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The Primal Problem

minimize f (x) s.t. x in X , h(x) = 0, g(x) ≤ 0, (P)

f : Y → R, h : Y → Rm, g : Y → Rr , continuous
Y a metric space, X compact subset of Y ,
∅ ( X0 := {x ∈ X : h(x) = 0, g(x) ≤ 0} ( X ,
MP optimal value, ∅ 6= S ∗ set of solutions.

� (P) not convex. Typical approach: use penalty methods

and make (P) unconstrained!
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Our approach: `1-penalty vs. smooth `1-penalty

The (weighted) `1-penalty function for (P) is

ϕ`1(x, u, v) := f (x) +
∑m

i=1 ui |hi(x)|+
∑r

j=1 vj [gj(x)]+ ,

where u ∈ Rm
++, v ∈ Rr

++, [·]+ := max{·, 0}.
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i=1 ui |hi(x)|+
∑r

j=1 vj [gj(x)]+ ,

where u ∈ Rm
++, v ∈ Rr
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Our aim: devise a penalty approach that preserves the
smoothness, and it behaves in a similar way as the `1-penalty
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Two auxiliary functions

Let w ≥ 0. Define η : R× R+ → R+, γ : R× R+ → R+:

η(t,w) :=


t2

2w
if |t| < w,

|t| − w
2

if |t| ≥ w.

γ(t,w) :=



t2

2w
, if 0 < t < w ,

t − w
2
, if t ≥ w ,

0 , if t ≤ 0 .
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The functions η and γ
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Rounding region 
for inequality constraints 

 
For equality constraints
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Properties of η and γ

AKA scaled Huber function, η is quadratic over (−w,w), a
rounding region of ‘width’ w. Outside the rounding region,
η behaves as an `1-penalty term.
η is a smooth minorant of | · |. Hence, for small values of
w > 0, it is a smooth approximation of | · |.
Similarly, γ is a smooth approximation of [·]+ := max{·, 0}
for small values of w > 0.

Note η = minv∈R{|v|+
1

2w
(x − v)2} =: | · |� 1

2w
(·)2.
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We have seen these and many more examples of “smoothing
functions” in Jein-Shan Chen’s VA seminar August 26!

Check his slides for more on smoothing functions and
techniques!

We concentrate from now on in the construction of the
Lagrangian by means of η and γ
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The `1-penalty function

Fix w ≥ 0. For f , h, g as in (P), recall ϕ`1 is

ϕ`1(x, u, v) := f (x) +
∑m

i=1 ui |hi(x)|+
∑r

j=1 vj [gj(x)]+,

where (u, v) > 0, from the definitions:

|Lw(x, u, v)− ϕ`1(x, u, v)| ≤
w
2
(‖u‖1 + ‖v‖1),
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The rounded `1-Lagrangian

Fix w ≥ 0. For f , h, g as in (P), set Lw as

Lw(x, u, v) := f (x) +
∑m

i=1 ui η(hi(x),w) +
∑r

j=1 vj γ(gj(x),w),

where (u, v) > 0, from the definitions:

|Lw(x, u, v)− ϕ`1(x, u, v)| ≤
w
2
(‖u‖1 + ‖v‖1),

� We treat (u, v) as a dual variable, and w as a parameter!
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The Dual Problem for fixed w > 0

Dual function qw defined as

qw(u, v) :=


minx∈X Lw(x, u, v), if (u, v) > 0 ,

−∞ c.c. ,

Dual problem (Dw) is given by

sup(u,v)∈Rm
++×Rr

++
qw(u, v).

We denote its optimal value by MDw .

� Generates a new dual problem for each w > 0!
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Properties of (Dw) for w > 0 fixed

qw is concave and continuous over its domain

Dual Function Values attained:∀ (u, v,w) > 0, exists x̂ s.t.

qw(u, v) = Lw(x̂, u, v) (x̂ depends on (u, v,w))

Weak duality: ∀ (u, v,w), qw(u, v) ≤ MP .

Therefore: MDw ≤ MP for all w > 0
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Asymptotic Strong duality for wk ↓:
Lk := Lwk , Dk := Dwk

∀ k, Lk ≤ Lk+1 ≤ ϕ`1 , and MDk ≤ MDk+1 ≤ MP .

