Projection Algorithms for Phase Retrieval with High Numerical Aperture

Presenter: Nguyen Hieu Thao

Delft Center for Systems and Control

Variational Analysis and Optimisation Seminar, August 19, 2020
(1) Introduction
(2) Imaging models
(3) Problem formulation
(4) Projection algorithms
(5) Convergence analysis
(6) Numerical results

Outline

(1) Introduction

(2) Imaging models

(3) Problem formulation
(4) Projection algorithms
(5) Convergence analysis
(6) Numerical results

Phase retrieval

Figure: ${ }^{1}$ Schematic diagram of phase retrieval given several PSF images.

[^0]
Outline

1) Introduction

(2) Imaging models
(3) Problem formulation
(4) Projection algorithms
(5) Convergence analysis
(6) Numerical results

Light as an electromagnetic radiation

Figure: ${ }^{2}$ Propagation vector \mathbf{k} and two orthogonal polarization vectors.

- transverse, plane wave (frequency ω, direction \mathbf{k})
- spatially constant permeability and susceptibility
- harmonic time dependence $\mathrm{e}^{-\mathrm{j} \omega \mathrm{t}}$
- the Helmholtz wave equation \& the Maxwell equations

The electric field

$$
E(\mathbf{x}, t)=\left(\epsilon_{1} E_{1}+\epsilon_{2} E_{2}\right) \mathrm{e}^{\mathbf{j} \cdot \mathbf{x}-\mathbf{j} \omega t}
$$

[^1]
Linear polarization

Figure: ${ }^{3}$ Electric field of linearly polarized wave.
E_{1}, E_{2} have the same phase \Longleftrightarrow linear polarization

$$
E(\mathbf{x})=\epsilon_{1} E_{1}+\epsilon_{2} E_{2}=\epsilon \chi(\mathbf{x}) \mathrm{e}^{\mathrm{j} \Phi(\mathbf{x})}
$$

Generalized pupil function $G(\mathbf{x})=\chi(\mathbf{x}) \mathrm{e}^{\mathrm{j} \Phi(\mathrm{x})}$
${ }^{3}$ J. D. Jackson, Classical Electromagnetic, 3rd edition. John Wiley \& Sons, 1999.

Bending of the polarization vector

Figure: ${ }^{4}$ The polarization vector changes after the lens.

[^2]
Scalar point-spread-function (PSF)

Figure: ${ }^{5}$ The GPF is related to PSFs via the Fourier transform. ${ }^{6}$

Scalar PSF ignores the change of polarization direction.

$$
p_{s}(\mathbf{u})=|\mathcal{F}\{G(\mathbf{x})\}|^{2}
$$

[^3]
Bending of polarization vector

Figure: ${ }^{7}$ The amount of bending depends on the ray's coordinates.

$$
E^{\prime}=\mathcal{R}_{(O Z, \varphi)}^{-1} \circ \mathcal{R}_{(O Y, \theta)} \circ \mathcal{R}_{(O Z, \varphi)}(E)
$$

[^4]
Bending of $E_{x}(1,0,0)$ and $E_{y}(0,1,0)$

$$
\begin{array}{lll}
E_{x x}=1-k_{x}^{2} /\left(1+k_{z}\right) ; & E_{y x}=-k_{x} k_{y} /\left(1+k_{z}\right) ; & E_{z x}=-k_{x} \\
E_{x y}=-k_{y} k_{x} /\left(1+k_{z}\right) ; & E_{y y}=1-k_{y}^{2} /\left(1+k_{z}\right) ; & E_{z y}=-k_{y}
\end{array}
$$

Aperture normalization: $k_{x}^{2}+k_{y}^{2} \leq \mathrm{NA}^{2}$

Vectorial PSF - known polarization direction

Vectorial PSF with vertical polarization direction \& its components.

$$
p_{E_{x}}(\mathbf{u})=\left|\mathcal{F}\left\{E_{x x} \cdot G(\mathbf{x})\right\}\right|^{2}+\left|\mathcal{F}\left\{E_{y x} \cdot G(\mathbf{x})\right\}\right|^{2}+\left|\mathcal{F}\left\{E_{z x} \cdot G(\mathbf{x})\right\}\right|^{2}
$$

