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© Solving the sequence of dual problems
@ Search Direction
e Stopping Criterion

@ Convergence Analysis
e Convergence of dual values
e Finite convergence
@ Primal convergence

@ Numerical Experiments
@ An equality-constrained problem
o Kissing number problem
@ Markov—Dubins path
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minimize f(z) s.t. z in X, h(z) =0, g(z) <0, (P)

o f:Y—>R h:Y—-R™ g:Y — R" continuous
e Y a metric space, X compact subset of Y,
e N C Xp:={zeX : h(z)=0, g(z) <0} C X,

e Mp optimal value, () # S* set of solutions.

Q@ (P) not convex. Typical approach: use penalty methods

and make (P) unconstrained!
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Rounded
The Dual

Our approach: ¢;-penalty vs. smooth ¢;-penalty

The (weighted) ¢;-penalty function for (P) is

poy (2w, 0) = f (@) + 2250 wilhi(@)| + 252 v [g5(2)]+

where v € R, , v e R, [[|+ := max{-,0}.
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Duality Framework for non-convex optimization
Y o E The (original) Pumal Problem

Rounded Lag
The lm.lpm

Our approach: ¢i-penalty vs. smooth é’l—pena,lty

The (weighted) ¢1-penalty function for (P) is

P (7, u,v) = (2) + 200 wilhi(0)] + 3252, v [g;())

where v € R, v € R, , [-]+ := max{-, 0}.

For (P) smooth, ¢1-penalty function not attractive (destroys
smoothness).
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Duality Framework for non-convex optimization - q
’ E The (original) Primal Problem

Rounded Lagrangians
The Dual problem induced by Ly,

Our approach: ¢;-penalty vs. smooth ¢;-penalty

The (weighted) ¢;-penalty function for (P) is

oo (2, u,0) = f(2) + 200 wilhi()| + 3252 v [g5(2))+

where v € R, v € R! |, [-] := max{-, 0}.

Our aim: devise a penalty approach that preserves the
smoothness, and it behaves in a similar way as the ¢1-penalty
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Duality Framework for non-convex optimization - 3
X o I The (original) Primal Problem
Rounded Lagrangians

The Dual problem induced by Ly,

Two auxiliary functions

Let w> 0. Definen: Rx Ry — Ry, v: R xRy = Ry

2 2w’ if 0<t<w,
— if [t| < w, v

: . 2w ; . w
n(t, w) = (t, w) := t_§’ if t>w,

w
t|— = if |t] > w.
t—g 2w

0, if t<0.
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Duality Framework for non-convex optimization

The functions 1 and ~

The (original) Primal Problem
Rounded Lagrangians
The Dual problem induced by Ly,

Rounding region
For equality constraints

[41-9 < Qo) 4]

.
7

Rounding region

for inequality constraints

— SS9 ]

,‘/&/@e Ry ﬂﬂ
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Properties of n and v

o AKA scaled Huber function, n is quadratic over (—w, w), a
rounding region of ‘width’ w. Outside the rounding region,
1 behaves as an f1-penalty term.

@ 7 is a smooth minorant of |- |. Hence, for small values of
w > 0, it is a smooth approximation of | - |.

e Similarly, v is a smooth approximation of [-]4 := max{-,0}
for small values of w > 0.
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Duality Framework for non-convex optimization .. .
Y o I The (original) Primal Problem

Rounded Lagrangians
The Dual problem induced by L,

Properties of n and v

o AKA scaled Huber function, n is quadratic over (—w, w), a
rounding region of ‘width’ w. Outside the rounding region,
1 behaves as an f1-penalty term.

