Lifting for simplicity: concise descriptions of convex sets

James Saunderson

Electrical and Computer Systems Engineering, Monash University, Australia

Variational analysis and optimisation seminar, July 15, 2020

Joint work with:

Hamza Fawzi *U. Cambridge*

Pablo Parrilo *MIT*

João Gouveia *U. Coimbra*

Rekha Thomas *U. Washington*

Linear programming

Minimization of linear functional over polyhedron

Linear program:

$$\begin{array}{ll} \min_{x} & \langle c, x \rangle \\ \text{s.t.} & Ax = b, \ x \geq 0 \end{array}$$

Polyhedron: affine slice of some non-negative orthant *m* facets: affine slice of \mathbb{R}^m_+

Linear programming

Minimization of linear functional over polyhedron with not too many facets

Linear program:

$$\min_{x} \langle c, x \rangle$$
 s.t. $Ax = b, x \ge 0$

Polyhedron: affine slice of some non-negative orthant *m* facets: affine slice of \mathbb{R}^m_+

What is the simplest description of an octagon for linear programming?

Linear programming? Projection helps

Minimization of linear functional over projection of polyhedron with not too many facets

Equivalent linear program:

$$\min_{x,y} \langle c,x\rangle + \langle 0,y\rangle$$

s.t.
$$A_1 x + A_2 y = b$$
,
 $x > 0$, $y > 0$

[Ben-Tal and Nemirovski]

Polyhedral lifts of polytopes

P has polyhedral lift of size $m \leftrightarrow P = \pi(\mathbb{R}^m_+ \cap L)$

Key problem: Given polytope P, find smallest lift!

Permutahedron

$$\Pi_n = \text{conv}\{\text{all permutations of } (1, 2, \dots, n)\}$$

$$P = n \text{ Vertices}$$

$$P = 2^n - 2 \text{ facets}$$

Birkhoff polytope
(doubly stochastic matrices)

$$B_n = \begin{cases} X \in \mathbb{R}^{n \times n} : \sum_j X_{ij} = 1 \ \forall i \\ X_{ij} \ge 0 \ \forall i, j \end{cases}$$

$$\square \Pi_n = \text{projection}(B_n)$$

$$\square \text{ Lift of size } n^2$$

nl vertices

Permutahedron

$$\Pi_n = \operatorname{conv}\{\text{all permutations of } (1, 2, \dots, n)\} \qquad \triangleright \quad 2^n - 2 \text{ facets}$$

Birkhoff polytope (doubly stochastic matrices) $B_n = \left\{ X \in \mathbb{R}^{n \times n} : \sum_j X_{ij} = 1 \ \forall i \\ X_{ij} \ge 0 \ \forall i, j \right\}$ $\square \Pi_n = \text{projection}(B_n)$ $\square \text{ Lift of size } n^2$

Goemans (2015): Π_n has a size $O(n \log(n))$ lift

Honeycomb lift of the Horn cone

Horn cone: Horn(n)

 $\{(\lambda(A),\lambda(B),\lambda(C)) : A, B, C \text{ Hermitian and } A+B+C=0\}$

Knutson-Tao (1999): Horn(n) has polyhedral lift of size $O(n^2)$

Allows efficient solution of certain decision problems related to representation theory of GL(n)

Conic lifts of convex sets

C has a K-lift $\leftrightarrow C = \pi(K \cap L)$

Key question: Given C and K, does C have a K-lift?

Semidefinite programming

Min. of linear functional over (not too large) spectrahedron.

$$\min_{X} \langle C, X \rangle$$

s.t. $\mathcal{A}(X) = b, X \succeq 0$

 Spectrahedron affine slice of some positive semidefinite cone
 ... of size m: affine slice of S^m_⊥

Spectrahedral lifts of convex sets

 $\{\mathsf{Projections} \text{ of spectrahedra}\} \supsetneq \{\mathsf{spectrahedra}\}$

- ► Given *C*, does it have a spectrahedral lift?
- If so find the smallest spectrahedral lift.

