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Linear programming

Minimization of linear functional over
polyhedron

with not too many facets

Linear program:

min
x
〈c , x〉

s.t. Ax = b, x ≥ 0

Polyhedron: affine slice of some
non-negative orthant

m facets: affine slice of Rm
+
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What is the simplest description of an octagon
for linear programming?
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Linear programming? Projection helps

Minimization of linear functional over projection of
polyhedron with not too many facets

Equivalent linear program:

min
x ,y
〈c , x〉+ 〈0, y〉

s.t. A1x + A2y = b,

x ≥ 0, y ≥ 0

2k facets

2k facets

[Ben-Tal and Nemirovski]
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Polyhedral lifts of polytopes

P

↓ π

lift of P affine slice of Rm
+

polytope

P has polyhedral lift of size m ←→ P = π(Rm
+ ∩ L)

I Key problem: Given polytope P , find smallest lift!
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Permutahedron

Πn = conv{all permutations of (1, 2, . . . , n)}
I n! vertices

I 2n − 2 facets

1234

1243

1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3214

3241

3124

3142

3421

3412

4231

4213

4321

4312

4123

4132

Birkhoff polytope
(doubly stochastic matrices)

Bn =

X ∈ Rn×n :

∑
i Xij = 1 ∀j∑
j Xij = 1 ∀i
Xij ≥ 0 ∀i , j


I Πn = projection(Bn)

I Lift of size n2
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I Πn = projection(Bn)
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Goemans (2015):
Πn has a size O(n log(n)) lift

7



Honeycomb lift of the Horn cone
Horn cone: Horn(n)

{(λ(A), λ(B), λ(C )) : A, B , C Hermitian and A + B + C = 0}

Knutson-Tao (1999): Horn(n) has polyhedral lift of size O(n2)

I Allows efficient solution of certain decision problems
related to representation theory of GL(n)
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Conic lifts of convex sets

C

↓ π

lift of C
affine slice of a

closed convex cone K

convex set

C has a K -lift ←→ C = π(K ∩ L)

I Key question: Given C and K , does C have a K -lift?
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Semidefinite programming
Min. of linear functional over (not too large) spectrahedron.

min
X
〈C ,X 〉

s.t. A(X ) = b, X � 0

I Spectrahedron affine slice of
some positive semidefinite cone

I . . . of size m: affine slice of Sm
+
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Spectrahedral lifts of convex sets

C

↓ π

Sm
+ -lift of C

{Projections of spectrahedra} ) {spectrahedra}

I Given C , does it have a spectrahedral lift?

I If so find the smallest spectrahedral lift.
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Nonnegativity and sums of squares
Nonnegative polynomials

Pol+(n, 2d) = {p : p(x) ≥ 0 ∀x ∈ Rn}

In general, hard to check nonnegativity

Sums of squares: SOS(n, 2d) = {p : p(x) =
∑

i [qi(x)]2}

SOS(n, 2d) has a spectrahedral lift of size
(
n+d
d

)
Hilbert: SOS(n, 2d) = Pol+(n, 2d)
⇐⇒ n = 1, 2d = 2 or (n, 2d) = (2, 4)

Scheiderer (2018): In every other case
Pol+(n, 2d) has no spectrahedral lift
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Epigraphs of SOS-convex polynomials
Convex polynomial: first-order characterization

Dp(x , y) = p(x)− [p(y) + 〈∇p(y), x − y〉] ∈ Pol+(2n, 2d)

SOS-convex polynomial: Dp(x , y) ∈ SOS(2n, 2d)

Epigraph:
epi(p) = {(x , t) : p(x) ≤ t}

(FGPST 2020): If p is SOS convex then

epi(p) = {(x , t) : t − [p(y) + 〈∇p(y), x − y〉] ∈ SOS(n, 2d)}

gives a spectrahedral lift of size
(
n+d
d

)
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Slack matrices

Polytope

P = {x : 〈fj , x〉 ≤ 1, j ∈ [f ]}

I v vertices

I f facets

Slack matrix

[SP ]ij = 1− 〈fj , vi〉

I v × f matrix

I entry-wise nonnegative

Example: regular hexagon 
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0


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Cone factorization

Dual cone: K ∗ = {y : 〈y , x〉 ≥ 0 for all x ∈ K}

K -factorization of SP

I a map from vertices to K

I b map from facets to K ∗

such that
[SP ]ij = 1− 〈fj , vi〉 = 〈bj , ai〉 ∀i , j

Note: Rm
+-factorization is same as non-negative factorization

Yannakakis (1991):

P has Rm
+-lift ⇐⇒ SP has Rm

+-factorization
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Inequality description:

±x ± y/
√
3 ≤ 1

±2y/
√
3 ≤ 1

R5
+-factorization

SP =



0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 =



1 0 1 0 0
1 0 0 0 1
0 0 0 1 1
0 1 0 0 1
0 1 1 0 0
0 0 2 1 0




0 0 0 1 2 1
1 2 1 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1



=⇒ Regular hexagon has R5
+-lift{

y ∈ R5
+ :

y1 + y2 + y3 + y5 = 2
y3 + y4 + y5 = 1

}
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Characterizing K -lifts

Given

I convex body C and

I closed convex cone K

when is C = π(K ∩ L)?

