On Error Bound Moduli for Locally Lipschitz and Regular Functions (subtitle: far and near end sets)

Xiaoqi Yang

Department of Applied Mathematics, Hong Kong Polytechnic University (mayangxq@polyu.edu.hk)

Joint work with Minghua Li and Kaiwen Meng

Far and near ends of a closed convex set

2 On closedness of far and near ends of a closed convex set

3 Local error bound moduli

• sharp lower bound for lower-C¹ functions

sharp upper bound for convex functions

4 Conclusions

1 Far and near ends of a closed convex set

2 On closedness of far and near ends of a closed convex set

3 Local error bound moduli

4 Conclusions

Definition

Consider a closed convex set $C \subset \mathbb{R}^n$ and a point $x_0 \in \mathbb{R}^n$. The far end of C relative to x_0 is defined by

$$\mathsf{far}(\mathit{C}, \mathit{x_0}) := \{ x \in \mathit{C} \mid \mathit{x_0} + \mathit{t}(\mathit{x} - \mathit{x_0}) \not\in \mathit{C} \: \forall \mathit{t} > 1 \},\$$

while the near end of *C* relative to x_0 is defined by

$$\operatorname{near}(C, x_0) := \begin{cases} \{x \in C \mid x_0 + t(x - x_0) \notin C \forall t < 1\} & \text{if } x_0 \notin C, \\ \{x_0\} & \text{if } x_0 \in C. \end{cases}$$

See [Hu (2005), Hu (2007)] for the definition of far(C, 0).

Some basic properties of far and near ends are summarized in the following lemmas.

Lemma

For a closed and convex set $C \subset \mathbb{R}^n$, the following hold: (a) far $(C, x_0) = C$ for all $x_0 \notin$ aff C. (b) far $(C, x_0) \cap$ ri $C = \emptyset$ for all $x_0 \in C$ or $x_0 \in$ aff $C \setminus C$. (c) far $(C, x_0) \neq \emptyset$ if and only if $pos(C - x_0) \setminus C^{\infty} \neq \emptyset$.

Similarly for near (C, x_0) .

Let the shadow of C relative to x_0 be

shad
$$(C, x_0) := \bigcup_{x \in C} \{x_0 + t(x - x_0) \mid t \ge 1\}.$$

Lemma

For a closed and convex set $C \subset \mathbb{R}^n$ and a point $x_0 \notin C$, the following hold:

(a)
$$far(C, x_0) = far(cl(conv(C \cup \{x_0\})), x_0).$$

(b) $near(C, x_0) = near(shad(C, x_0), x_0).$

A face of C is a convex subset C' of C such that every closed line segment in C with a relative interior point in C' has both end points in C'.

An exposed face of C is a face of C that is the intersection of C and a supporting hyperplane to C.

The support function $\sigma_C : \mathbb{R}^n \to \overline{\mathbb{R}}$ of *C* is defined by

$$\sigma_C(x) := \sup_{w \in C} \langle x, w \rangle.$$

 $\partial \sigma_C(w) = \arg \max_{v \in C} \langle v, w \rangle = C \cap \{ v \in \mathbb{R}^n \mid \langle v, w \rangle = \sigma_C(w) \}.$

F is a nonempty exposed face of *C* if and only if $F = \partial \sigma_C(w)$ for some $w \neq 0$.

Theorem

Consider a closed and convex set $C \subset \mathbb{R}^n$ and a point $x_0 \in \mathbb{R}^n$ with $x_0 \in C$. Then the following hold:

(a) far(C, x_0) consists of all the faces F of C such that $x_0 \notin F$.

(b) The set consisting of all the exposed faces F of C such that $x_0 \notin F$, is a dense subset of far (C, x_0) , or in other words,

$$\bigcup_{\sigma_C(w) > \langle x_0, w \rangle} \partial \sigma_C(w) \subset \mathsf{far}(C, x_0) \subset \mathsf{cl}\left(\bigcup_{\sigma_C(w) > \langle x_0, w \rangle} \partial \sigma_C(w)\right).$$

Similarly for $x_0 \notin C$.

Theorem

For a closed and convex set $C \subset \mathbb{R}^n$ and a point $\underline{x_0 \notin C}$, the following hold in terms of $C' := \text{shad}(C, x_0)$:

- (a) near(C, x_0) consists of all the common faces F of C and C' such that $x_0 \notin aff F$.
- (b) The set consisting of all the common exposed faces F of C and C' such that $x_0 \notin aff F$, is a dense subset of near(C, x_0), or in other words,

$$\bigcup_{\sigma_{C}(w) < \langle x_{0}, w \rangle} \partial \sigma_{C}(w) \subset \mathsf{near}(C, x_{0}) \subset \mathsf{cl}\left(\bigcup_{\sigma_{C}(w) < \langle x_{0}, w \rangle} \partial \sigma_{C}(w)\right).$$

[Hu (2005)] showed that for a convex inequality $f(x) \leq 0$,

strong
$$BCQ = BCQ + d(0, far(\partial f(x), 0)) > 0.$$

[Hu (2007)] studied the global error bounds for the level set $S := [f \le 0]$ by a weak BCQ and $d(0, \operatorname{far}(\partial f(x) \cap N_S(x), 0)) > 0$ in a Banach space.

