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Far and near ends of a closed convex set

Definition

Consider a closed convex set C ⊂ Rn and a point x0 ∈ Rn. The far
end of C relative to x0 is defined by

far(C , x0) := {x ∈ C | x0 + t(x − x0) 6∈ C ∀t > 1},

while the near end of C relative to x0 is defined by

near(C , x0) :=

{
{x ∈ C | x0 + t(x − x0) 6∈ C ∀t < 1} if x0 6∈ C ,

{x0} if x0 ∈ C .

See [Hu (2005), Hu (2007)] for the definition of far(C , 0).
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Far and near ends of a closed convex set

Some basic properties of far and near ends are summarized in the
following lemmas.

Lemma

For a closed and convex set C ⊂ Rn, the following hold:

(a) far(C , x0) = C for all x0 6∈ aff C.

(b) far(C , x0) ∩ riC = ∅ for all x0 ∈ C or x0 ∈ aff C\C.

(c) far(C , x0) 6= ∅ if and only if pos(C − x0)\C∞ 6= ∅.

Similarly for near(C , x0).
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Far and near ends of a closed convex set

Let the shadow of C relative to x0 be

shad(C , x0) :=
⋃

x∈C{x0 + t(x − x0) | t ≥ 1}.

Lemma

For a closed and convex set C ⊂ Rn and a point x0 6∈ C, the
following hold:

(a) far(C , x0) = far (cl(conv(C ∪ {x0})), x0).

(b) near(C , x0) = near (shad(C , x0), x0).
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Far and near ends of a closed convex set

A face of C is a convex subset C ′ of C such that every closed line
segment in C with a relative interior point in C ′ has both end points
in C ′.

An exposed face of C is a face of C that is the intersection of C and
a supporting hyperplane to C .

The support function σC : Rn → R of C is defined by

σC (x) := sup
w∈C
〈x ,w〉.

∂σC (w) = arg maxv∈C 〈v ,w〉 = C ∩ {v ∈ Rn | 〈v ,w〉 = σC (w)}.

F is a nonempty exposed face of C if and only if F = ∂σC (w) for
some w 6= 0.
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Far and near ends of a closed convex set

Theorem

Consider a closed and convex set C ⊂ Rn and a point x0 ∈ Rn with
x0 ∈ C. Then the following hold:

(a) far(C , x0) consists of all the faces F of C such that x0 6∈ F .

(b) The set consisting of all the exposed faces F of C such that
x0 6∈ F , is a dense subset of far(C , x0), or in other words,

⋃
σC (w)>〈x0,w〉

∂σC (w) ⊂ far(C , x0) ⊂ cl

 ⋃
σC (w)>〈x0,w〉

∂σC (w)

 .

Similarly for x0 6∈ C.
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Far and near ends of a closed convex set

Theorem

For a closed and convex set C ⊂ Rn and a point x0 6∈ C, the
following hold in terms of C ′ := shad(C , x0):

(a) near(C , x0) consists of all the common faces F of C and C ′ such
that x0 6∈ aff F .

(b) The set consisting of all the common exposed faces F of C and
C ′ such that x0 6∈ aff F , is a dense subset of near(C , x0), or in
other words,

⋃
σC (w)<〈x0,w〉

∂σC (w) ⊂ near(C , x0) ⊂ cl

 ⋃
σC (w)<〈x0,w〉

∂σC (w)

 .
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Far and near ends of a closed convex set

[Hu (2005)] showed that for a convex inequality f (x) ≤ 0,

strong BCQ = BCQ + d(0, far(∂f (x), 0)) > 0.

[Hu (2007)] studied the global error bounds for the level set
S := [f ≤ 0] by a weak BCQ and d(0, far(∂f (x) ∩ NS(x), 0)) > 0 in
a Banach space.
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Far and near ends of a closed convex set

[Meng, Roshchina and Y. (2015)] studied the exact tangent
approximation of C and relative continuity of the gauge function, by
the equivalence of global error bound of the support function and
d(0, far(C , 0)) > 0.