Modified GPF ${ }^{8} \quad G(x) \longrightarrow k_{z}^{-1 / 2} \cdot G(x)$

[^5]
Vectorial PSF - unknown polarization direction

Components of vectorial PSF with random polarization direction. ${ }^{9}$

$$
p(\mathbf{u})=\sum_{c c \in \mathcal{I}}\left|\mathcal{F}\left\{E_{c c} \cdot G(\mathbf{x})\right\}\right|^{2}, \mathcal{I}=\{x x, y x, z x, x y, y y, z y\}
$$

[^6]
When vectorial PSFs needed?

Comparison between scalar \& vectorial PSFs for various NA values.

Outline

(1) Introduction

(2) Imaging models
(3) Problem formulation
(4) Projection algorithms
(5) Convergence analysis
(6) Numerical results

PR given multiple PSF images

Out-of-focus PSF $\Longrightarrow \phi_{d}=\frac{2 \pi}{\lambda} z_{d} \sqrt{1-k_{x}^{2}-k_{y}^{2}}$

The ambient space and constraints

$$
\mathcal{H}=\underbrace{\mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \times \cdots \times \mathbb{C}^{n \times n}}_{6 \text { times }}
$$

- General constraint

$$
\Omega_{0}=\left\{\left(E_{c c} \cdot x\right)_{c c \in \mathcal{I}} \in \mathcal{H} \mid x \in \mathbb{C}^{n \times n}\right\}
$$

- Intensity constraint $(d=1, \ldots, m)$

$$
\Omega_{d}=\left\{\left.\left(u_{c c}\right)_{c c \in \mathcal{I}} \in \mathcal{H}\left|\sum_{c c \in \mathcal{I}}\right| \mathcal{F}\left(E_{c c} \cdot u_{c c} \cdot \mathrm{e}^{\mathrm{j} \phi_{\mathrm{d}}}\right)\right|^{2}=I_{d}\right\}
$$

- Amplitude constraint

$$
\Omega_{\chi}=\left\{\left(E_{c c} \cdot \chi \cdot \mathrm{e}^{\mathrm{j} \Phi}\right)_{c c \in \mathcal{I}} \in \mathcal{H} \mid \Phi \in \mathbb{R}^{n \times n}\right\}
$$

A feasibility model (nonconvex!)

$$
A \equiv\left\{(u, \ldots, u) \in \mathcal{H}^{m} \mid u \in \Omega_{0}\right\}, B \equiv \Omega_{1} \times \cdots \times \Omega_{m}
$$

Known amplitude $\Longrightarrow \Omega_{0}$ is replaced by Ω_{χ}

Outline

(1) Introduction

(2) Imaging models
(3) Problem formulation
(4) Projection algorithms
(5) Convergence analysis
(6) Numerical results

Projection operators (I)

Figure: Projector on $\Omega_{0} \equiv\left\{\left(E_{c c} \cdot x\right)_{c c \in \mathcal{I}} \in \mathcal{H} \mid x \in \mathbb{C}^{n \times n}\right\}$.

$$
(u \in \mathcal{H}) \quad P_{\Omega_{0}}(u)=\left\{\left(E_{c c} \cdot a \cdot e^{\mathrm{j} \Psi}\right)_{c c \in \mathcal{I}}\right\}
$$

where $\Psi \in \arg \left(\sum_{c c \in \mathcal{I}}\left(E_{c c} \cdot u_{c c}\right)\right), a=\frac{1}{2}\left|\sum_{c c \in \mathcal{I}}\left(E_{c c} \cdot u_{c c}\right)\right|$

Projection operators (II)

Feasibility formulation: find $x \in A \cap B \subset \mathcal{H}^{m}$
${ }^{10}$ For $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{H}^{m}$,

- $P_{A}(x)=\underbrace{P_{\Omega_{0}}(\bar{x}) \times \cdots \times P_{\Omega_{0}}(\bar{x})}_{m \text { times }}$ where $\bar{x}=\frac{1}{m} \sum_{d=1}^{m} x_{d}$
- $P_{B}(x)=P_{\Omega_{1}}\left(x_{1}\right) \times \cdots \times P_{\Omega_{m}}\left(x_{m}\right)$