Gouveia, Parrilo, Thomas (2010): If K is ‘nice’

C has a K -lift ⇐⇒ SC has a K -factorization

I Generalizes Yannakakis’ theorem

I → systematic way to find constructions and obstructions
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Slack operator: SC : ext(C )× ext(C ◦)→ R,
SC (x , y) = 1− 〈y , x〉

ext(C ): [−
√
2,
√
2] 3 t 7→ (1− t2, t(2− t2))

ext(C ◦): [−
√
2,
√
2] 3 s 7→

(
2−3s2

s4+(2−s2)
, 2s
s4+(2−s2)

)

SC (s, t) =
(t − s)2((2− t2) + (s + t)2)

s4 + (2− s2)

= 〈B(s),A(t)〉

18



Slack operator: SC : ext(C )× ext(C ◦)→ R,
SC (x , y) = 1− 〈y , x〉

S3
+-factorization: =⇒ S3

+-lift

A(t) =

[
1 0 1−t2

0 2−t2 t(2−t2)

1−t2 t(2−t2) 1

]
∀t ∈ [−

√
2,
√
2]

S3
+-factorization: =⇒ S3

+-lift

B(s) = 1
s4+(2−s2)

[
s2−1
−s
1

]
[ s2−1 −s 1 ] ∀s ∈ [−

√
2,
√
2]

SC (s, t) =
(t − s)2((2− t2) + (s + t)2)

s4 + (2− s2)
= 〈B(s),A(t)〉
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Constructing spectrahedral lifts

C = conv(X ) has Sm
+ -lift ⇐⇒ ∃ subspace V of fns on X s.t.

I dim(V ) ≤ m

I If `(x) ≤ 1 is valid for C then

1− `|X =
∑

kh
2
k for hk ∈ V

X = {(±1,±1)} = {(x , y) : x2 = y 2 = 1}
C = conv(X ) = [−1, 1]2

V = span(1, x , y)

1± x = 1
2
(1± x)2 ∀(x , y) ∈ X

dim(V ) = 3 =⇒ S3
+-lift
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Which functions to use?
If C = conv(X ) and X is algebraic:

I natural: polynomial functions on X of degree at most d

I Doesn’t always work!

Piriform curve:

y 2 − x3 + x4 = 0

Scheiderer: If X algebraic and has spectrahedral lift, suffices
to choose a subspace of semialgebraic functions on X
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Obstructions from facial structure

I Obstructions to factorization −→ obstructions to lifts

I 0− 1 pattern of slack related to facial structure

If C = π(K ∩ L) then
poset of faces of C embeds into poset of faces of K
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Goemans (2015): P a polytope with v vertices
=⇒ any Rm

+-lift needs m ≥ blog2(v)c

Implies size O(n log(n)) lift of permutahedron is optimal

C has K -lift =⇒ length of longest chain of faces of P
< length of longest chain of faces of K

I does not have S2
+-lift

I does not have smooth cone lift

More elaborate obstructions based on neighborliness S. 2020
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Algebraic obstructions

If K is semialgebraic then π(K ∩ L) is semialgebraic

Corollary: C has a spectrahedral lift =⇒ C semialgebraic

Algebraic degree of boundary:

I smallest degree of polynomial that vanishes on boundary

I generalizes number of facets of polyhedron

I Algebraic degree of ∂Sm
+ is m (determinant)

Fawzi, El Din (2018):
If deg(∂C ) = d and C has a Sm

+ -lift then m ≥
√

log(d)
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Recent prominent negative results

I Fiorini et al. (2015) traveling salesman polytopes need
exponential size polynedral lifts

I Rothvoss (2013) Matching polytope of K2n needs
exponential size polyhedral lifts

I Scheiderer (2018) Pol+(2, 6) has no spectrahedral lift

I Lee et al. (2015) traveling salesman polytopes need

spectrahedral lifts of size 2Ω(n1/13)
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Many open questions!

Some of my favourites. . .

I Is there a family of polytopes with a big gap between the
size of smallest polyhedral and spectrahedral lifts?
(Biggest known gap Fawzi, S., Parrilo Ω(n/ log(n)))

I Smallest dimension in which there is a convex
semialgebraic set that does not have a spectrahedral lift?
(must be ≥ 3)

I Does the matching polytope have a polynomial sized
spectrahedral lift?
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Thank You!

More information:
Fawzi, Gouveia, Parrilo, Saunderson, Thomas,
“Lifting for simplicity, concise descriptions of convex sets”

https://arxiv.org/abs/2002.09788
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