If wk ↓ 0, then limk→∞ Lk(·) = ϕ`1(·).

If wk ↓ w ≥ 0, then limk→∞ MDk = supk∈N MDk = MP .
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Search Direction
Stopping Criterion

Measuring Infeasibility of x: define the vectors

pη(x,w) :=

 η(h1(x),w)
...

η(hm(x),w)

 ≥ 0,
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(x’s violation of h(x) = 0)
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γ(gr(x),w)

 ≥ 0,
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x(u, v,w) =: x̂ ∈ ArgminX Lw(x, u, v).
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Set p(x,w) := (pη(x,w), pγ(x,w)). Fix (u, v,w) > 0, and

x(u, v,w) =: x̂ ∈ ArgminX Lw(x, u, v).

� p(x̂,w) := (pη(x̂,w), pγ(x̂,w)) ∈ ∂qw(u, v).
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Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

Search Direction
Stopping Criterion

The search direction (II)

� Moreover, denote z := (u, v) ≥ 0 and π0 ≥ 0. Recall

x̂ ∈ ArgminX Lw(x, u, v)

p(x̂,w) + π0 ∈ ∂εqw(z),

i.e., an ε-superdifferential of qw, whenever ε ≥ 〈z, π0〉

� p(x̂,w) + π0 provides search direction for improving qw !
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Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

Search Direction
Stopping Criterion

Feasibility implies Optimality! By definition of η, γ:

p(x,w) = 0 ⇐⇒ x ∈ X0, ∀w ≥ 0.

Let S(D) := {(u, v,w) > 0 : qw(u, v) = MP}

x̂ ∈ ArgminX Lw(x, u, v) ∩ X0 ⇐⇒ (x̂, (u, v,w)) ∈ S ∗ × S(D).

In this situation, qw(u, v) = Lw(x̂, (u, v)) = f (x̂) = MP and

� (u, v) are exact penalty parameters!
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Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

Search Direction
Stopping Criterion

The Algorithm (ε-subgradient method)

Choose wk ↓ w ≥ 0. Recall zk = (uk , vk) > 0

Step 1 Set k = 1. Select (z1,w1) > 0.

Step 2 Find xk ∈ ArgminX Lk(·, zk), compute

pk := p(xk ,wk). If pk = 0, STOP.

Otherwise, go to Step 3.

Step 3 Set zk+1 := zk + sk (pk + dk), with sk > 0, dk ≥ 0.

Set k := k + 1 and go to Step 2.
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Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

Search Direction
Stopping Criterion

Properties of the Algorithm
If Algorithm stops in Step 2: It does so at a primal-dual
solution: xk ∈ S ∗ and (zk ,wk) ∈ S(D). This fact justifies the
stopping criteria.

¤ What choices of sk and dk ensure convergence?

� Classical subgradient direction doesn’t necessarily

improve objective value at each iteration ø difficult to find
good stepsize!
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Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

Convergence of dual values
Finite convergence
Primal convergence

Convergence Results for every choice of sk > 0

zk → z ⇐⇒
∑∞

k=1 sk(pk + dk) < ∞ ⇐⇒ (zk) bounded.

Monotone Convergence of dual values:
MP ≥ qk := qwk(zk) ↑ (not necessarily strictly)
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Primal or Dual Optimality means finite termination
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So primal optimality⇐⇒ finite termination

If ∃ d̂ > 0 s.t. dk ≥ d̂, ∀ k, and ∃ k0 s.t. (zk0 ,wk0) ∈ S(D) then

either pk0 = 0 or pk0+1 = 0.

21|46



Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

Convergence of dual values
Finite convergence
Primal convergence

Primal or Dual Optimality means finite termination

pk = 0⇐⇒ xk ∈ S ∗⇐⇒ algorithm stops.

So primal optimality⇐⇒ finite termination

If ∃ d̂ > 0 s.t. dk ≥ d̂, ∀ k, and ∃ k0 s.t. (zk0 ,wk0) ∈ S(D) then

either pk0 = 0 or pk0+1 = 0.