[Zheng and Ng (2004)] implicitly used d(0, far(∂f (x), 0)) > 0 to
show that the metric subregularity of the solution set of a generalized
equation is equivalent to strong BCQ.
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On closedness of far and near ends of a closed convex set

For a closed and convex set C with 0 ∈ C , the gauge of C is the
function γC : Rn → R defined by

γC (x) := inf{λ ≥ 0|x ∈ λC},

which is lower semicontinuous and sublinear with dom(γC ) = pos(C ).

For a closed and convex set C ⊂ Rn with 0 6∈ C , the co-gauge of C
is the function νC : Rn → R defined by

νC (x) := sup{λ ≥ 0 | x ∈ λC},

which is upper semicontinuous and suplinear with
dom(−νC ) = cl(posC ).
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On closedness of far and near ends of a closed convex set

If a sublinear function p : Rn → R is continuous at 0, then it is
continuous everywhere.

For a sublinear function not defined on the whole space:

p(x , y) =

{
|y |, x = 0
0, x > 0

it is continuous at (0, 0) relative to {(x , y)|x ≥ 0}, but not
continuous relative to {(x , y)|x ≥ 0} anywhere else on x = 0.
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On closedness of far and near ends of a closed convex set

Theorem

For a closed and convex set C ⊂ Rn with 0 ∈ C, the following are
equivalent:

(a) γC is continuous at 0 relative to posC if and only if
d(0, far(C , 0)) > 0;

(b) γC is continuous relative to its domain posC if and only if
far(C , 0) is closed.
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On closedness of far and near ends of a closed convex set

Theorem

For a closed and convex set C ⊂ Rn such that 0 6∈ C and λC ⊂ C
for all λ ≥ 1, we have

dom(−νC ) = C∞,

and the following hold:

(a) νC is continuous at every x ∈ {0} ∪ (riC∞) ∪ (C∞\ posC )
relative to C∞.

(b) νC is continuous relative to C∞ if and only if near(C , 0) is
closed and

(near(C , 0))∞ ∩ posC = {0}.
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Local error bound moduli

Let f : Rn → R ∪ {±∞} be lsc and x̄ ∈ [f ≤ 0] (the level set).

Definition

f has a local error bound for [f ≤ 0] at x̄ , if there exist some τ > 0
and ε > 0 such that,

τd(x , [f ≤ 0]) ≤ f (x), with ‖x − x̄‖ < ε. (1)

f has a global error bound for [f ≤ 0] at x̄ if the above inequality
holds for all x .

The local error bound modulus of f at x̄ is defined by

ebm(f , x̄) := lim inf
x→x̄ ,f (x)>0

f (x)

d(x , [f ≤ 0])
.

Clearly, 0 ≤ ebm(f , x̄) ≤ +∞.
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Local error bound moduli

As ebm(f , x̄) = +∞ whenever x̄ ∈ int([f ≤ 0]), we assume in what
follows that x̄ ∈ bdry[f ≤ 0].
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Local error bound moduli

The outer limiting subdifferential of f at x̄ is defined by

∂>f (x̄) :=

{
lim

k→+∞
vk | ∃xk →f x̄ , f (xk) > f (x̄), vk ∈ ∂f (xk)

}
A lower estimate via outer limiting subdifferential:

If f : Rn → R ∪ {±∞} is lower semicontinuous, we have

d(0, ∂>f (x̄)) ≤ ebm(f , x̄),

If 0 < d(0, ∂>f (x̄)), then f has a local error bound at x̄ .
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Local error bound moduli

Convex and lower semicontinuous case

If f is convex lower semicontinuous, we have

d(0, ∂>f (x̄)) = ebm(f , x̄).

See [Kruger et al (2010), Fabian et al (2010), Ioffe (2015)].
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Local error bound moduli

Sublinear case
It was shown by [Hu and Wang (2011)] that, if f is a sublinear and
lower semicontinuous function, then

ebm(f , 0) = d(0, far(C , 0)),

where C is the unique closed and convex set such that f = σC .

In this case, we also have

S ⊂ far(C , 0) ⊂ ∂>σC (0) ⊂ cl S .