Nonnegativity and sums of squares Nonnegative polynomials

$$\mathsf{Pol}_+(n,2d) = \{p : p(x) \ge 0 \ \forall x \in \mathbb{R}^n\}$$

In general, hard to check nonnegativity

Sums of squares: $SOS(n, 2d) = \{p : p(x) = \sum_{i} [q_i(x)]^2\}$

SOS(n, 2d) has a spectrahedral lift of size $\binom{n+d}{d}$

Hilbert:
$$SOS(n, 2d) = Pol_+(n, 2d)$$

 $\iff n = 1, 2d = 2 \text{ or } (n, 2d) = (2, 4)$

Scheiderer (2018): In every other case $Pol_+(n, 2d)$ has no spectrahedral lift

Epigraphs of SOS-convex polynomials Convex polynomial: first-order characterization

 $D_p(x,y) = p(x) - [p(y) + \langle \nabla p(y), x - y \rangle] \in \mathsf{Pol}_+(2n,2d)$

SOS-convex polynomial: $D_p(x, y) \in SOS(2n, 2d)$

Epigraph: epi $(p) = \{(x, t) : p(x) \le t\}$

(FGPST 2020): If p is SOS convex then

 $epi(p) = \{(x, t) : t - [p(y) + \langle \nabla p(y), x - y \rangle] \in SOS(n, 2d)\}$

gives a spectrahedral lift of size $\binom{n+d}{d}$

Slack matrices

Polytope

- $P = \{x : \langle f_j, x \rangle \leq 1, j \in [f]\}$
 - v vertices
 - ► f facets

Example: regular hexagon

Slack matrix

- $[S_P]_{ij} = 1 \langle f_j, v_i
 angle$
- v × f matrix
 entry-wise nonnegative

Cone factorization

Dual cone: $K^* = \{y : \langle y, x \rangle \ge 0 \text{ for all } x \in K\}$ K-factorization of S_P

- a map from vertices to K
- \blacktriangleright b map from facets to K^*

such that

$$[S_P]_{ij} = 1 - \langle f_j, v_i \rangle = \langle b_j, a_i \rangle \ \forall i, j$$

Note: \mathbb{R}^{m}_{+} -factorization is same as non-negative factorization

Yannakakis (1991): P has \mathbb{R}^m_+ -lift $\iff S_P$ has \mathbb{R}^m_+ -factorization

Inequality description:

 $\begin{array}{rl} \pm x\pm & y/\sqrt{3}\leq 1\\ & \pm 2y/\sqrt{3}\leq 1 \end{array}$

 \mathbb{R}^5_+ -factorization

$$S_{P} = \begin{bmatrix} 0 & 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

 \implies Regular hexagon has \mathbb{R}^5_+ -lift

$$\left\{ y \in \mathbb{R}^5_+ : \begin{array}{c} y_1 + y_2 + y_3 + y_5 = 2 \\ y_3 + y_4 + y_5 = 1 \end{array} \right\}$$

Characterizing K-lifts

Given

convex body C and
 closed convex cone K
 when is C = π(K ∩ L)?

Gouveia, Parrilo, Thomas (2010): If K is 'nice'

C has a K-lift \iff S_C has a K-factorization

- Generalizes Yannakakis' theorem
- \blacktriangleright ightarrow systematic way to find constructions and obstructions

$$egin{aligned} \mathsf{Slack operator:} & S_C: \mathsf{ext}(C) imes \mathsf{ext}(C^\circ) o \mathbb{R}, \ & S_C(x,y) = 1 - \langle y,x
angle \end{aligned}$$

$$\operatorname{ext}(C)$$
: $[-\sqrt{2},\sqrt{2}] \ni t \mapsto (1-t^2,t(2-t^2))$

$$S_C(s,t) = rac{(t-s)^2((2-t^2)+(s+t)^2)}{s^4+(2-s^2)}$$

$$egin{aligned} \mathsf{Slack operator:} & \mathcal{S}_{\mathcal{C}}:\mathsf{ext}(\mathcal{C}) imes\mathsf{ext}(\mathcal{C}^\circ) o\mathbb{R}, \ & \mathcal{S}_{\mathcal{C}}(x,y)=1-\langle y,x
angle \end{aligned}$$

$$\mathcal{S}_{+}^{3}\text{-factorization:} \Longrightarrow \mathcal{S}_{+}^{3}\text{-lift}$$
$$A(t) = \begin{bmatrix} 1 & 0 & 1-t^{2} \\ 0 & 2-t^{2} & t(2-t^{2}) \\ 1-t^{2} & t(2-t^{2}) & 1 \end{bmatrix} \quad \forall t \in [-\sqrt{2}, \sqrt{2}]$$

$$S_{+}^{3}\text{-factorization:} \implies S_{+}^{3}\text{-lift}$$
$$B(s) = \frac{1}{s^{4} + (2-s^{2})} \begin{bmatrix} s^{2} - 1 \\ -s \\ 1 \end{bmatrix} \begin{bmatrix} s^{2} - 1 & -s \\ 1 \end{bmatrix} \forall s \in [-\sqrt{2}, \sqrt{2}]$$

$$S_C(s,t) = rac{(t-s)^2((2-t^2)+(s+t)^2)}{s^4+(2-s^2)} = \langle B(s),A(t)
angle$$