@ 7 is a smooth minorant of |- |. Hence, for small values of
w > 0, it is a smooth approximation of | - |.

e Similarly, v is a smooth approximation of [-]4 := max{-,0}

for small values of w > 0.
1

. 1
o Note n = minyer{|v| + %(93 —v)?*} =] |D%(')2~
A
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@ We have seen these and many more examples of “smoothing
functions” in Jein-Shan Chen’s VA seminar August 26!
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Duality Framework for non-convex optimization .. .
Y o I The (original) Primal Problem

Rounded Lagrangians

The Dual problem induced by Ly

@ We have seen these and many more examples of “smoothing
functions” in Jein-Shan Chen’s VA seminar August 26!

@ Check his slides for more on smoothing functions and
techniques!




Duality Framework for non-convex optimization . .
Y o I The (original) Primal Problem

Rounded Lagrangians

The Dual problem induced by Ly

o We concentrate from now on in the construction of the
Lagrangian by means of n and ~
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Duality Framework for non-convex optimization .. .
Y T The (original) Primal Problem

Rounded Lagrangians
The Dual problem induced by L,

The ¢1-penalty function

Fix w > 0. For f, h, g as in (P), recall ¢y, is

P, (2, 0, 0) = f (@) + 250w [hi(@)] + 2050 i [95(2)]+

where (u, v) > 0,
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Duality Framework for non-convex optimization .. .
Y T The (original) Primal Problem

Rounded Lagrangians
The Dual problem induced by L,

The rounded /;-Lagrangian

Fix w > 0. For f,h, g as in (P), set L, as

Lw(% u, 'U) =f ($) + Z:nzl Uin(hi(x)v U}) + 2;21 Uj 7(9j($)> ’U)),

where (u, v) > 0, from the definitions:

w
| Lu(2, w, v) = @y (2, w, v)| < S ([[ull + [oll),

@ We treat (u,v) as a dual variable, and w as a parameter!

............
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Rounded ns
The Dual problem induced by Ly,

The Dual Problem for fixed w > 0

Dual function ¢, defined as

mingex Ly(z,u, v), if (u,v) >0,

qu(u, v) :=
—0 c.c.,

Dual problem (D) is given by

SUD(y,v)eR™, xR7, | qQu(u, ).
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Rounded ns
The Dual problem induced by Ly,

The Dual Problem for fixed w > 0

Dual function ¢, defined as

mingex Ly(z,u, v), if (u,v) >0,

qu(u, v) :=
—0 c.c.,

Dual problem (D) is given by

Sup(u,v)GRfﬁJrXRlJr qw(ua U)'

We denote its optimal value by Mp, .
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Duality Framework for non-convex optimization 5 3
Y 5 E The (ori ) Pr 1 Problem

Roundec s
The Dual lem induced by Ly,

The Dual Problem for fixed w > 0

Dual function ¢, defined as

mingex Ly(z,u, v), if (u,v) >0,

qu(u, v) :=
—0 c.c.,

Dual problem (D) is given by

Sup(u,v)GRfﬁJrXRlJr qw(ua U)'

We denote its optimal value by Mp, .
@ Generates a new dual problem for each w > 0!
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Properties of (D,,) for w > 0 fixed

Gy is concave and continuous over its domain
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Rounded ;
The Dual problem induced by Ly,

Properties of (D,,) for w > 0 fixed

Gy is concave and continuous over its domain

e Dual Function Values attained:V (u, v, w) > 0, exists Z s.t.
qu(u, v) = Ly(Z, u,v) (z depends on (u, v, w))

o Weak duality: V (u, v, w), qu(u,v) < Mp.
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South Australia
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Duality Framework for

Rounded ;
The Dual problem induced by Ly,

Properties of (D,,) for w > 0 fixed

Gy is concave and continuous over its domain

e Dual Function Values attained:V (u, v, w) > 0, exists Z s.t.

qu(u, v) = Ly(Z, u,v) (z depends on (u, v, w))

o Weak duality: V (u, v, w), qu(u,v) < Mp.