Hence, dual optimality⇐⇒ finite termination

21|46



Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

Convergence of dual values
Finite convergence
Primal convergence

Primal or Dual Optimality means finite termination

pk = 0⇐⇒ xk ∈ S ∗⇐⇒ algorithm stops.

So primal optimality⇐⇒ finite termination

If ∃ d̂ > 0 s.t. dk ≥ d̂, ∀ k, and ∃ k0 s.t. (zk0 ,wk0) ∈ S(D) then

either pk0 = 0 or pk0+1 = 0.

Hence, dual optimality⇐⇒ finite termination

So, if k → ∞⇒ xk 6∈ S ∗, (zk ,wk) 6∈ S(D), ∀ k.
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Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

Convergence of dual values
Finite convergence
Primal convergence

Primal-Dual convergence results for two choices of sk

(a) sk :=
1

‖pk‖2
, or (b) sk := ‖pk‖2, and wk ↓ w ≥ 0. Then,

Every accumulation point of (xk) is in S ∗ and qk ↑ MP .

If (zk) is bounded, then zk → z with (z,w) ∈ S(D),

If dk ≥ d̂ > 0, then (qk) is strictly increasing.
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Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

An equality-constrained problem
Kissing number problem
Markov–Dubins path

The Problem

(Pc)


min
x∈X

f (x)

subject to hi(x) = 0 , i = 1, . . . ,m ,

gj(x) ≤ 0 , j = 1, . . . , r ,

with X ⊂ Rn, compact, and f , h, g are differentiable.
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Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

An equality-constrained problem
Kissing number problem
Markov–Dubins path

For c ∈ Rt, denote ‖[c]+‖∞ := maxj [cj ]+

The Primal-Dual-Penalty Method (PDPM)
Step 1 Set z0 = (u0, v0) > 0, w0 = 1, ε > 0, k = 0.
Step 2 ( Subproblem ) Given zk = (uk, vk), compute

xk ∈ Argmin
x∈X

f (x) + 〈zk, p(x,wk)〉.

Step 3 (stopping criterion) If
max{‖h(xk)‖∞, ‖[g(xk)]+‖∞} < ε, stop.

Step 4 (Update penalty parameters)

uk+1 := uk + sk pη(xk,wk),

vk+1 := vk + sk pγ(xk,wk) ,

with sk > 0. Set k = k + 1, wk+1 < wk, and go to
Step 2.
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Duality Framework for non-convex optimization
Solving the sequence of dual problems

Convergence Analysis
Numerical Experiments

An equality-constrained problem
Kissing number problem
Markov–Dubins path

Remarks on this implementation

Used dk = 0, ∀ k (pure subgradient method)

Used only sk = 1
‖p(xk ,wk)‖2

, easy to implement and small size in
early iterations

if sk = ‖p(xk,wk)‖2 , sk may be too large initially and cause
numerical instabilities

Subproblem in Step 2 solved with modelling language AMPL,
paired with optimization software Knitro.

Other solvers can be used, i.e., Algencan, IPOPT, SNOPT, etc.
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The Numerical Experiments

Tested with non-convex differentiable test problems, so as to use the
smoothing advantages.

We compare with case when (Pc) is solved directly with
AMPL+Knitro, in the conventional way, i.e., “Knitro on its
own.”

Overall: method is successful, and, in presence of multiple local
minima, method can find deeper minima

Global minimum can be obtained more often than the case when
using a local optimization solver conventionally (on its own)
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Problem 79, W. Hock, and K. Schittkowski, 1981

Small-scale problem, n = 5 and m = 3, r = 0.

(P1)


min (x1 − 1)2 + (x1 − x2)

2 + (x2 − x3)
2 + (x3 − x4)

4 + (x4 − x5)
4

s. t. x1 + x2
2 + x3

3 − 2 − 3
√

2 = 0 ,

x2 − x2
3 + x4 + 2 − 2

√
2 = 0 , x1 x5 − 2 = 0 ,

used wk+1 = 1/(k + 1)6.