Constructing spectrahedral lifts

- $C = \operatorname{conv}(X)$ has \mathcal{S}^m_+ -lift $\iff \exists$ subspace V of fns on X s.t.
 - dim $(V) \leq m$
 - ▶ If $\ell(x) \leq 1$ is valid for *C* then

$$1-\ell|_X=\sum_k h_k^2$$
 for $h_k\in V$

Constructing spectrahedral lifts

- $C = \operatorname{conv}(X) \text{ has } \mathcal{S}^m_+\text{-lift} \iff \exists \text{ subspace } V \text{ of fns on } X \text{ s.t.}$ $\blacktriangleright \dim(V) \le m$
 - ▶ If $\ell(x) \leq 1$ is valid for *C* then

$$1-\ell|_X=\sum_k h_k^2$$
 for $h_k\in V$

$$X = \{(\pm 1, \pm 1)\} = \{(x, y) : x^2 = y^2 = 1\}$$

$$C = \operatorname{conv}(X) = [-1, 1]^2$$

$$V = \operatorname{span}(1, x, y)$$

$$1 \pm x = \frac{1}{2}(1 \pm x)^2 \quad \forall (x, y) \in X$$

$$\dim(V) = 3 \implies S^3_+$$
-lift

Which functions to use?

- If $C = \operatorname{conv}(X)$ and X is algebraic:
 - **•** natural: polynomial functions on X of degree at most d
 - Doesn't always work!

Piriform curve:

$$y^2 - x^3 + x^4 = 0$$

Scheiderer: If X algebraic and has spectrahedral lift, suffices to choose a subspace of semialgebraic functions on X

Obstructions from facial structure

- ▶ Obstructions to factorization → obstructions to lifts
- ▶ 0 1 pattern of slack related to facial structure

If $C = \pi(K \cap L)$ then poset of faces of *C* embeds into poset of faces of *K*

Goemans (2015): *P* a polytope with *v* vertices \implies any \mathbb{R}^{m}_{+} -lift needs $m \geq \lfloor \log_{2}(v) \rfloor$

Implies size $O(n \log(n))$ lift of permutahedron is optimal

C has K-lift \implies length of longest chain of faces of P< length of longest chain of faces of K

More elaborate obstructions based on neighborliness S. 2020

Algebraic obstructions

If K is semialgebraic then $\pi(K \cap L)$ is semialgebraic

Corollary: C has a spectrahedral lift \implies C semialgebraic

Algebraic obstructions

If K is semialgebraic then $\pi(K \cap L)$ is semialgebraic

Corollary: C has a spectrahedral lift \implies C semialgebraic

Algebraic degree of boundary:

- smallest degree of polynomial that vanishes on boundary
- generalizes number of facets of polyhedron
- Algebraic degree of ∂S^m_+ is *m* (determinant)

Fawzi, El Din (2018): If deg(∂C) = d and C has a S^m_+ -lift then $m \ge \sqrt{\log(d)}$ Recent prominent negative results

 Fiorini et al. (2015) traveling salesman polytopes need exponential size polynedral lifts

- Rothvoss (2013) Matching polytope of K_{2n} needs exponential size polyhedral lifts
- Scheiderer (2018) Pol₊(2,6) has no spectrahedral lift
- Lee et al. (2015) traveling salesman polytopes need spectrahedral lifts of size 2^{Ω(n^{1/13})}

Many open questions!

Some of my favourites...

- Is there a family of polytopes with a big gap between the size of smallest polyhedral and spectrahedral lifts?
 (Biggest known gap Fawzi, S., Parrilo Ω(n/log(n)))
- Smallest dimension in which there is a convex semialgebraic set that does not have a spectrahedral lift? (must be ≥ 3)
- Does the matching polytope have a polynomial sized spectrahedral lift?

Thank You!

More information: Fawzi, Gouveia, Parrilo, Saunderson, Thomas, "Lifting for simplicity, concise descriptions of convex sets" https://arxiv.org/abs/2002.09788