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The absolute value equation (AVE)

The absolute value equation (AVE) is in the form of

Ax + B|x | = b, (1)

where A ∈ Rn×n, B ∈ Rn×n, B 6= 0, and b ∈ Rn. Here |x | means
the componentwise absolute value of vector x ∈ Rn, i.e.,
|x | = (|x1|, |x2|, · · · , |xn|).

When B = −I , where I is the identity matrix, the AVE (1) reduces
to the special form:

Ax − |x | = b. (2)
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History of the AVEs - (1)

The AVE (1) was first introduced by Rohn in 2004. Originally, an
alternative theorem for Ax + B|x | = b was proposed as below.

Theorem (Rohn, LMA, 2004)

Let A,D ∈ Rn×n, D ≥ 0. Then, the following alternative holds:

(i) for each B ∈ Rn×n with |B| ≤ D and for each b ∈ Rn the
equation Ax + B|x | = b has a unique solution.

(ii) there exist λ ∈ [0, 1] and a ±1-vector y such that the
equation Ax + λdiag(y)D|x | = b has a nontrivial solution.

Solving the AVE is NP-hard (Mangasarian, 2006).
The problem of checking whether the AVE has unique or multiple
solutions is NP-complete (Prokopyev, 2009).
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History of the AVEs - (2)

Indeed, the name “absolute value equation” was termed by
Mangasarian in 2006.

The AVEs have been investigated by many researchers, for
example, Caccetta-Qu-Zhou, Hu-Huang, Jiang-Zhang,
Ketabchi-Moosaei, Mangasarian, Mangasarian-Meyer,
Moosaei-Ketabchi-Noor-Iqbal-Hooshyarbakhsh, Prokopyev,
Rohn, and Zhang-Wei.

Mangasarian-Meyer (2006) and Prokopyev (2009) prove that
the LCP (linear complementarity problem) can be
reformulated as an AVE and hence the AVE is NP-hard.
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Why study the AVE ?

Many mathematical programming problems like linear
programs, quadratic programs, bimatrix games, mixed integer
programs and other problems can all be reduced to an LCP
which in turn is equivalent to the AVE.

The AVE formulation is simpler to state than an LCP.

The AVE is an equation! It attracts more audience for solving
equations.

Jein-Shan Chen
Two approaches for absolute value equations by using smoothing functions



Equivalence and solvability of the AVE

Mangasarian and Meyer (2009) show that the AVE (1) is
equivalent to the bilinear program, and the standard LCP
provided 1 is not an eigenvalue of A.

Prokopyev (2009) further improves the above equivalence
which indicates that the AVE (1) can be recast as an LCP
without any assumption on A and B, and also provides a
relationship with mixed integer programming.

In general, if solvable, the AVE (1) could have either unique
solution or multiple (e.g., exponentially many) solutions.
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Numerical methods for solving AVEs

A parametric successive linearization algorithm for the AVE
(1) that terminates at a point satisfying necessary optimality
conditions is studied by Mangasarian (2007).

The generalized Newton algorithm for the AVE (2) is also
investigated by Mangasarian (2009), in which it is proved that
this algorithm converges linearly from any starting point to
the unique solution of the AVE (2) under the condition that
‖A−1‖ < 1

4 .

The generalized Newton algorithm with semismooth and
smoothing Newton steps combined into the algorithm is
considered by Zhang-Wei (2009).

The smoothing-type algorithms for solving the AVEs (1)-(2)
are studied by Caccetta-Qu-Zhou (2011), Hu-Huang (2010),
Jiang-Zhang (2013).
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Variants of the AVE

A branch and bound method for the absolute value programs
(AVP), which contains absolute values of variables in its
objective function and constraints and is an extension of the
AVE, is studied by Yamanaka-Fukushima (2014).

The absolute value equation associated with second order
cone (SOCAVE) is studied by Hu-Huang-Zhang (2011),
Miao-Yang-Saheya-Chen (2017), and Miao-Hsu-Nguyen-Chen
(2020).

The absolute value equation associated with circular cone
(CCAVE) is studied by Miao-Yang-Hu (2015).

For SOCAVE and CCAVE, |x | is defined in a different way
from AVE. More specifically, |x | := (x ◦ x)1/2 by certain
Jordan product “◦”.
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Infeasible AVEs

If b has at least one positive element and ‖A‖∞ < γ
2 where

γ = maxbi>0 bi/max |bi |, then the the AVE (1) has no
solution (Prokopyev, 2009).

In many real models, one often encounter problems which
present themselves as systems of infeasible AVEs.

The reasons for the infeasibility of an AVE include errors in
the data, the complexity of the model, optimistic objectives,
and lack of communication between different decision makers.

The correction of infeasible AVEs is studied by
Ketabchi-Moosaei-Fallahi (2013) and
Moosaei-Ketabchi-Pardalos (2016).
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Two approaches for sloving the AVEs

Many approaches have been proposed during the past decade
and most of them focus on reformulating it as
complementarity problem and then solve it accordingly.

Another approach is to recast the AVE as a system of
“nonsmooth” equations and then tackle with the nonsmooth
equations.

Our 1st approach is to rewrite it as a system of “smooth”
equations and propose four new smoothing functions along
with a smoothing-type algorithm to solve the system of
equations.

Our 2nd approach is neural network approach.
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Main idea of 1st approach

More specifically, we define Hi : Rn+1 → Rn+1 as

Hi (µ, x) =

[
µ

Ax + BΦi (µ, x)− b

]
for µ ∈ R and x ∈ Rn (3)

where Φi : Rn+1 → Rn is given by

Φi (µ, x) :=


φi (µ, x1)
φi (µ, x2)

...
φi (µ, xn)

 for µ ∈ R and x ∈ Rn (4)

Main idea: Hi (µ, x) = 0 if and only if x solves the AVE (1).