Known amplitude $\Longrightarrow \Omega_{0}$ is replaced by Ω_{χ}

[^7]
Examples of projection methods

- AP method (the figure): $T_{A P}=P_{A} P_{B}$
- DR algorithm: $T_{D R}=\frac{1}{2}\left(R_{A} R_{B}+\mathrm{Id}\right)$, where $R_{A}=2 P_{A}-\mathrm{Id}$
- ${ }^{11}$ HIO method: $T_{\text {HIO }}=P_{A}\left((1+\beta) P_{B}-\mathrm{Id}\right)-\left(\beta P_{B}-\mathrm{Id}\right)$
- ${ }^{12}$ RAAR algorithm: $T_{R A A R}=\beta T_{D R}+(1-\beta) P_{B}$
- ${ }^{13}$ DRAP algorithm: $T_{D R A P}=\beta T_{D R}+(1-\beta) T_{A P}$

[^8]
Outline

(1) Introduction

(2) Imaging models

(3) Problem formulation
(4) Projection algorithms
(5) Convergence analysis
(6) Numerical results

Analysis scheme ${ }^{14}$

Figure: Picard iterations progress not too slowly by metric regularity.
(a) T almost α-averaged at $\bar{x} \in \operatorname{Fix} T$ on U :

$$
\left\|x^{+}-\bar{x}\right\|^{2} \leq(1+\varepsilon)\|x-\bar{x}\|^{2}-\frac{1-\alpha}{\alpha}\left\|x-x^{+}\right\|^{2}, \quad \forall x \in U, x^{+} \in T(x)
$$

(b) Metric regularity condition: $\exists \kappa<\sqrt{(1-\alpha) / \varepsilon \alpha}$ s.t.

$$
\operatorname{dist}(x, \operatorname{Fix} T) \leq \kappa\left\|x-x^{+}\right\|, \quad \forall x \in U, x^{+} \in T(x)
$$

Then $\forall x_{0} \in U, T^{k}\left(x_{0}\right)$ converges linearly to $\operatorname{Fix} T$.

[^9]
Geometry of high-NA phase retrieval

Figure: Circles are typical example of prox-regularity.
Ω prox-regular at $\bar{x} \Longleftrightarrow P_{\Omega}$ single-valued around \bar{x}
Projector on $\Omega_{0}=\left\{\left(E_{c c} \cdot u\right)_{c c \in \mathcal{I}} \in \mathcal{H} \mid u \in \mathbb{C}^{n \times n}\right\}$ is

$$
P_{\Omega_{0}}(u)=\left\{\left(E_{c c} \cdot a \cdot e^{\mathrm{j} \Psi}\right)_{c c \in \mathcal{I}}\right\}
$$

where $\psi \in \arg \left(\sum_{c c \in \mathcal{I}}\left(E_{c c} \cdot u_{c c}\right)\right), a=\frac{1}{2}\left|\sum_{c c \in \mathcal{I}}\left(E_{c c} \cdot u_{c c}\right)\right|$
Equivalent to the geometry of low-NA phase retrieval

Convergence of AP

Figure: Subtransversality (left) versus tangency (right)
(a) Almost averagedness \longleftarrow geometry of PR
(b) Metric regularity \longleftarrow subtransversality of $\{A, B\}$ at \bar{x}

$$
\begin{aligned}
& d(x, A \cap B) \leq \kappa \max \{d(x, A), d(x, B)\} \quad \forall x \text { near } \bar{x} \\
& \Longrightarrow \text { linear convergence }{ }^{15}
\end{aligned}
$$

[^10]
Outline

1) Introduction

(2) Imaging models
(3) Problem formulation
(4) Projection algorithms
(5) Convergence analysis
(6) Numerical results

NA analysis

Vectorial PSF is more essential for higher NA value.

Noise analysis

The advantage of the vectorial PSF reduces for more noise.

Convergence analysis

Linear convergence is consistently observable.

A realization of phase retrieval

More accurate imaging model leads to more precise restoration.

Other projection algorithms

RAAR and DRAP yield more accurate restoration.

