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Phase retrieval
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Figure: 1 Schematic diagram of phase retrieval given several PSF images.

1N. H. Thao, O. Soloviev and M. Verhaegen, Phase retrieval based on the vectorial model of point spread
function. JOSA A 37, 16–26, 2020.
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Light as an electromagnetic radiation

Figure: 2 Propagation vector k and two orthogonal polarization vectors.

● transverse, plane wave (frequency ω, direction k)
● spatially constant permeability and susceptibility
● harmonic time dependence e−jωt

● the Helmholtz wave equation & the Maxwell equations

The electric field

E(x, t) = (ε1E1 + ε2E2) ejk.x−jωt

2J. D. Jackson, Classical Electromagnetic, 3rd edition. John Wiley & Sons, 1999.
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Linear polarization

Figure: 3 Electric field of linearly polarized wave.

E1, E2 have the same phase ⇐⇒ linear polarization

E(x) = ε1E1 + ε2E2 = εχ(x) ejΦ(x)

Generalized pupil function G(x) = χ(x) ejΦ(x)

3J. D. Jackson, Classical Electromagnetic, 3rd edition. John Wiley & Sons, 1999.
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Bending of the polarization vector

Figure: 4 The polarization vector changes after the lens.

4M. Mansuripur, Classical Optics and its Applications, 2nd edition. Cambridge University Press, 2009.
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Scalar point-spread-function (PSF)

Figure: 5 The GPF is related to PSFs via the Fourier transform.6

Scalar PSF ignores the change of polarization direction.

ps(u) = ∣F{G(x)}∣2

5M. Verhaegen, G. Vdovin and O. Soloviev, Control for High Resolution Imaging, Lecture Notes. Delft
University of Technology, 2015.

6J.W. Goodman, Introduction to Fourier Optics, 5th edition. Roberts & Company Publishers, 2017. 9 / 36



Bending of polarization vector
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Figure: 7 The amount of bending depends on the ray’s coordinates.

E ′ = R−1
(OZ ,ϕ) ○R(OY ,θ) ○R(OZ ,ϕ)(E)

7N.H. Thao, O. Soloviev, D.R. Luke and M. Verhaegen, Projection methods for high numerical aperture phase
retrieval. Manuscript in preparation.
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Bending of Ex(1,0,0) and Ey(0,1,0)
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Exx= 1 − k2
x / (1 + kz) ; Eyx= −kxky / (1 + kz) ; Ezx= −kx

Exy = −kykx/ (1 + kz) ; Eyy = 1 − k2
y / (1 + kz) ; Ezy = −ky

Aperture normalization: k2
x + k2

y ≤ NA2
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Vectorial PSF - known polarization direction

Vectorial PSF with vertical polarization direction & its components.

pEx (u) = ∣F{Exx ⋅G(x)}∣2 + ∣F{Eyx ⋅G(x)}∣2 + ∣F{Ezx ⋅G(x)}∣2

Modified GPF 8 G(x) Ð→ k
−1/2
z ⋅G(x)

8M. Mansuripur, Classical Optics and its Applications, 2nd edition. Cambridge University Press, 2009.
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Vectorial PSF - unknown polarization direction

Components of vectorial PSF with random polarization direction.9

p(u) = ∑
cc∈I
∣F{Ecc ⋅G(x)}∣2 , I = {xx , yx , zx , xy , yy , zy}

9M. Mansuripur, Classical Optics and its Applications, 2nd edition. Cambridge University Press, 2009.
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When vectorial PSFs needed?
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Comparison between scalar & vectorial PSFs for various NA values.
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PR given multiple PSF images
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Id = ∑
cc∈I
∣F (Ecc ⋅ χ ⋅ ej(Φ+φd))∣

2
+ ωd , (d = 1, . . . ,m)

Out-of-focus PSF Ô⇒ φd = 2π
λ zd
√

1 − k2
x − k2

y
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The ambient space and constraints

H = Cn×n ×Cn×n × ⋅ ⋅ ⋅ ×Cn×n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

6 times

● General constraint

Ω0 = {(Ecc ⋅ x)cc ∈I ∈ H ∣ x ∈ Cn×n}

● Intensity constraint (d = 1, . . . ,m)

Ωd = {(ucc)cc ∈I ∈ H ∣ ∑
cc ∈I
∣F (Ecc ⋅ ucc ⋅ ejφd)∣2 = Id}

● Amplitude constraint

Ωχ = {(Ecc ⋅ χ ⋅ ejΦ)
cc ∈I ∈ H ∣ Φ ∈ Rn×n}

17 / 36



A feasibility model (nonconvex!)

A ≡ {(u, . . . ,u) ∈ Hm ∣ u ∈ Ω0} , B ≡ Ω1 ×⋯ ×Ωm;

Known amplitude Ô⇒ Ω0 is replaced by Ωχ

18 / 36
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Projection operators (I)

Figure: Projector on Ω0 ≡ {(Ecc ⋅ x)cc ∈I ∈ H ∣ x ∈ Cn×n}.