Will introduce four smoothing functions φi ≈ |t|.
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Four smoothing functions

φ1(µ, t) = µ
[
ln(1 + e−

t
µ ) + ln(1 + e

t
µ )
]

(5)

φ2(µ, t) =


t if t ≥ µ

2 ,
t2

µ
+
µ

4
if −µ

2 < t < µ
2 ,

−t if t ≤ −µ
2 .

(6)

φ3(µ, t) =
√

4µ2 + t2 (7)

φ4(µ, t) =


t2

2µ
if |t| ≤ µ,

|t| − µ
2 if |t| > µ.

(8)

The function φ4 is constructed in a different way.
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Properties of φi functions

Theorem (Saheya-Yu-Chen, JAMC, 2017)

Let φi : R2 → R for i = 1, 2, 3, 4 be defined as in (5), (6), (7) and
(8), respectively. Then, we have

(a) φi is continuously differentiable at (µ, t) ∈ R++ × R;

(b) lim
µ↓0

φi (µ, t) = |t| for any t ∈ R.
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Graph of φ1 function

μ=0.5

μ=0.3

μ=0.1

μ=0.01

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

t

ϕ
1
(μ
,t)

Figure: Graphs of φ1(µ, t) with µ = 0.01, 0.1, 0.3, 0.5.
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Graph of φ2 function
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Figure: Graphs of φ2(µ, t) with µ = 0.01, 0.1, 0.3, 0.5.
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Graph of φ3 function
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Figure: Graphs of φ3(µ, t) with µ = 0.01, 0.1, 0.3, 0.5.
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Graph of φ4 function
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Figure: Graphs of φ4(µ, t) with µ = 0.01, 0.1, 0.3, 0.5.
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Differentiability of Hi - (1)

Theorem (Saheya-Yu-Chen, JAMC, 2017)

Let Φi (µ, x) for i = 1, 2, 3, 4 be defined as in (4). Then, we have

(a) Hi (µ, x) = 0 if and only if x solves the AVE (1);

(b) Hi is continuously differentiable on Rn+1\ {0} with the
Jacobian matrix given by

∇Hi (µ, x) :=

[
1 0

B∇1Φi (µ, x) A + B∇2Φi (µ, x)

]
(9)
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Differentiability of Hi - (2)

where

∇1Φi (µ, x) :=


∂φi (µ,x1)

∂µ
∂φi (µ,x2)

∂µ
...

∂φi (µ,xn)
∂µ

 ,

∇2Φi (µ, x) :=


∂φi (µ,x1)
∂x1

0 · · · 0

0 ∂φi (µ,x2)
∂x2

· · · 0
...

...
. . .

...

0 · · · 0 ∂φi (µ,xn)
∂xn

 .
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Geometric comparison of φi functions
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Figure: Graphs of |t| and all four φi (µ, t) with µ = 0.1.
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Question

Question

From the figure, we see that φ2 is the one which best approximates
the function |t| under the sense that it is closest to |t| among all
φi for i = 1, 2, 3, 4. How to verify it algebraically?

In fact, for fixed µ > 0, there has the local behavior:

φ3(µ, t) > φ1(µ, t) > φ2(µ, t) > |t| > φ4(µ, t).
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Algebraic comparison of φi functions - (1)

How to measure the distance of two functions?

We employ ‖ · ‖∞ to measure the distance of two functions. In
other words, for given two real-valued functions f and g , the
distance between them is defined as

‖f − g‖∞ = max
t∈R
{f (t)− g(t)}.
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Algebraic comparison of φi functions - (2)

First, for any fixed µ > 0, we verify that

lim
|t|→∞

∣∣φi (µ, t)− |t|
∣∣ = 0, for i = 1, 2, 3.

This implies that

max
t∈R

∣∣φi (µ, t)− |t|
∣∣ = |φi (µ, 0)| , for i = 1, 2, 3.

Since, φ1(µ, 0) = (2 ln 2)µ ≈ 1.4µ, φ2(µ, 0) = µ
4 , and

φ3(µ, 0) = 2µ, we have

∥∥φ1(µ, t)− |t|
∥∥
∞ = (2 ln 2)µ ≈ 1.4µ∥∥φ2(µ, t)− |t|
∥∥
∞ =

µ

4∥∥φ3(µ, t)− |t|
∥∥
∞ = 2µ
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Algebraic comparison of φi functions - (3)

On the other hand, we see that

lim
t→∞

∣∣φ4(µ, t)− |t|
∣∣ =

µ

2
and φ4(µ, 0) = 0,

which says

max
t∈R

∣∣φ4(µ, t)− |t|
∣∣ =

µ

2
.

Hence, we obtain ∥∥φ4(µ, t)− |t|
∥∥
∞ =

µ

2
.
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Algebraic comparison of φi functions - (4)

From all the above, we conclude that

∥∥φ3(µ, t)− |t|
∥∥
∞ >

∥∥φ1(µ, t)− |t|
∥∥
∞

>
∥∥φ4(µ, t)− |t|

∥∥
∞ >

∥∥φ2(µ, t)− |t|
∥∥
∞.

This shows that φ2 is the function among φi , i = 1, 2, 3, 4 which
best approximates the function |t|, and

φ3(µ, t) > φ1(µ, t) > φ2(µ, t) > |t| > φ4(µ, t).
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Question

Question

A natural question arises here, does the smoothing algorithm based
on φ2 perform best among all φ1, φ2, φ3, φ4?
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Solvability of the AVE

Assumption (A1)

The minimal singular value of the matrix A is strictly greater than
the maximal singular value of the matrix B.

The Assumption (A1) is used to guarantee that ∇Hi (µ, x) is
invertible at any (µ, x) ∈ R++ × Rn.