We identified six isolated local minimizers, best one coincides with the
one reported by Hock-Schittkowski.
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Results for (P1)

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6

x∗

1.191127
1.362603
1.472818
1.635017
1.679081

2.717678
2.033384

−0.847948
−0.485941

0.735922

−0.766173
2.666726

−0.468170
−1.619116
−2.610377

−1.246781
2.422242
1.174983

−0.213229
−1.604131

0.949471
−2.266633

0.537796
3.384285
2.106436

−2.702207
−2.989944

0.171917
3.847927

−0.740136
f (x∗) 0.0787768 13.9668249 27.4520041 27.5219615 86.5275397 649.5048650

Knitro on its own
PDPM

45% 12% 7% 11% 18% 7%
100% 0% 0% 0% 0% 0%

Table: (P1) – Local optimal solutions and percentage of times ”Knitro
on its own” or PDPM finds a solution, after 30,000 runs of each
approach with random initial guesses.
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Observations for (P1), call solution 1 the “global” one.

“Knitro-on its own” took ≈ 0.023 seconds (averaged over 30,000
runs), while PDPM took 0.12 seconds (five times longer).

PDPM can be made faster by solving subproblem in Step 2 with
coarser feasibility and optimality tolerances, and refining these
closer to convergence.

If the aim is to find solution 1, Knitro on its own will be
“expected” to be run more than twice, given the probability
0.45, for it to find solution 1.

If we run PDPM only once, we get solution 1.
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The kissing number κn

The kissing number problem seeks maximum number κn of
non-overlapping spheres of radius r in Rn that simultaneously touch
(kiss) a central sphere of the same radius. Formulated as smooth
problem:

(P2)


max α

subject to ‖yk‖2 = 1 , k = 1, . . . p ,

‖yi − yj‖2 ≥ α2 , i, j = 1, . . . , p, j > i ,

where α ∈ R, yk ∈ Rn (the coordinates of the kth sphere’s centre), are
the optimization variables. Here, the radii r of the spheres is r = 1/2.

We used wk+1 = 1/(k + 1)4.
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For n = 3, κn = 12

Figure from E.W. Weisstein, Kissing Number,
mathworld.wolfram.com/KissingNumber.html.
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Background on (P2)

The maximum p, for which α ≥ 1 is κn.

Many stationary points, so κn difficult to compute.

For n = 1, 2, 3 and 4, κn = 2, 6, 12 and 24, respectively.

Only lower/upper bounds are known for n = 5, 6 and 7, namely

40 ≤ κ5 ≤ 44 , 72 ≤ κ6 ≤ 78 and 126 ≤ κ7 ≤ 134 .

Our aim is not to improve these bounds (very hard!), but test
PDPM’s performance, and compare it with Knitro on its own.
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Results for (P2)

Problem size Max of min dist. betw. two spheres[
n
p

]
# of
var.

# of
constr. Approach α∗

min α∗
ave α∗

max
Percentage
α∗ > 1

CPU time
[sec][

5
38

]
191 741 Knitro on its own 0.9807810 0.9927489 1.0019176 0.7% 0.89

PDPM 0.9912749 0.9968095 1.0037513 16.7% 0.92[
6
62

]
373 1953 Knitro on its own 0.9804186 0.9890666 0.9961310 0.0% 8.8

PDPM 0.9875817 0.9938880 1.0041174 1.1% 4.7[
7
92

]
645 4278 Knitro on its own 0.9886343 0.9953140 0.9991757 0.0% 65

PDPM 0.9946906 0.9987890 1.0021734 13.2% 25

Table: (P2) – Numerical results with Knitro on its own and PDPM, after
1,000 runs. The locally optimal solutions (with values α∗) are found by
each approach with random initial guesses.
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Histogram of local optima: n = 5, p = 38

Figure: (P2) Knitro (green) vs. PDPM (red), overlaps (brown).
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Histogram of local optima: n = 6, p = 62

Figure: (P2) Knitro (green) vs. PDPM (red), overlaps (brown)
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Histogram of local optima: n = 7, p = 92

Figure: (P2) Knitro (green) vs. PDPM (red), overlaps (brown).
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Observations for (P2)

Distribution of maxima found by PDPM skewed to the right,
indicating tendency to find higher maxima.

Tendency in finding higher maxima accentuated for larger
instances.