(u ∈ H) PΩ0(u) = {(Ecc ⋅ a ⋅ ejΨ)
cc ∈I}

where Ψ ∈ arg( ∑
cc ∈I
(Ecc ⋅ ucc)) , a =

1

2
∣ ∑
cc ∈I
(Ecc ⋅ ucc)∣
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Projection operators (II)

Feasibility formulation: find x ∈ A ∩B ⊂ Hm

10 For x = (x1, . . . , xm) ∈ Hm,

● PA(x) = PΩ0 (x) × ⋅ ⋅ ⋅ × PΩ0 (x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m times

where x = 1
m ∑

m
d=1 xd

● PB(x) = PΩ1(x1) ×⋯ × PΩm(xm)

Known amplitude Ô⇒ Ω0 is replaced by Ωχ

10N.H. Thao, O. Soloviev, D.R. Luke and M. Verhaegen, Projection methods for high numerical aperture phase
retrieval. Manuscript in preparation.
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Examples of projection methods
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● AP method (the figure): TAP = PAPB

● DR algorithm: TDR = 1
2 (RARB + Id), where RA = 2PA − Id

● 11 HIO method: THIO = PA ((1 + β)PB − Id) − (βPB − Id)

● 12 RAAR algorithm: TRAAR = βTDR + (1 − β)PB

● 13 DRAP algorithm: TDRAP = βTDR + (1 − β)TAP

11J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21 (1982).
12D.R. Luke, Relaxed averaged alternating reflections for diffraction imaging Inverse Problems 21 (2005).
13N.H. Thao, A convergent relaxation of the Douglas-Rachford algorithm. Comput. Optim. Appl. 70 (2018).
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Analysis scheme 14

Figure: Picard iterations progress not too slowly by metric regularity.

(a) T almost α-averaged at x̄ ∈ FixT on U:

∥x+ − x̄∥2 ≤ (1 + ε) ∥x − x̄∥2−1−α
α ∥x − x+∥2 , ∀x ∈ U, x+ ∈ T (x)

(b) Metric regularity condition: ∃κ <
√
(1 − α) /εα s.t.

dist(x ,FixT ) ≤ κ∥x − x+∥, ∀x ∈ U, x+ ∈ T (x)

Then ∀x0 ∈ U, T k(x0) converges linearly to FixT .

14D.R. Luke, N.H. Thao and M.K. Tam, Quantitative convergence analysis of iterated expansive, set-valued
mappings. Math. Oper. Res. 43, 1143–1176 (2018).
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Geometry of high-NA phase retrieval

Figure: Circles are typical example of prox-regularity.

Ω prox-regular at x̄ ⇐⇒ PΩ single-valued around x̄

Projector on Ω0 = {(Ecc ⋅ u)cc ∈I ∈ H ∣ u ∈ Cn×n} is

PΩ0(u) = {(Ecc ⋅ a ⋅ ejΨ)
cc ∈I}

where Ψ ∈ arg( ∑
cc ∈I
(Ecc ⋅ ucc)), a =

1

2
∣ ∑
cc ∈I
(Ecc ⋅ ucc)∣

Equivalent to the geometry of low-NA phase retrieval
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Convergence of AP

Figure: Subtransversality (left) versus tangency (right)

(a) Almost averagedness ←Ð geometry of PR

(b) Metric regularity ←Ð subtransversality of {A,B} at x̄

d(x ,A ∩B) ≤ κmax{d(x ,A),d(x ,B)} ∀x near x̄

Ô⇒ linear convergence 15

15N.H. Thao, O. Soloviev, D.R. Luke and M. Verhaegen, Projection methods for high numerical aperture phase
retrieval. Manuscript in preparation.
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NA analysis
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Vectorial PSF is more essential for higher NA value.
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Noise analysis
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The advantage of the vectorial PSF reduces for more noise.
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Convergence analysis
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Linear convergence is consistently observable.
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A realization of phase retrieval

data phase
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More accurate imaging model leads to more precise restoration.
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Other projection algorithms

SAM VAM DRAP RAAR VAM+ DRAP+ RAAR+

Solution algorithms

0.02

0.04

0.06

0.08

0.1

0.12

R
e
la

ti
v
e
 R

M
S

 e
rr

o
rs

Accuracy of high-NA phase retrieval

RAAR and DRAP yield more accurate restoration.
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Concluding remarks

The class of projection algorithms is extended for high-NA PR.

● Rigorous mathematical explanation

● Closed forms of projectors

● Geometry of high-NA PR

● Convergence analysis (the level of low-NA PR)

● Numerical results (deliverable to our industrial customer)

Challenge: vectorial PSF is more sensitive to noise than the scalar.
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