Concluding remarks

The class of projection algorithms is extended for high-NA PR.

- Rigorous mathematical explanation
- Closed forms of projectors
- Geometry of high-NA PR
- Convergence analysis (the level of low-NA PR)
- Numerical results (deliverable to our industrial customer)

Challenge: vectorial PSF is more sensitive to noise than the scalar.

Main References (I)

- J.W. Goodman, Introduction to Fourier Optics, 5th edition. Roberts \& Company Publishers, 2017.
- J.D. Jackson, Classical Electromagnetic, 3rd edition. John Wiley \& Sons, 1999.
- M. Mansuripur, Classical Optics and its Applications, 2nd edition. Cambridge University Press, 2009.
- M. Verhaegen, G. Vdovin and O. Soloviev, Control for High Resolution Imaging, Lecture notes. TU Delft, 2015.
- N.H. Thao, O. Soloviev and M. Verhaegen, Phase retrieval based on the vectorial model of point spread function. JOSA A 37, 2020.

Main References (II)

- N.H. Thao, O. Soloviev, D.R. Luke and M. Verhaegen, Projection methods for high numerical aperture phase retrieval. Manuscript in preparation.
- J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21, 1982.
- D.R. Luke, Relaxed averaged alternating reflections for diffraction imaging. Inverse Problems 21, 2005.
- D.R. Luke, N.H. Thao and M.K. Tam, Quantitative convergence analysis of iterated expansive, set-valued mappings. Math. Oper. Res. 43, 2018.
- N.H. Thao, A convergent relaxation of the Douglas-Rachford algorithm. Comput. Optim. Appl. 70, 2018.

WITH THANKS TO

MadEin4

ECSEL Joint Undertaking
Electronic Components and Systems for European Leadership

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No. 826589. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Netherlands, Belgium, Germany, France, Italy, Austria, Hungary, Romania, Sweden and Israel.

[^0]: ${ }^{1}$ N. H. Thao, O. Soloviev and M. Verhaegen, Phase retrieval based on the vectorial model of point spread function. JOSA A 37, 16-26, 2020.

[^1]: ² J. D. Jackson, Classical Electromagnetic, 3rd edition. John Wiley \& Sons, 1999.

[^2]: ${ }^{4}$ M. Mansuripur, Classical Optics and its Applications, 2nd edition. Cambridge University Press, 2009.

[^3]: ${ }^{5}$ M. Verhaegen, G. Vdovin and O. Soloviev, Control for High Resolution Imaging, Lecture Notes. Delft University of Technology, 2015.
 ${ }^{6}$ J.W. Goodman, Introduction to Fourier Optics, 5th edition. Roberts \& Company Publishers, 2017.

[^4]: ${ }^{7}$ N.H. Thao, O. Soloviev, D.R. Luke and M. Verhaegen, Projection methods for high numerical aperture phase retrieval. Manuscript in preparation.

[^5]: ${ }^{8}$ M. Mansuripur, Classical Optics and its Applications, 2nd edition. Cambridge University Press, 2009.

[^6]: ${ }^{9}$ M. Mansuripur, Classical Optics and its Applications, 2nd edition. Cambridge University Press, 2009.

[^7]: ${ }^{10}$ N.H. Thao, O. Soloviev, D.R. Luke and M. Verhaegen, Projection methods for high numerical aperture phase retrieval. Manuscript in preparation.

[^8]: ${ }^{11}$ J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21 (1982).
 ${ }^{12}$ D.R. Luke, Relaxed averaged alternating reflections for diffraction imaging Inverse Problems 21 (2005).
 ${ }^{13}$ N.H. Thao, A convergent relaxation of the Douglas-Rachford algorithm. Comput. Optim. Appl. 70 (2018).

[^9]: ${ }^{14}$ D.R. Luke, N.H. Thao and M.K. Tam, Quantitative convergence analysis of iterated expansive, set-valued mappings. Math. Oper. Res. 43, 1143-1176 (2018).

[^10]: ${ }^{15}$ N.H. Thao, O. Soloviev, D.R. Luke and M. Verhaegen, Projection methods for high numerical aperture phase retrieval. Manuscript in preparation.