[Meng, Roshchina and Y. (2015)] studied the exact tangent approximation of C and relative continuity of the gauge function, by the equivalence of global error bound of the support function and d(0, far(C, 0)) > 0.

[Zheng and Ng (2004)] implicitly used $d(0, far(\partial f(x), 0)) > 0$ to show that the metric subregularity of the solution set of a generalized equation is equivalent to strong BCQ.

1 Far and near ends of a closed convex set

2 On closedness of far and near ends of a closed convex set

3 Local error bound moduli

4 Conclusions

For a closed and convex set *C* with $0 \in C$, the gauge of *C* is the function $\gamma_C : \mathbb{R}^n \to \overline{\mathbb{R}}$ defined by

$$\gamma_{C}(x) := \inf\{\lambda \geq 0 | x \in \lambda C\},\$$

which is lower semicontinuous and sublinear with dom(γ_{C}) = pos(C).

For a closed and convex set $C \subset \mathbb{R}^n$ with $0 \notin C$, the co-gauge of C is the function $\nu_C : \mathbb{R}^n \to \overline{\mathbb{R}}$ defined by

$$\nu_{\mathcal{C}}(x) := \sup\{\lambda \ge 0 \mid x \in \lambda \mathcal{C}\},\$$

which is upper semicontinuous and suplinear with $dom(-\nu_C) = cl(pos C)$.

If a sublinear function $p : \mathbb{R}^n \to \mathbb{R}$ is continuous at 0, then it is continuous everywhere.

For a sublinear function not defined on the whole space:

$$p(x,y) = \begin{cases} |y|, & x = 0\\ 0, & x > 0 \end{cases}$$

it is continuous at (0,0) relative to $\{(x, y)|x \ge 0\}$, but not continuous relative to $\{(x, y)|x \ge 0\}$ anywhere else on x = 0.

Theorem

For a closed and convex set $C \subset \mathbb{R}^n$ with $0 \in C$, the following are equivalent:

(a) γ_C is continuous at 0 relative to pos C if and only if $d(0, \operatorname{far}(C, 0)) > 0;$

(b) γ_C is continuous relative to its domain pos C if and only if far(C, 0) is closed.

Theorem

For a closed and convex set $C \subset \mathbb{R}^n$ such that $0 \notin C$ and $\lambda C \subset C$ for all $\lambda \geq 1$, we have

 $\operatorname{dom}(-\nu_{\mathcal{C}})=\mathcal{C}^{\infty},$

and the following hold:

(a) ν_C is continuous at every $x \in \{0\} \cup (ri C^{\infty}) \cup (C^{\infty} \setminus pos C)$ relative to C^{∞} .

(b) ν_C is continuous relative to C^{∞} if and only if near(C, 0) is closed and

$$(\operatorname{near}(C,0))^{\infty} \cap \operatorname{pos} C = \{0\}.$$

2 On closedness of far and near ends of a closed convex set

3 Local error bound moduli

4 Conclusions

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ be lsc and $\bar{x} \in [f \le 0]$ (the level set).

Definition

f has a local error bound for $[f\leq 0]$ at $\bar{x},$ if there exist some $\tau>0$ and $\epsilon>0$ such that,

 $\tau d(x, [f \le 0]) \le f(x), \quad \text{with } \|x - \bar{x}\| < \epsilon.$ (1)

f has a global error bound for $[f \le 0]$ at \bar{x} if the above inequality holds for all x.

The local error bound modulus of f at \bar{x} is defined by

$$\operatorname{ebm}(f, \bar{x}) := \liminf_{x \to \bar{x}, f(x) > 0} \frac{f(x)}{d(x, [f \leq 0])}.$$

Clearly, $0 \leq \operatorname{ebm}(f, \bar{x}) \leq +\infty$.

As $\operatorname{ebm}(f, \overline{x}) = +\infty$ whenever $\overline{x} \in \operatorname{int}([f \le 0])$, we assume in what follows that $\overline{x} \in \operatorname{bdry}[f \le 0]$.