e Therefore: Mp, < Mp for all w >0

University of
South Australia

13|46



Duality Framework for non-convex optimization . .
Y o I The (orig Primal Problem

Rounded Lagrangians
The Dual problem induced by Ly,

Asymptotic Strong duality for wy |:
Ll.: = L'wka Dk = D'wk

o Vk, Ly < Lit1 < @uy,
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Duality Framework for non-convex optimization - N 5
Y o T The (original) Primal Problem

Rounded yians
The Dual problem induced by Ly,

Asymptotic Strong duality for wy |:
LA: = L'wka Dk: = D'wk

o Vk, L < Lipt1 < ¢p,, and Mp, < MDk+1 < Mp.

o If wy | 0, then | limy_ o Ly(:) = p, (+).

o If wy | w>0,then | limy_o Mp, = suprey Mp, = Mp.

Q@ This justifies solving (Dy)!
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Solving the sequence of dual problems Search Direction
Stopping Criterion

Measuring Infeasibility of z: define the vectors

n(h(z), w) v(g1(z), w)
(2, w) = : >0, py(z,w):= : >0,
1(hm(2), w) V(97 (2), w)

(z’s violation of g(z) < 0)
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Solving the sequence of dual problems Search Direction
Stopping Criterion

Measuring Infeasibility of z: define the vectors

Set p(z, w) := (py(z, w), py(z, w)). Fix (u, v, w) > 0, and

z(u, v, w) =: & € Argminy L, (z, u, v).
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Solving the sequence of dual problems Search Direction

Stopping Criterion

Measuring Infeasibility of z: define the vectors

Set p(z, w) := (py(z, w), py(z, w)). Fix (u, v, w) > 0, and
z(u, v, w) =: & € Argminy L, (z, u, v).
L& p(a.w) 1= (9 ). s (3.0) € D1, 0).

15]46



Solving the sequence of dual problems Search Direction
Stopping Criterion

The search direction (II)

@ Moreover, denote z := (u,v) > 0 and 7y > 0.
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The search direction (II)

Q@ Moreover, denote z := (u,v) > 0 and 7y > 0. Recall

T € Argminy Ly (z, u, v)

p(iv w) + 7o € asQw(Z)7

i.e., an e-superdifferential of g, whenever ¢ > (z, )
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Solving the sequence of dual problems Search Direction
Stopping Criterion

The search direction (II)

Q@ Moreover, denote z := (u,v) > 0 and 7y > 0. Recall

T € Argminy Ly (z, u, v)

p(iv w) + 7o € asQw(Z)7

i.e., an e-superdifferential of g, whenever ¢ > (z, )

@ p(Z, w) + my provides search direction for improving g, !

University of
South Australia
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Solving the sequence of dual problems Search Direction
Stopping Criterion

Feasibility implies Optimality! By definition of 7, v:

p(z,w) =0<=z € X, Vw > 0.

Let S(D) := {(u,v,w) >0 : qu(u,v) = Mp}

z € Argminy Ly (z, u,v) N Xg <= (Z, (u, v, w)) € S* x S(D).

In this situation, gy (u, v) = Ly(2Z, (u,v)) = f(Z) = Mp and

Q& (u, v) are exact penalty parameters!

17|46
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The Algorithm (e-subgradient method)

Choose wg | w > 0. Recall 2* = (u¥, %) > 0

Step 1 Set k = 1. Select (!, wy) > 0.
Step 2 Find z* € Argmin y Ly(-, 2*), compute
pF = p(aF, wy). If p¥ =0, STOP.

Otherwise, go to Step 3.
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Solving the sequence of dual problems Search Direction
Stopping Criterion

The Algorithm (e-subgradient method)

Choose wg | w > 0. Recall 2* = (u¥, %) > 0

Step 1 Set k = 1. Select (!, wy) > 0.
Step 2 Find z* € Argmin y Ly(-, 2*), compute
pF = p(aF, wy). If p¥ =0, STOP.
Otherwise, go to Step 3.
Step 3 Set 2F 1 := 2% + 5, (p* + d¥), with s, > 0, d¥ > 0.