Theorem (Jiang-Zhang, JIMO, 2013)

The AVE (1) is uniquely solvable for any b ∈ Rn if Assumption
(A1) is satisfied.
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A Smoothing-Type Algorithm - (1)

A Smoothing-Type Algorithm

Step 0. Choose δ, σ ∈ (0, 1), µ0 > 0, x0 ∈ Rn. Set
z0 := (µ, x0). Denote e0 := (1, 0) ∈ R× Rn. Choose

β > 1 such that
(
min

{
1, ‖Hi (z

0)‖
})2 ≤ βµ0. Set

k := 0.

Step 1. If ‖Hi (z
k)‖ = 0, stop.

Step 2. Set τk := min
{

1, ‖Hi (z
k)‖
}

, and compute
4zk := (4µk ,4xk) ∈ R× Rn by using

∇Hi (z
k)4zk = −Hi (z

k) + (1/β)τ2k e
0,

where ∇Hi (·) is defined as in (9).
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A Smoothing-Type Algorithm - (2)

A Smoothing-Type Algorithm

Step 3. Let αk be the maximum of the values 1, δ, δ2, · · ·
such that∥∥∥Hi (z

k + αk4zk)
∥∥∥ ≤ [1− σ(1− 1/β)αk ]

∥∥∥Hi (z
k)
∥∥∥

Step 4. Set zk+1 := zk + αk4zk and k := k + 1. Back to
Step 1.
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The algorithm is well-defined

Theorem (Saheya-Yu-Chen, JAMC, 2017)

(a) Suppose that Assumption (A1) holds. Then, the above
Algorithm is well-defined.

(b) Let the sequence
{
zk
}

be generated by the Algorithm. Then,

(i) both
{
‖Hi (z

k)‖
}

and {τk} are monotonically decreasing;
(ii) τ 2k ≤ βµk holds for all k;
(iii) the sequence {µk} is monotonically decreasing, and µk > 0 for

all k.
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Convergence of the algorithm

Theorem (Saheya-Yu-Chen, JAMC, 2017)

Let Hi and ∇Hi be given as in (3) and (9), respectively. Suppose
that Assumption (A1) holds. Then, ∇Hi (µ, x) is invertible at any
(µ, x) ∈ R++ × Rn.

Theorem (Saheya-Yu-Chen, JAMC, 2017)

Suppose that Assumption (A1) holds and that the sequence
{
zk
}

is generated by the Algorithm. Then,

(a)
{
zk
}

is bounded;

(b) any accumulation point of
{
zk
}

is a solution of the AVE (1);

(c) the whole sequence
{
zk
}

convergence to z∗ with
‖zk+1 − zk‖ = o

(
‖zk − z∗‖

)
and µk+1 = µ2k .
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Numerical implementation

All numerical experiments are carried out in Mathematica 10.0
running on a PC with Intel i5 of 3.00GHz CPU processor,
4.00GB Memory and 32-bit Windows 7 operating system.

In our numerical experiments, the stoping criteria for the
Algorithm is ‖Hi (z

k)‖ ≤ 1.0e − 6.

We also stop programs when the total iteration is more than
100.

Throughout the computational experiments, the following
parameters are used:

δ = 0.5, σ = 0.0001, µ0 = 0.1, β = max
{

1, 1.01 ∗ τ20 /µ
}
.
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Notations

Dim the size of problem,

N φi the average number of iterations,

T φi the average value of the CPU time in seconds,

Ar φi the average value of‖H(zk)‖ when Algorithm stops.
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Test Problem 1

Consider the ODE (Haghani, [Example 4.2] in JOTA, 2015):

d2x

dt2
− |x | = (1− t2), x(0) = −1, x(1) = 0, t ∈ [0, 1]. (10)

After descretization, the above ODE can be recast an AVE (2):

Ax − |x | = b,

where the matrix A is given by

ai j =


−242, i = j ,

121, |i − j | = 1,

0, otherwise.
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Numerical results of Test Problem 1

Table: The numerical results of ordinary differential equation (10)

Dim N φ1 T φ1 Ar φ1 N φ2 T φ2 Ar φ2 N φ3 T φ3 Ar φ3 N φ4 T φ4 Ar φ4
2 5.1 0.0967 3.30E-07 3.9 0.0015 6.92E-08 5.1 0.0016 5.93E-08 4 0.0062 5.99E-08
5 5.9 0.3697 2.23E-07 4.1 0.0031 7.47E-08 5.6 0.0062 2.21E-08 4.2 0.0016 6.54E-08
10 6.4 0.4851 2.98E-07 4.3 0.0094 2.10E-07 5.9 0.0031 1.05E-07 4.5 0.0031 4.67E-08
20 5.2 0.4290 2.41E-07 4.9 0.0078 1.10E-08 6.3 0.0078 2.13E-09 5 0.0094 2.46E-09
40 8.8 4.4117 4.66E-07 6.1 0.5210 5.28E-08 7.3 0.0172 6.59E-08 6.3 0.0156 1.88E-07
60 9.1 2.4289 2.31E-07 6.8 0.0281 4.49E-08 9 0.0312 1.20E-08 7.7 0.0312 1.31E-07
80 9.8 2.0514 3.61E-07 7.4 0.0374 3.21E-10 9.3 0.0452 3.21E-08 9.2 0.0593 3.15E-08
100 9.8 8.2306 4.44E-07 7.8 0.0577 8.78E-08 10 0.0671 2.26E-07 9.5 0.0827 2.83E-08
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Performance profile of iteration for Problem 1
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Figure: Performance profile of iteration numbers of for the ODE (10).
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Performance profile of computing time for Problem 1
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Figure: Performance profile of computing time for the ODE (10).
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Performance summary for Problem 1

In view of “iteration numbers”, there has

φ2(µ, t) > φ4(µ, t) > φ3(µ, t) > φ1(µ, t)

where “>” means “better performance”.