Thus

ebm(f , 0) = d(0, ∂>f (0)) = d(0, ∂>σC (0)).
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Local error bound moduli

Theorem

Let f : Rn → R ∪ {±∞} and x̄ ∈ bdry[f ≤ 0]. If f is locally
Lipschitz and regular at x̄ , then

d (0, ∂>f (x̄)) ≤ ebm(f , x̄) ≤ d(0, ∂>σ∂f (x̄)(0)) ≡ d(0, far(∂f (x̄), 0)).
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Local error bound moduli sharp lower bound for lower-C1 functions

Let f be lower-C1:

f (x) = max
y∈Y

φ(x , y)

in which each function φ(·, y) is of class C1 and the index set
Y ⊂ Rm is compact.
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Local error bound moduli sharp lower bound for lower-C1 functions

Let the active index set mapping Y : Rn ⇒ Rm be defined by

Y (x) := {y ∈ Y |φ(x , y) = f (x)}.

We introduce two collections of index sets as follows:

Y(x̄) :=

{
lim

k→+∞
Y (xk) | xk → x̄ and f (xk) > 0 ∀k

}
,

(outer limiting active index set.)

Y>(x̄) :=

{
arg max
y∈Y (x̄)

〈∇xφ(x̄ , y),w〉
∣∣∣∣∃w : max

y∈Y (x̄)
〈∇xφ(x̄ , y),w〉 > 0

}
.

(optimal active index set.)
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Local error bound moduli sharp lower bound for lower-C1 functions

Theorem

If f is lower-C1, then

d(0, ∂>f (x̄)) = ebm(f , x̄) ≤ d(0, far(∂f (x̄), 0)).

Furthermore, we have

∂>f (x̄) =
⋃

Y ′∈Y(x̄)

conv{∇xφ(x̄ , y)|y ∈ Y ′},

and ⋃
Y ′∈Y>(x̄)

conv{∇xφ(x̄ , y)|y ∈ Y ′} ⊂ far(∂f (x̄), 0)

⊂ cl
⋃

Y ′∈Y>(x̄)

conv{∇xφ(x̄ , y)|y ∈ Y ′}.
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Local error bound moduli sharp upper bound for convex functions

sharp upper bound for convex functions.

Theorem

Assume that f is finite and convex on some convex neighborhood of
x̄ . If the Abadie’s CQ holds, i.e., [df (x̄) ≤ 0] = T[f≤0](x̄), and the
level set [f ≤ 0] admits exact tangent approximation, i.e., there is a
neighborhood V of x̄ such that

[f ≤ 0] ∩ V = (x̄ + T[f≤0](x̄)) ∩ V ,

then the following equalities hold:

d (0, ∂>f (x̄)) = ebm(f , x̄) = d
(
0, ∂>σ∂f (x̄)(0)

)
.
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Local error bound moduli sharp upper bound for convex functions

Consider the linear semi-inf system

〈ay , x〉 ≤ by ∀y ∈ Y ,

where Y is a compact space and ay ∈ Rn and by ∈ R depend
continuously on y ∈ Y .

f (x) := maxy∈Y {〈ay , x〉 − by};

Y (x) := {y ∈ Y | 〈ay , x〉 − by = f (x)}.

According to [Anderson and Goberna (1998)], the linear semi-inf
system is said to be a locally polyhedral if

(pos conv{ay | y ∈ Y (x)})∗ = pos([f ≤ 0]− x) ∀x ∈ [f ≤ 0].

Xiaoqi Yang (PolyU) End Sets 27 / 30



Local error bound moduli sharp upper bound for convex functions

Corollary

If one of the following equivalent properties is satisfied:

(a) The exact tangent approximation condition holds at x̄ ,

(b) The linear semi-inf system is locally polyhedral,

then,

ebm(f , x) = d

0,
⋃

Y ′∈Y(x)

conv{ay | y ∈ Y ′}

 ,

Y(x) := {Y ′|∃w : 〈ay ,w〉 = 1∀y ∈ Y ′, 〈ay ,w〉 < 1 ∀y ∈ Y (x)\Y ′}.

Remark: As a finite linear system is naturally locally polyhedral, our
result recovers [Cánovas et al (2014), Theorem 4.1] for the case of a
finite linear system.
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Conclusions

• The far(∂f (x), 0), in particular d(0, far(∂f (x), 0) > 0, plays an
important role of a regularity assumption.

• The modulus of weak sharp minumum has been used in
convergence analysis for some optimal algorithms. We anticipate that
the upper bound of the local error bound modulus will play a similar
role.
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Conclusions
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