The outer limiting subdifferential of f at \bar{x} is defined by

$$\partial^{>}f(ar{x}):=\left\{\lim_{k
ightarrow+\infty} v_{k}\mid \exists x_{k}
ightarrow_{f}ar{x},\,f(x_{k})>f(ar{x}),\,v_{k}\in\partial f(x_{k})
ight\}$$

A lower estimate via outer limiting subdifferential:

If $f : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ is lower semicontinuous, we have

 $d(0, \partial^{>} f(\bar{x})) \leq \operatorname{ebm}(f, \bar{x}),$

If $0 < d(0, \partial^{>} f(\bar{x}))$, then f has a local error bound at \bar{x} .

Convex and lower semicontinuous case

If f is convex lower semicontinuous, we have

 $d(0, \partial^{>} f(\bar{x})) = \operatorname{ebm}(f, \bar{x}).$

See [Kruger et al (2010), Fabian et al (2010), loffe (2015)].

Sublinear case

It was shown by [Hu and Wang (2011)] that, if f is a sublinear and lower semicontinuous function, then

```
ebm(f, 0) = d(0, far(C, 0)),
```

where C is the unique closed and convex set such that $f = \sigma_C$.

In this case, we also have

$$S \subset \operatorname{far}(C,0) \subset \partial^{>} \sigma_{C}(0) \subset \operatorname{cl} S.$$

Thus

$$\operatorname{ebm}(f,0) = d(0,\partial^{>}f(0)) = d(0,\partial^{>}\sigma_{C}(0)).$$

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ and $\bar{x} \in bdry[f \le 0]$. If f is locally Lipschitz and regular at \bar{x} , then

 $d\left(0,\partial^{>}f(\bar{x})\right) \leq \mathsf{ebm}(f,\bar{x}) \leq d(0,\partial^{>}\sigma_{\partial f(\bar{x})}(0)) \equiv d(0,\mathsf{far}(\partial f(\bar{x}),0)).$

Let f be lower- C^1 :

$$f(x) = \max_{y \in Y} \phi(x, y)$$

in which each function $\phi(\cdot, y)$ is of class C^1 and the index set $Y \subset \mathbb{R}^m$ is compact.

Let the active index set mapping $Y : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ be defined by

$$Y(x) := \{y \in Y | \phi(x, y) = f(x)\}.$$

We introduce two collections of index sets as follows:

$$\mathcal{Y}(ar{x}) := \left\{ \lim_{k o +\infty} Y(x_k) \mid x_k o ar{x} ext{ and } f(x_k) > 0 \ orall k
ight\},$$

(outer limiting active index set.)

$$\mathcal{Y}^{>}(\bar{x}) := \left\{ \arg \max_{y \in Y(\bar{x})} \langle \nabla_{x} \phi(\bar{x}, y), w \rangle \left| \exists w : \max_{y \in Y(\bar{x})} \langle \nabla_{x} \phi(\bar{x}, y), w \rangle > 0 \right. \right\}$$

(optimal active index set.)

Theorem

If f is lower- C^1 , then

 $d(0, \partial^{>} f(\bar{x})) = \operatorname{ebm}(f, \bar{x}) \leq d(0, \operatorname{far}(\partial f(\bar{x}), 0)).$

Furthermore, we have

$$\partial^{>} f(\bar{x}) = \bigcup_{Y' \in \mathcal{Y}(\bar{x})} \operatorname{conv} \{ \nabla_{x} \phi(\bar{x}, y) | y \in Y' \},$$

and

$$\bigcup_{Y'\in\mathcal{Y}^{>}(\bar{x})}\operatorname{conv}\{\nabla_{x}\phi(\bar{x},y)|y\in Y'\}\subset\operatorname{far}(\partial f(\bar{x}),0)$$
$$\subset\operatorname{cl}\bigcup_{Y'\in\mathcal{Y}^{>}(\bar{x})}\operatorname{conv}\{\nabla_{x}\phi(\bar{x},y)|y\in Y'\}.$$

sharp upper bound for convex functions.

Theorem

Assume that f is finite and convex on some convex neighborhood of \bar{x} . If the Abadie's CQ holds, i.e., $[df(\bar{x}) \leq 0] = T_{[f \leq 0]}(\bar{x})$, and the level set $[f \leq 0]$ admits exact tangent approximation, i.e., there is a neighborhood V of \bar{x} such that

$$[f \leq 0] \cap V = (\bar{x} + T_{[f \leq 0]}(\bar{x})) \cap V,$$

then the following equalities hold:

$$d\left(0,\partial^{>}f(ar{x})
ight)=\mathsf{ebm}(f,ar{x})=d\left(0,\partial^{>}\sigma_{\partial f(ar{x})}(0)
ight).$$

Consider the linear semi-inf system

$$\langle a_y, x \rangle \leq b_y \quad \forall y \in Y,$$

where Y is a compact space and $a_y \in \mathbb{R}^n$ and $b_y \in \mathbb{R}$ depend continuously on $y \in Y$.