In view of “computing time”, there has

φ2(µ, t) > φ3(µ, t) > φ4(µ, t) > φ1(µ, t)

where “>” means “better performance”.
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Test Problem 2

Consider the general AVE (1): Ax + B|x | = b where A (or B) is
equal to a normal distribution random matrix minus another one so
that we can randomly generate the testing problems.

In order to ensure that Assumption (A1) holds, we further modify
the matrix A in light of the below conditions.

If min{wii : i = 1, . . . , n} = 0 with
{u,w , v} = SingularValueDecomposition[A], then we set
A = u(w + 0.01 ∗ IdentityMatrix[n])v .

Set A = λmax (BTB)+0.01
λmin(ATA)

A.

Moreover, we set p =2RandomVariate[NormalDistribution[ ],{n,
1}] and b = Ap + B|p| so that the testing problems are solvable.
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Numerical results of Test Problem 2

Table: The numerical results of experiments

Dim N φ1 T φ1 Ar φ1 N φ2 T φ2 Ar φ2 N φ3 T φ3 Ar φ3 N φ4 T φ4 Ar φ4
2 6.2 0.4596 5.00E-7 3.6 0.0031 8.56E-8 7.1 0.0016 1.79E-7 3.9 0 8.04E-8
5 7.4 0.2246 6.05E-7 4.1 0.0031 8.39E-8 9.6 0.0094 4.73E-7 4.3 0.0016 7.53E-8
10 10.2 1.0733 2.23E-7 4.3 0.0062 8.26E-8 17.2 0.0187 4.79E-7 4.7 0.0031 7.53E-8
20 19.8 3.7830 5.00E-7 4.8 0.0062 9.95E-8 26.3 0.0499 1.86E-7 5.9 0.0094 1.06E-7
30 28.7 5.0575 4.46E-7 5.6 0.0140 1.00E-7 43.2 0.1295 5.22E-8 9.3 0.0265 1.82E-7
40 38.6 3.0935 6.52E-7 7.1 0.0234 5.60E-8 54.1 0.2137 1.65E-7 11.9 0.0374 9.14E-8
50 42.7 1.9016 5.37E-7 5.3 0.0218 7.73E-8 61.5 0.3120 1.93E-8 10.4 0.0437 5.88E-8
60 52.1 2.5272 5.61E-7 6.6 0.0359 5.90E-8 78.7 0.4976 1.05E-8 13.9 0.0718 1.15E-7
70 60.2 3.7050 6.10E-7 9.9 0.0624 1.12E-7 94.4 0.7332 1.80E-7 18.7 0.1264 1.26E-7
80 58.0 4.1246 4.31E-7 8.9 0.0640 6.03E-8 98.5 0.8845 3.88E-8 17.5 0.1420 5.35E-8
90 78.2 11.170 6.28E-7 10.0 0.0905 2.23E-7 114.3 1.2745 1.46E-7 20.9 0.2028 1.46E-7
100 72.2 12.211 4.77E-7 7.5 0.0709 1.62E-7 110.8 1.6477 1.31E-7 16.9 0.1881 1.34E-7
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Performance profile of iteration for Problem 2
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Figure: Performance profile of iteration numbers for general AVE.
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Performance profile of computing time for Problem 2
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Figure: Performance profile of computing time for general AVE.
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Performance summary for Problem 2

In view of “iteration numbers”, there has

φ2(µ, t) > φ4(µ, t) > φ1(µ, t) > φ3(µ, t)

where “>” means “better performance”.

In view of “computing time”, there has

φ2(µ, t) > φ4(µ, t) > φ3(µ, t) > φ1(µ, t)

where “>” means “better performance”.
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Summary of numerical performance - (1)

For the “iteration” aspect, the order of numerical performance
from good to bad is


φ2(µ, t) > φ4(µ, t) > φ1(µ, t) > φ3(µ, t), for th AVE (1).

φ2(µ, t) > φ4(µ, t) > φ3(µ, t) > φ1(µ, t), for th AVE (2).

Recall that for fixed µ > 0, there has

φ3(µ, t) > φ1(µ, t) > φ2(µ, t) > |t| > φ4(µ, t).
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Summary of numerical performance - (2)

For the “time” aspect, the order of numerical performance from
good to bad is


φ2(µ, t) > φ4(µ, t) > φ3(µ, t) > φ1(µ, t), for th AVE (1).

φ2(µ, t) > φ3(µ, t) > φ4(µ, t) > φ1(µ, t), for th AVE (2).

Recall that for fixed µ > 0, there has

φ3(µ, t) > φ1(µ, t) > φ2(µ, t) > |t| > φ4(µ, t).
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Remarks

The function φ2(µ, t) is the best choice of smoothing function
to work with the proposed smoothing-type algorithm,
meanwhile it also best approximate the function |t|.
Piecewise smoothing functions seem better choices than other
types of smoothing functions.

It is interesting to check whether such phenomenon occurs in
other types of algorithms.
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The 2nd approach: neural network

We try another way, neural network approach, to solve AVE.

We try to investigate all possible ways to construct smoothing
functions for |x |.
There are are 5 ways which are summarized as below.

Then, we employ 8 smoothing functions in the neural network
approach.
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1. Smoothing by the convex conjugate

For any function f : domf → R, its convex conjugate
f ∗ : (domf )∗ → R is defined in terms of the supremum by

f ∗(y) := sup
x∈domf

{
xT y − f (x)

}
.

In light of this, one can build up smooth approximation of f ,
denoted by fµ, by adding strongly convex component to its dual
g := f ∗, namely,

fµ(x) = sup
z∈domg

{
zT x − g(x)− µd(z)

}
= (g + µd)∗(x)

for some 1-strongly convex and continuous function d(·) (called
proximity function).
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Definition of 1-strongly convex function

The function d(·) is 1-strongly convex which means

d((1− t)x + ty) ≤ (1− t)d(x) + td(y)− 1

2
t(1− t)‖x − y‖2,

for all x , y and t ∈ (0, 1).