Set k:= k41 and go to Step 2.

18]46
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Solving the sequence of dual problems Search Direction
Stopping Criterion

Properties of the Algorithm

If Algorithm stops in Step 2: It does so at a primal-dual
solution: z% € S* and (2, w;,) € S(D). This fact justifies the
stopping criteria.
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Properties of the Algorithm

If Algorithm stops in Step 2: It does so at a primal-dual
solution: z% € S* and (2, w;,) € S(D). This fact justifies the
stopping criteria.

& What choices of s; and d* ensure convergence?
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Solving the sequence of dual problems Search Direction
Stopping Criterion

Properties of the Algorithm

If Algorithm stops in Step 2: It does so at a primal-dual
solution: z% € S* and (2, w;,) € S(D). This fact justifies the
stopping criteria.

& What choices of s; and d* ensure convergence?

@ Classical subgradient direction doesn’t necessarily

improve objective value at each iteration > difficult to find
good stepsize!
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Finite e

Convergence Analysis .
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> - Primal «

Convergence Results for every choice of s, > 0

0 2F— 2= 3" sk(pF + dF) < 0o <= (2*) bounded.
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Convergence of dual values
Finite e

Convergence Analysis .
& >
> - Primal «

Convergence Results for every choice of s, > 0

0 2F— 2= 3" sk(pF + dF) < 0o <= (2*) bounded.

@ Monotone Convergence of dual values:

Mp > g, := qu,(2¥) 1 (not necessarily strictly)
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Convergence of dual values
Finite convergence

Convergence Analysis ,
' - Primal convergence

Primal or Dual Optimality means finite termination

pF = 0<= ¥ € §* <= algorithm stops.

University of
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Convergence Analysis

Primal or Dual Optimality means finite termination

pF = 0= 1F € §* <= algorithm stops.
So primal optimality <= finite termination

If3d>0s.t. d* > d Vk and Tk s.t. (2%, wy,) € S(D) then

either p* = 0 or pfotl = 0.

Hence, dual optimality <= finite termination
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Convergence of dual values
Fin 0 ce

Convergence Analysis ,
' - Primal conver

Primal or Dual Optimality means finite termination

pF = 0= 1F € §* <= algorithm stops.
So primal optimality <= finite termination

If3d>0s.t. d*>d Vk and Fko s.t. (2%, wy,) € S(D) then

either p*o = 0 or pfotl = 0.
Hence, dual optimality <= finite termination
So, if k = co=aF & S*, (2%, wy) € S(D), Vk.

2146



Convergence Analysis

Primal-Dual convergence results for two choices of s;

1
(a) s := ol or (b) s, := ||p¥||2, and wy | w > 0. Then,
D™ll2
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Convergence Analysis
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o Every accumulation point of (z*) is in S* and ¢ T Mp.
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Jual values

Convergence Analysis o
N s - Primal conv

Primal-Dual convergence results for two choices of s;

1
(a) s := ol or (b) s, := ||p¥||2, and wy | w > 0. Then,
D™ll2

o Every accumulation point of (z*) is in S* and ¢ T Mp.
o If (z¥) is bounded, then 2* — z with (2, w) € S(D),

o If d* > d > 0, then (gx) is strictly increasing.
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The Problem

min  f(2)

(Pc) § subject to  hi(z) =0, i=1,...,m,

with X C R™, compact, and f, h, g are differentiable.

University of
South Australia
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For ¢ € RY, denote ||[c]+ |00 := max;[c;]+

The Primal-Dual-Penalty Method (PDPM)
Step 1 Set 2% = (u%,4°) >0, wy=1, €>0, k=0.
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For ¢ € RY, denote ||[c]+ |00 := max;[c;]+

The Primal-Dual-Penalty Method (PDPM)
Step 1 Set 2% = (u%,4°) >0, wy=1, €>0, k=0.