•
$$f(x) := \max_{y \in Y} \{ \langle a_y, x \rangle - b_y \};$$

•
$$Y(x) := \{y \in Y \mid \langle a_y, x \rangle - b_y = f(x)\}.$$

According to [Anderson and Goberna (1998)], the linear semi-inf system is said to be a locally polyhedral if

$$(\mathsf{pos}\,\mathsf{conv}\{a_y\mid y\in Y(x)\})^*=\mathsf{pos}([f\leq 0]-x)\quad \forall x\in [f\leq 0].$$

Corollary

If one of the following equivalent properties is satisfied:
(a) The exact tangent approximation condition holds at x

(b) The linear semi-inf system is locally polyhedral, then,

$$\operatorname{ebm}(f,x) = d\left(0, \bigcup_{Y' \in \mathcal{Y}(x)} \operatorname{conv}\{a_y \mid y \in Y'\}\right),$$

$$\mathcal{Y}(x) := \{ Y' | \exists w : \langle a_y, w \rangle = 1 \, \forall y \in Y', \, \langle a_y, w \rangle < 1 \, \forall y \in Y(x) \setminus Y' \}$$

Remark: As a finite linear system is naturally locally polyhedral, our result recovers [Cánovas et al (2014), Theorem 4.1] for the case of a finite linear system.

2 On closedness of far and near ends of a closed convex set

3 Local error bound moduli

- The far($\partial f(x)$, 0), in particular $d(0, \text{far}(\partial f(x), 0) > 0$, plays an important role of a regularity assumption.
- The modulus of weak sharp minumum has been used in convergence analysis for some optimal algorithms. We anticipate that the upper bound of the local error bound modulus will play a similar role.

References:

- K.W. Meng, V. Roshchina, X.Q. Yang, On local coincidence of a convex set and its tangent cone, J. Optim. Theory Appl., 164(2015)123-137.
- Li, M.H., Meng K.W. and Yang X.Q., On error bound moduli for locally Lipschitz and regular functions, Math. Program. 171 (2018) 463–487.
- Li, M.H., Meng K.W. and Yang X.Q., On far and near ends of closed and convex sets. Journal of Convex Analysis. 27 (2020) 407–421.

- E.J. Anderson, M.A. Goberna, M.A. López, Locally polyhedral linear inequality systems, Linear Algebra Appl. 270(1998)231-253.
- J.V. Burke, M.C. Ferris, Weak sharp minima in mathematical programming, SIAM J. Control Optim., 31(1993)1340-1359.
- M.J. Cánovas, M.A. López, J. Parra, F.J. Toledo, Calmness of the feasible set mapping for linear inequality systems, Set-Valued Var. Anal., 22(2014)375-389.
- A.L. Dontchev, R.T. Rockafellar, Regularity and conditioning of solution mappings in variational analysis, Set-Valued Anal., 12(2004)79-109.
- A. Eberhard, V. Roshchina, T. Sang, Outer limits of subdifferentials for min-max type functions, Optimization, 68 (2019), no. 7, 1391–1409.

- M.J. Fabian, R. Henrion, A.Y. Kruger, J.V. Outrata, Error bounds: necessary and sufficient conditions, Set-Valued Var. Anal., 18(2010)121-149.
 - H. Hu, Characterizations of the strong basic constraint qualifications, Math. Oper. Res., 30(2005)956-965.
- H. Hu, Characterizations of local and global error bounds for convex inequalities in Banach spaces, SIAM J. Optim., 18(2007)309-321.
- H. Hu, Q. Wang, Closedness of a convex cone and application by means of the end set of a convex set, J. Optim. Theory Appl., 150(2011)52-64.
- A.D. loffe, Metric regularity-a survey, Part 1, theory, J. Aust. Math. Soc., doi:10.1017/S1446788715000701.

- A.Y. Kruger, H.V. Ngai, M. Théra, Stability of error bounds for convex constraint systems in Banach spaces, SIAM J. Optim. 20(2010)3280-3296.
- Mordukhovich, B.S. and Nam, N.M. Subgradient of distance functions with applications to Lipschitzian stability. Math. Program., 104(2-3) (2005) pp.635-668.
- R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, (1970).
- R.T. Rockafellar, R.J.-B. Wets, Variational Analysis, Springer, Berlin, (1998).
- X.Y. Zheng, K.F. Ng, Metric regularity and constraint qualifications for convex inequalities on Banach spaces, SIAM J. Optim., 14(2004)757-772.