In general, a function d(·) is called µ-strongly convex with
modulus µ > 0, it means

d((1− t)x + ty) ≤ (1− t)d(x) + td(y)− µ

2
t(1− t)‖x − y‖2,

for all x , y and t ∈ (0, 1).
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The smoothing function φ1(x , µ)

Note that |x | = sup
|z|≤1

zx . If we take d(z) := z2/2, then the

constructed smoothing function via conjugation leads to

φ1(x , µ) = sup
|z|≤1

{
zx − µ

2
z2
}

=

{
x2

2µ , if |x | ≤ µ,
|x | − µ

2
, otherwise.

which is the traditional Huber function.
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The smoothing function φ2(x , µ)

It is also possible to consider another expression:

|x | = sup
z1+z2=1
z1,z2�0

(z1 − z2)x

Under this case, if we take d(z) := z1 log z1 + z2 log z2 + log 2, the
constructed smoothing function by conjugation becomes

φ2(x , µ) = µ log

(
cosh

(
x

µ

))
where cosh(x) :=

ex + e−x

2
.
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The smoothing function φ3(x , µ)

Alternatively, choosing d(y) := 1−
√

1− y2 gives another
smoothing function:

φ3(x , µ) = sup
−1≤y≤1

(
xy + µ

√
1− y2 − µ

)
=
√
x2 + µ2 − µ.
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2. The Moreau proximal smoothing

Suppose that E is a finite vector space and f : E→ (−∞,∞] is a
closed and proper convex function. The Moreau proximal
approximation yields a family of approximations {f pxµ }µ>0 as below:

f pxµ (x) = inf
u∈E

{
f (u) +

1

2µ
‖u − x‖2

}
. (11)
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Remarks about Moreau proximal smoothing

Remarks

It is known that the Moreau proximal approximation f pxµ (x) is
convex continuous, finite-valued, and differentiable with
gradient ∇f pxµ which is Lipschitz continuous with constant 1

µ .

When applying the Moreau proximal smoothing way to
construct the smoothing function for the absolute value
function |x |, it also yields the Huber smoothing function
φ1(x , µ) by using the Moreau envelop.
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3. Nesterov’s smoothing

Consider the class of nonsmooth convex functions

q(x) = max{〈u,Ax〉 − φ(u) | u ∈ Q}, x ∈ E,

where E, V are finite dimensional vector spaces, Q ⊆ V ∗ is
compact and convex, φ is a continuous convex function on Q, and
A : E→ V is a linear map.

The smooth approximation of q is described by the convex function

qµ(x) = max{〈u,Ax〉 − φ(u)− µd(u) | u ∈ Q}, x ∈ E, (12)

where d(·) is a prox-function for Q. It was proved that the convex
function qµ(x) is C 1,1(E). More specifically, its gradient mapping

is Lipschitz continuous with constant Lµ =
‖A‖2

σµ
and the gradient

is described by ∇qµ(x) = Auµ(x), where uµ(x) is the unique
minimizer of (12).
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Example by Nesterov’s smoothing

For the absolute value function φ(x) = |x | with x ∈ R1, Let A = 1,
b = 0, E = R1, Q = {u ∈ R1 | |u| ≤ 1} and taking d(u) := 1

2u
2.

Then, we have

φµ(x , µ) = max
u
{〈Ax − b, u〉 − µd(u) | u ∈ Q}

= max
u

{
xu − µ

2
u2
}

=

{
x2

2µ , if |x | ≤ µ,
|x | − µ

2 , otherwise.

As we see, it also yields the Huber smoothing function φ1(x , µ).
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4. The infimal-convolution smoothing technique - (1)

Suppose that E is a finite vector space and f , g : E→ (−∞,∞].
The infimal convolution of f and g , f 2 g : E→ [−∞,+∞] is
defined by

(f 2 g)(x) = inf
y∈E
{f (y) + g(x − y)} .
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4. The infimal-convolution smoothing technique - (2)

In light of the concept of infimal convolution, one can also
construct smoothing approximation functions. More specifically, we
consider f : E→ (−∞,∞] which is a closed proper convex
function and let ω : E→ R be a C 1,1 convex function with
Lipschitz gradient constant 1/σ (σ > 0). Suppose that for any
µ > 0 and any x ∈ E, the following infimal convolution is finite:

f icµ (x) = inf
u∈E

{
f (u) + µω(

x − u

µ
)

}
= (f 2ωµ)(x), (13)

where ωµ(·) = µω( ·µ). Then, f icµ is called the infimal-convolution
µ-smooth approximation of f .
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Example by infimal-convolution

In particular, when µ ∈ R++ and p ∈ (1,+∞), the infimal
convolution of a convex function and a power of the norm function
is obtained as below:

f 2

(
1

µp
‖ · ‖p

)
= inf

u∈E

{
f (u) + (

1

µp
‖x − u‖p)

}
. (14)

For the absolute value function, it can be verified that

fµ(x) = (| · |)2
(

1
µ∗p | · |

p
)

is the Huber function of order p, i.e.,

fµ(x) =

{
|x | − p−1

p µ
1

p−1 , if |x | > µ
1

p−1 ,
|x |p
µp , if |x | ≤ µ

1
p−1 .

(15)
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Remarks about Huber function of order p

Remarks

Note that when p = 2 in the above expression (15), the Huber
function of order p reduces to the Huber function φ1(x , µ).

To the contrast, plugging p = 2 into infimal convolution
formula yields the Moreau approximation (11).
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The graphs of Huber function of order p
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Figure: |x | and Huber function of order p (µ = 0.3).
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A unified framework for these four ways

The infimal-convolution way covers the conjugate smoothing way,
the Moreau smoothing way, and the Nesterov’s smoothing way.