Step 2 ( ) Given z* = (u¥, v*), compute

2% € Argmin f(z) + (25, p(z, wp)).
reX
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For ¢ € RY, denote ||[c]+ |00 := max;[c;]+

The Primal-Dual-Penalty Method (PDPM)
Step 1 Set 2% = (u®,v%) >0, wy=1, >0, k=0.

Step 2 ( ) Given z* = (u¥, v*), compute

2% € Argmin f(z) + (25, p(z, wp)).
reX

Step 3 (stopping criterion) If
max{[|A(z*)]|oo, [[9(2*)]+]loc} < €, stop.
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For ¢ € RY, denote ||[c]+ |00 := max;[c;]+

The Primal-Dual-Penalty Method (PDPM)
Step 1 Set 2% = (u%,4°) >0, wy=1, €>0, k=0.
Step 2 ( ) Given zF = (uF, v*), compute

e Argmin f(z) + (zk, p(z, wg)).
zeX

Step 3 (stopping criterion) If
max{|[2(z")|0 [[[9(2*)] 4]0} < €, stop.
Step 4 (Update penalty parameters)

k+1

U = uF + s pn(a:k, W),

=R o p,y(:zzk, Wk)
with sp > 0. Set k=k+1, w1 < wg, and go to
Step 2.
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Remarks on this implementation

@ Used d* = 0, Yk (pure subgradient method)

University of
South Australia
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early iterations
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Remarks on this implementation

@ Used d* = 0, Yk (pure subgradient method)

@ Used only s* = m, easy to implement and small size in

early iterations

o if s* = ||p(z*, wy)|]2, s* may be too large initially and cause
numerical instabilities

University of
South Australia
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Remarks on this implementation

@ Used d* = 0, Yk (pure subgradient method)

@ Used only s* = m, easy to implement and small size in

early iterations

o if s* = ||p(z*, wy)|]2, s* may be too large initially and cause
numerical instabilities

° in (Step2) solved with modelling language AMPL,
paired with optimization software Knitro.

University of
South Australia
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Remarks on this implementation

@ Used d* = 0, Yk (pure subgradient method)

@ Used only s* = m, easy to implement and small size in

early iterations

o if s* = ||p(z*, wy)|]2, s* may be too large initially and cause
numerical instabilities

° in (Step2) solved with modelling language AMPL,
paired with optimization software Knitro.

@ Other solvers can be used, i.e., Algencan, IPOPT, SNOPT, etc.

University of
South Australia
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The Numerical Experiments

Tested with non-convex differentiable test problems, so as to use the
smoothing advantages.

University of
South Australia
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The Numerical Experiments

Tested with non-convex differentiable test problems, so as to use the
smoothing advantages.

@ We compare with case when (Pc) is solved directly with

AMPL+Kanitro, in the conventional way, i.e., “Knitro on its

own.”

University of
South Australia
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The Numerical Experiments

Tested with non-convex differentiable test problems, so as to use the
smoothing advantages.

@ We compare with case when (Pc) is solved directly with

AMPL+Kanitro, in the conventional way, i.e., “Knitro on its

own.”

@ Overall: method is successful, and, in presence of multiple local
minima, method can find deeper minima

University of
South Australia
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The Numerical Experiments

Tested with non-convex differentiable test problems, so as to use the
smoothing advantages.

@ We compare with case when (Pc) is solved directly with

AMPL+Kanitro, in the conventional way, i.e., “Knitro on its

own.”