For n = 6, 7, PDPM finds viable solution in ≈ 7.2 and 31.7 min,
respectively, while Knitro is expected not to find any.
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Posed, studied by Markov, 1889, solved by Dubins, 1957
Aim: Find the shortest planar curve of constrained curvature joining
two points with prescribed tangents. [Kaya, 2017] re-formulates as
optimal control problem, and by maximum principle reduces it to
finite-dimensional, denoted below as (Ps).

min ` =

5∑
j=1

ξj, s.t.

x0 − xf +
1
a
(− sin θ0 + 2 sin θ1 − 2 sin θ2 + 2 sin θ4 − sin θf ) + ξ3 cos θ2 = 0 ,

y0 − yf +
1
a
(cos θ0 − 2 cos θ1 + 2 cos θ2 − 2 cos θ4 + cos θf ) + ξ3 sin θ2 = 0 ,

sin θf = sin θ5 , cos θf = cos θ5 , ξj ≥ 0 , for j = 1, . . . , 5 ,

where θ1 = θ0 + a ξ1, θ2 = θ1 − a ξ2 , θ4 = θ2 + a ξ4 , and

θ5 = θ4 − a ξ5 .
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Problem (Ps), run PDPM with wk = 1/(k + 1)6

After simplification, (Ps) is expressed in terms of ξ and four
equality constraints.

We consider (Ps) with ((x0, y0), θ0) = ((0, 0),−π/3),

((xf , yf ), θf ) = ((0.4, 0.4),−π/6), and a = 3

[Kaya, 2017] reports 7 stationary solutions.
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Results for (Ps)

Soln 1 Soln 2 Soln 3 Soln 4 Soln 5 Soln 6 Soln 7

ξ∗

0.0000
1.5822
0.5914
0.0000
0.3376

0.0000
1.7354
0.0000
0.3063
0.4908

0.7096
0.0000
0.5914
1.5594
0.0000

0.8627
0.3064
0.0000
1.7126
0.0000

0.0000
0.3818
0.0000
1.7880
1.2317

1.6036
1.7880
0.0000
0.3590
0.0000

0.0000
1.6781
1.0093
1.8526
0.0000

`∗ 2.5113 2.5326 2.8603 2.8817 3.4015 3.7506 4.5401
Knitro on its own

PDPM
8% 0% 3% 0% 40% 24% 25%
36% 0% 62% 0% 2% 0% 0%

Table: (Ps) – Local optimal solutions, and percentage of the times
Knitro vs. PDPM, to find solution of length `∗, after 20,000 runs of each
approach with random initial guesses.
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Summary of results for (Ps)

Knitro found 89% of the time solutions with `∗ ≥ 3.4, while
PDPM found 98% of the time solutions with `∗ ≤ 2.9.

We would expect to find good quality solution (Solutions 1 and
3) by running PDPM just once, in 0.3 sec. Knitro on its own is
expected to be run about nine times (≈ 0.4 sec) to get the same
quality solutions.

As for Kissing Number Problem, PDPM is more time-efficient
when compared with Knitro, for larger instances.
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Soln 1: `∗ = 2.5113: 8% vs. 36%(PDPM )
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Soln 3: `∗ = 2.8603: 3% vs. 62%(PDPM )
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Sol 5: `∗ = 3.4015: 40% vs. 2%(PDPM )
Sol 6: `∗ = 3.7506: 24% vs. 0%(PDPM )
Sol 7: `∗ = 4.5401: 25% vs. 0%(PDPM )

Total: 89% vs. 2%(PDPM )

Sol 5 Sol 6 Sol 7
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Conclusion

We analyzed a primal-dual scheme with a sequence of dual
problems, established strong asymptotic duality.

We used the theory to define a primal-dual ε-subgradient
algorithm which reduces wk in each iteration, forcing the
Lagrangians to approach the weighted-`1-penalty function.

The primal sequence accumulates at a solution of (P). If
the dual variables happen to be bounded, they converge to
a dual solution (an exact penalty parameter)
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Open questions

Can we consider other types of Lagrangians that smoothly
approximate a nonsmooth Lagrangian, and devise similar
asymptotic schemes?

What can be said if X is not compact?

How will the numerical results be affected if we implement
an ε-subgradient step?

Extensions to semi-infinite programming?
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