Conjugate smoothing: taking ωµ(u) = µd∗(u) with d being a
prox-function yields

f icµ (x) = max
u∈dom(f )

{〈u, x〉 − f ∗(u)− µd(u)}.

Moreau smoothing: taking ωµ(u) = 1
2µ‖u‖

2 yields

f icµ (x) = inf
u∈E
{f (u) +

1

2µ
‖u − x‖2}.

Nesterov’s smoothing: taking ωµ = µd∗(u) with d being a
prox-function yields

f icµ (x) = max
u∈Q
{〈u,Ax〉 − f ∗(u)− µd(u)}, x ∈ E1.

Jein-Shan Chen
Two approaches for absolute value equations by using smoothing functions



5. The convolution smoothing technique - (1)

The convolution smoothing idea follows by three steps.

Step 1. First, one constructs a smoothing approximation for the
plus function (x)+ = max{0, x}. To this end, we consider the
piecewise continuous function d(x) with finite number of pieces
which is a density (kernel) function, that is, it satisfies

d(x) ≥ 0 and

∫ +∞

−∞
d(x)dx = 1.
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5. The convolution smoothing technique - (2)

Step 2. Next, define ŝ(x , µ) := 1
µd
(
x
µ

)
, where µ is a positive

parameter. Suppose that
∫ +∞
−∞ |x | d(x)dx < +∞, then a

smoothing approximation (denoted by p̂(x , µ)) for (x)+ is obtained
as below:

p̂(x , µ) =

∫ +∞

−∞
(x − s)+ŝ(s, µ)ds =

∫ x

−∞
(x − s)ŝ(s, µ)ds.

In other words,

p̂(x , µ) ≈ (x)+.
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Smoothing functions for plus function

There are four well-known smoothing functions for the plus
function:

p̂1(x , µ) = x + µ ln
(

1 + e−
x
µ

)
p̂2(x , µ) =


x if x ≥ µ

2 ,
1
2µ

(
x + µ

2

)2
if −µ

2 < x < µ
2 ,

0 if x ≤ −µ
2 .

p̂3(x , µ) =

√
4µ2 + x2 + x

2

p̂4(x , µ) =


x − µ

2 if x > µ,
x2

2µ if 0 ≤ x ≤ µ,
0 if x < 0.
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The corresponding kernel functions

Their corresponding kernel functions are

d1(x) =
e−x

(1 + e−x)2
,

d2(x) =

{
1 if − 1

2 ≤ x ≤ 1
2 ,

0 otherwise.

d3(x) =
2

(x2 + 4)
3
2

,

d4(x) =

{
1 if 0 ≤ x ≤ 1,
0 otherwise.
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Smoothing functions for |x |

Step 3. Using the fact that |x | = (x)+ + (−x)−. Then, the
smoothing function of |x | via convolution can be written as

p̂(|x | , µ) = p̂(x , µ) + p̂(−x , µ) =

∫ +∞

−∞
|x − s| ŝ(s, µ)ds.

In other words,

p̂(|x | , µ) ≈ |x | .
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The smoothing functions φ4, φ5, φ6

Applying the aforementioned four kernel functions, we obtain the
following smoothing functions for |x |:

φ4(x , µ) = µ
[
ln
(

1 + e−
x
µ

)
+ ln

(
1 + e

x
µ

)]
,

φ5(x , µ) =


x if x ≥ µ

2 ,
x2

µ + µ
4 if −µ

2 < x < µ
2 ,

−x if x ≤ −µ
2 ,

φ6(x , µ) =
√

4µ2 + x2,

as well as the Huber function φ1(x , µ).
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The smoothing function φ7(x , µ)

If we take a Epanechnikov kernel function

K (x) =

{
3
4(1− x2) if |x | ≤ 1,

0 otherwise,

we achieve the smoothing function for |x |:

φ7(x , µ) =


x if x > µ,

− x4

8µ3
+ 3x2

4µ + 3µ
8 if −µ ≤ x ≤ µ,

−x if x < µ.

Jein-Shan Chen
Two approaches for absolute value equations by using smoothing functions



The smoothing function φ8(x , µ)

If we take a Gaussian kernel function K (x) = 1√
2π
e−

x2

2 for all

x ∈ R. Then, it yields

ŝ(x , µ) :=
1

µ
K

(
x

µ

)
=

1√
2πµ2

e
− x2

2µ2 .

Hence, we obtain the below smoothing function for |x |:

φ8(x , µ) = x erf

(
x√
2µ

)
+

√
2

π
µe
− x2

2µ2 .

where the error function is defined by

erf(x) =
2√
π

∫ x

0
e−u

2
du, ∀x ∈ R.
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Eight smoothing functions (1)

φ1(x , µ) = sup
|z|≤1

{
zx − µ

2
z2
}

=

{
x2

2µ , if |x | ≤ µ,
|x | − µ

2
, otherwise.

φ2(x , µ) = µ log

(
cosh

(
x

µ

))
.

φ3(x , µ) = sup
−1≤y≤1

(
xy + µ

√
1− y2 − µ

)
=
√
x2 + µ2 − µ.

φ4(x , µ) = µ
[
ln
(

1 + e−
x
µ

)
+ ln

(
1 + e

x
µ

)]
.
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Eight smoothing functions (2)

φ5(x , µ) =


x if x ≥ µ

2 ,
x2

µ + µ
4 if −µ

2 < x < µ
2 ,

−x if x ≤ −µ
2 ,

φ6(x , µ) =
√

4µ2 + x2.

φ7(x , µ) =


x if x > µ,

− x4

8µ3
+ 3x2

4µ + 3µ
8 if −µ ≤ x ≤ µ,

−x if x < µ.

