2-t^{2}\right)+(s+t)^{2}\right)}{s^{4}+\left(2-s^{2}\right)}=\langle B(s), A(t)\rangle
$$

Constructing spectrahedral lifts

$C=\operatorname{conv}(X)$ has \mathcal{S}_{+}^{m}-lift $\Longleftrightarrow \exists$ subspace V of fns on X s.t.

- $\operatorname{dim}(V) \leq m$
- If $\ell(x) \leq 1$ is valid for C then

$$
1-\left.\ell\right|_{X}=\sum_{k} h_{k}^{2} \text { for } h_{k} \in V
$$

Constructing spectrahedral lifts

$C=\operatorname{conv}(X)$ has \mathcal{S}_{+}^{m}-lift $\Longleftrightarrow \exists$ subspace V of fns on X s.t.

- $\operatorname{dim}(V) \leq m$
- If $\ell(x) \leq 1$ is valid for C then

$$
\begin{aligned}
& 1-\left.\ell\right|_{x}=\sum_{k} h_{k}^{2} \text { for } h_{k} \in V \\
& X=\{(\pm 1, \pm 1)\}=\left\{(x, y): x^{2}=y^{2}=1\right\} \\
& C=\operatorname{conv}(X)=[-1,1]^{2} \\
& V=\operatorname{span}(1, x, y) \\
& 1 \pm x=\frac{1}{2}(1 \pm x)^{2} \forall(x, y) \in X
\end{aligned}
$$

$$
\operatorname{dim}(V)=3 \quad \Longrightarrow \quad \mathcal{S}_{+}^{3} \text {-lift }
$$

Which functions to use?

If $C=\operatorname{conv}(X)$ and X is algebraic:

- natural: polynomial functions on X of degree at most d
- Doesn't always work!

Piriform curve:

$$
y^{2}-x^{3}+x^{4}=0
$$

Scheiderer: If X algebraic and has spectrahedral lift, suffices to choose a subspace of semialgebraic functions on X

Obstructions from facial structure

- Obstructions to factorization \longrightarrow obstructions to lifts
- 0-1 pattern of slack related to facial structure

$$
\begin{aligned}
& \text { If } C=\pi(K \cap L) \text { then } \\
& \text { poset of faces of } C \text { embeds into poset of faces of } K
\end{aligned}
$$

Goemans (2015): P a polytope with v vertices
 \Longrightarrow any \mathbb{R}_{+}^{m}-lift needs $m \geq\left\lfloor\log _{2}(v)\right\rfloor$

Implies size $O(n \log (n))$ lift of permutahedron is optimal

$$
\begin{aligned}
C \text { has } K \text {-lift } & \Longrightarrow \text { length of longest chain of faces of } P \\
& <\text { length of longest chain of faces of } K
\end{aligned}
$$

- does not have \mathcal{S}_{+}^{2}-lift
- does not have smooth cone lift

More elaborate obstructions based on neighborliness S. 2020

Algebraic obstructions

If K is semialgebraic then $\pi(K \cap L)$ is semialgebraic

Corollary: C has a spectrahedral lift $\Longrightarrow C$ semialgebraic

Algebraic obstructions

If K is semialgebraic then $\pi(K \cap L)$ is semialgebraic

Corollary: C has a spectrahedral lift $\Longrightarrow C$ semialgebraic
Algebraic degree of boundary:

- smallest degree of polynomial that vanishes on boundary
- generalizes number of facets of polyhedron
- Algebraic degree of $\partial \mathcal{S}_{+}^{m}$ is m (determinant)

Fawzi, El Din (2018):
If $\operatorname{deg}(\partial C)=d$ and C has a \mathcal{S}_{+}^{m}-lift then $m \geq \sqrt{\log (d)}$

Recent prominent negative results

- Fiorini et al. (2015) traveling salesman polytopes need exponential size polynedral lifts
- Rothvoss (2013) Matching polytope of $K_{2 n}$ needs exponential size polyhedral lifts
- Scheiderer (2018) $\mathrm{Pol}_{+}(2,6)$ has no spectrahedral lift
- Lee et al. (2015) traveling salesman polytopes need spectrahedral lifts of size $2^{\Omega\left(n^{1 / 13}\right)}$

Many open questions!

Some of my favourites. . .

- Is there a family of polytopes with a big gap between the size of smallest polyhedral and spectrahedral lifts? (Biggest known gap Fawzi, S., Parrilo $\Omega(n / \log (n))$)
- Smallest dimension in which there is a convex semialgebraic set that does not have a spectrahedral lift? (must be ≥ 3)
- Does the matching polytope have a polynomial sized spectrahedral lift?

Thank You!

More information:
Fawzi, Gouveia, Parrilo, Saunderson, Thomas,
"Lifting for simplicity, concise descriptions of convex sets" https://arxiv.org/abs/2002.09788