φ8(x , µ) = x erf

(
x√
2µ

)
+

√
2

π
µe
− x2

2µ2 .
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The graphs of all eight smoothing functions
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Figure: The graphs of |x | and the smoothing functions φi , i = 1, · · · , 8
(µ = 0.3).
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Comparison of all smoothing functions

The local behavior of all eight smoothing functions can be verified
(theoretically and geometrically) as

φ3 ≤ φ2 ≤ φ1 ≤ |x | ≤ φ5 ≤ φ7 ≤ φ8 ≤ φ4 ≤ φ6.

Three smoothing function φ1, φ2, φ3 approach to |x | from
below with φ1 ≥ φ2 ≥ φ3.

The other five smoothing functions φ4, φ5, φ6, φ7, φ8
approach to |x | from above with φ5 ≤ φ7 ≤ φ8 ≤ φ4 ≤ φ6.

Apparently, the smoothing function φ1 and φ5 are closest to
|x | among these smoothing functions.
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Reformulation

Like the idea in first approach, we define Hi : Rn+1 → Rn+1 as

Hi (µ, x) =

[
µ

Ax + BΦi (µ, x)− b

]
for µ ∈ R and x ∈ Rn

where Φi : Rn+1 → Rn is given by

Φi (µ, x) :=


φi (µ, x1)
φi (µ, x2)

...
φi (µ, xn)

 for µ ∈ R and x ∈ Rn

with various smoothing functions φi : R2 → R
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Neural network approach

Then, the AVE can be transformed into an unconstrained
optimization problem:

min Ψ(µ, x) =
1

2
‖Hi (µ, x)‖2.

For neural network approach, we consider the system of differential
equation:

 du(t)

dt
= −ρ∇Ψ(v(t), u(t)) = −ρ∇Hi (v(t), u(t))THi (v(t), u(t)),

u(t0) = u0.

where u0 = x0 ∈ Rn, v(t) = µ0e
−t , ρ > 0 is a time scaling factor.

Jein-Shan Chen
Two approaches for absolute value equations by using smoothing functions



Convergence Results

Theorem (Saheya-Nguyen-Chen, JAMC, 2019)

Let Ψ : Rn → R+ be defined as above. Then, the following results
hold.

(a) Ψ(x) ≥ 0,∀(µ, t) ∈ R++ × R and Ψ(µ, x) = 0 if and only if x
solve the AVE (2).

(b) The function Ψ(x) is continuously differentiable on Rn+1\ {0}
with

∇Ψ(µ, x) = ∇HTH(µ, x),

where ∇H is the Jacobian of H(µ, x).

(c) The function Ψ(w(t)) is nonincreasing with respect to t.
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Equilibrium of neural network

Theorem (Saheya-Nguyen-Chen, JAMC, 2019)

Let x∗ be a equilibrium of the neural network and suppose that the
singular values of A ∈ Rn×n exceed 1. Then, x∗ solves the AVE (1).

Theorem (Saheya-Nguyen-Chen, JAMC, 2019)

(a) For any initial point w0 = w(t0), there exists a unique
continuously maximal solution w(t) with t ∈ [t0, τ) for the
neural network.

(b) If the level set L(w0) :=
{
w | ‖Hi (w)‖2 ≤ ‖H(w0)‖2

}
is

bounded, then τ can be extended to ∞.
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Stabilities of neural network

Theorem (Saheya-Nguyen-Chen, JAMC, 2019)

If the singular values of A ∈ Rn×n exceed 1, then the isolated
equilibrium x∗ of the neural network is asymptotically stable, and
hence Lyapunov stable.

Theorem (Saheya-Nguyen-Chen, JAMC, 2019)

If the singular values of A ∈ Rn×n exceed 1, then the isolated
equilibrium x∗ of the neural network is exponentially stable.
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Numerical Implementation

The numerical implementation is coded by Mathematica 11.3 and
the ordinary differential equation solver adopted is NDSolve[ ],
which uses an Runge-Kutta (2,3) formula. The initial point of each
problems are selected by randomly and the initial point is same for
different smoothing functions.

φi the smoothing functions φi , i = 1, · · · , 8
N the number of iterations
t the time when algorithm terminates
Er the value of ‖x(t)− x∗‖ when algorithm terminates
H(xt) the value of ‖H(x(t)) = ‖Ax − |x | − b‖ when terminates
CT the CPU time in seconds
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Test Example 1

Example

Consider the following absolute value equation where

A =


10 1 2 0
1 11 3 1
0 2 12 1
1 7 0 13

 , b =


12
15
14
20

 .
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Numerical reports for Example 1

Table: computing results of Example 1 (dt=0.2)

function N t Er H(x0) CT

φ1 34 6.8 9.3686 ∗ 10−7 0.0000136037 1.5090863
φ2 36 7.2 8.70587 ∗ 10−7 0.0000126414 0.7760444
φ3 38 7.6 8.41914 ∗ 10−7 0.000012225 0.4980285
φ4 2 0.4 2.90785 ∗ 10−15 1.59872 ∗ 10−14 0.0340019
φ5 2 0.4 1.11772 ∗ 10−12 8.41527 ∗ 10−12 0.0740043
φ6 10 2. 7.52691 ∗ 10−7 0.0000109295 0.1150066
φ7 2 0.4 1.29976 ∗ 10−12 8.61527 ∗ 10−12 0.0730042
φ8 34 6.8 9.3686 ∗ 10−7 0.0000136037 0.6880393
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Numerical comparison for Example 1
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Figure: Convergence behaviour of the error ‖x(t)− x∗‖ for
φi , i = 1, · · · , 8 in Example 1 (dt=0.2).

The smoothing functions φ4, φ5, φ7 perform better than others
(followed by φ6).
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Test Example 2

Example

Consider the following linear complementary problem: find x ∈ Rn

such that

x ≥ 0, Mx + q ≥ 0, 〈x ,Mx + q〉 = 0,

where

M =


1 2 2 2
0 1 2 2
0 0 1 2
0 0 0 1

 , q =


−1
−1
−1
−1

 .
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Reformulation of Test Example 2

The LCP can be transformed into an AVE where

A =


2 −3 6 −12
0 2 −3 6
0 0 2 −3
0 0 0 2

 , b =


24
−12

6
−3

 .
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Numerical reports for Example 2

Table: computing results of Example 2 (dt=0.2)

function N T Er H(x0) CT

φ1 55 11 9.84216 ∗ 10−7 2.03995 ∗ 10−7 3.1531804
φ2 57 11.4 9.14593 ∗ 10−7 1.89565 ∗ 10−7 1.3690783
φ3 59 11.8 8.84473 ∗ 10−7 1.83322 ∗ 10−7 0.6920396
φ4 2 0.4 2.67859 ∗ 10−9 4.86096 ∗ 10−10 0.0370021
φ5 2 0.4 2.68658 ∗ 10−9 4.87548 ∗ 10−10 0.1510086
φ6 18 3.6 9.56666 ∗ 10−7 2.57215 ∗ 10−7 0.2210127
φ7 2 0.4 2.16413 ∗ 10−9 3.92736 ∗ 10−10 0.1600091
φ8 55 11 9.84216 ∗ 10−7 2.03995 ∗ 10−7 1.5320877
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Numerical comparison for Example 2
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Figure: Convergence behaviour of the error ‖x(t)− x∗‖ for
φi , i = 1, · · · , 8 in Example 2.

The smoothing functions φ4, φ5, φ7 perform better than others
(followed by φ6).
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Test Example 3

Example

Consider the following linear complementarity problem: find
x ∈ Rn such that

x ≥ 0, Mx + q ≥ 0, 〈x ,Mx + q〉 = 0,

where

M =


1 −4 1 0
0 1 0 1
−1 0 0 0

0 −1 0 0

 , q =


−5
−5

1
1

 .
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Reformulation of Example 3

Likewise, we can transform this linear complementarity problem
into an AVE, where

A =


−1 8 −2 8

0 −1 0 −2
2 −8 1 −8
0 2 0 1

 , b =


−24

8
22
−10

 .
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Numerical reports for Example 3

Table: computing results of Example 3 (dt=0.2)

function N T Er H(x0) CT

φ1 48 9.6 8.77421 ∗ 10−7 8.27241 ∗ 10−7 2.6401510
φ2 49 9.8 9.95875 ∗ 10−7 9.3892 ∗ 10−7 1.0670610
φ3 51 10.2 9.63078 ∗ 10−7 9.07998 ∗ 10−7 0.6060347
φ4 9 1.8 1.88878 ∗ 10−8 8.88851 ∗ 10−9 0.2820161
φ5 9 1.8 1.89870 ∗ 10−8 8.93517 ∗ 10−9 0.3770216
φ6 15 3.0 7.23527 ∗ 10−7 1.06615 ∗ 10−6 0.1870107
φ7 9 1.8 1.85496 ∗ 10−8 8.72934 ∗ 10−9 0.4020229
φ8 48 9.6 8.77421 ∗ 10−7 8.27241 ∗ 10−7 1.2330706
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Numerical comparison for Example 3
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Figure: Convergence behaviour of the error ‖x(t)− x∗‖ for
φi , i = 1, · · · , 8 in Example 3.

The performance of the smoothing function φ4, φ5, φ6, φ7 is
better than others.
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Test Example 4

Example

Consider the AVE, where the matrix A of which all the singular
values are greater than 1 is generated by the following
Mathematica procedure:

R = RandomInteger[0,50,n,n];
A = R.R + n*IdentityMatrix[n];

b = (A - IdentityMatrix[n]).Table[1,n];
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Numerical reports for Example 4

Table: computing results of Example 4

function N T Er H(x0) CT

φ1 58 5.8 9.97651 ∗ 10−7 0.000118298 465.6496337
φ2 62 6.2 9.27099 ∗ 10−7 0.000109929 191.1859352
φ3 65 6.5 9.90869 ∗ 10−7 0.000117487 162.2222786
φ4 4 0.4 1.48112 ∗ 10−7 5.51822 ∗ 10−7 11.9286822
φ5 4 0.4 1.49218 ∗ 10−7 5.55955 ∗ 10−7 32.2308435
φ6 14 1.4 8.85812 ∗ 10−7 0.000105037 35.2450159
φ7 4 0.4 1.48181 ∗ 10−7 5.52006 ∗ 10−7 33.0088880
φ8 58 5.8 9.97689 ∗ 10−7 0.000118298 207.7848846
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Numerical comparison for Example 4
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Figure: Convergence behaviour of the error ‖x(t)− x∗‖ for
φi , i = 1, · · · , 8 in Example 4.

For this AVE with high dimension, the smoothing functions φ4, φ5,
φ6, φ7 is again the leading group regarding the efficiency.
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Numerical Observations

Numerical Summary

In general, the smoothing functions φ4, φ5, φ6, φ7 are
effective functions that work well along with the neural
network.

In particular, all these smoothing functions are produced from
the convolution way.

The other ways like convex conjugate way, Moreau proximal
way, Nesterov’s smoothing way, and infimal-convolution way,
do not offer effective smoothing functions for the proposed
neural network approach. This is a very interesting discovery,
which deserves further investigation.
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Final remarks

Final remarks

If we are given two smoothing functions ψ1 and ψ2 for f , then
tψ1 + (1− t)ψ2 is also a smoothing function for f . This
means that any convex combination of two smoothing
functions for |x | is again a smoothing function for |x |.
In particular, we choose ψ1 ∈ {φ1, φ2, φ3} and pick another
ψ2 ∈ {φ4, φ5, φ6, φ7, φ8} to make new smoothing functions for
|x |. It makes 15 convex combinations and could try different
value t ∈ [0, 1].

In other words, we can obtain many more smoothing
functions. How do these types of smoothing functions
perform? We leave it as our future study.
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The End

∼ Thanks for your attention ∼
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