@ Overall: method is successful, and, in presence of multiple local
minima, method can find deeper minima

@ Global minimum can be obtained more often than the case when
using a local optimization solver conventionally (on its own)

University of
South Australia
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Problem 79, W. Hock, and K. Schittkowski, 1981

Small-scale problem, n =5 and m =3, r = 0.
min (113'1 - 1)2 + (113'1 - I2)2 + (.Z'Q — 373)2 + (.Z'3 - 164)4 + (CE4 - 1135)4

(P1) § . t. m4 2+ —2-3v2=0,
mg—x§+x4+2—2\@:0,$1x5—2:(),

used wyy1 = 1/(k+ 1)°.
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Problem 79, W. Hock, and K. Schittkowski, 1981

Small-scale problem, n =5 and m =3, r = 0.
min (113'1 - 1)2 + (113'1 - I2)2 + (.Z'Q — 373)2 + (.Z'3 - 164)4 + (CE4 - 1135)4

(P1) § . t. m4 2+ —2-3v2=0,
mg—x§+x4+2—2\@:0,$1x5—2:(),

used wyy1 = 1/(k+ 1)°.

We identified six isolated local minimizers, best one coincides with the
one reported by Hock-Schittkowski.
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Results for (P1)

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6

1.191127 2.717678 —0.766173 —1.246781 0.949471 —2.702207

1.362603 2.033384 2.666726 2.422242 —2.266633 —2.989944

z* 1.472818 —0.847948 —0.468170 1.174983 0.537796 0.171917

1.635017 —0.485941 —1.619116 —0.213229 3.384285 3.847927

1.679081 0.735922 —2.610377 —1.604131 2.106436 —0.740136

flz*) 0.0787768 13.9668249 27.4520041 27.5219615 86.5275397  649.5048650

Knitro on its own 45% 12% % 11% 18% %
PDPM 100% 0% 0% 0% 0% 0%

Table: (P1) — Local optimal solutions and percentage of times "Knitro
on its own” or PDPM finds a solution, after 30,000 runs of each
approach with random initial guesses.
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Observations for (P1), call solution 1 the “global” one.

@ “Knitro-on its own” took ~ 0.023 seconds (averaged over 30,000
runs), while PDPM took 0.12 seconds (five times longer).

University of
South Australia
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Observations for (P1), call solution 1 the “global” one.

@ “Knitro-on its own” took ~ 0.023 seconds (averaged over 30,000
runs), while PDPM took 0.12 seconds (five times longer).

@ PDPM can be made faster by solving subproblem in Step 2 with
coarser feasibility and optimality tolerances, and refining these
closer to convergence.

University of
South Australia
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Observations for (P1), call solution 1 the “global” one.

@ “Knitro-on its own” took ~ 0.023 seconds (averaged over 30,000
runs), while PDPM took 0.12 seconds (five times longer).

@ PDPM can be made faster by solving subproblem in Step 2 with
coarser feasibility and optimality tolerances, and refining these
closer to convergence.

@ If the aim is to find solution 1, Knitro on its own will be
“expected” to be run more than twice, given the probability
0.45, for it to find solution 1.

University of
South Australia
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Observations for (P1), call solution 1 the “global” one.

@ “Knitro-on its own” took ~ 0.023 seconds (averaged over 30,000
runs), while PDPM took 0.12 seconds (five times longer).

@ PDPM can be made faster by solving subproblem in Step 2 with
coarser feasibility and optimality tolerances, and refining these
closer to convergence.

@ If the aim is to find solution 1, Knitro on its own will be
“expected” to be run more than twice, given the probability
0.45, for it to find solution 1.

@ If we run PDPM only once, we get solution 1.
S et
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The kissing number k,,

30|46

The kissing number problem seeks maximum number k,, of
non-overlapping spheres of radius 7 in R™ that simultaneously touch
(kiss) a central sphere of the same radius. Formulated as smooth
problem:

max
(P2) { subject to |wl?=1, k=1,...p,
||yi_yj‘|22a27 Z',jzl,.-.,p, ]>Z7

where « € R, y;, € R™ (the coordinates of the kth sphere’s centre), are
the optimization variables. Here, the radii r of the spheres is r = 1/2.

University of
South Australia



An equality-constrained problem
number problem

. ~ . Markov—D ins pe
Numerical Experiments Ml e —IDlsine el

The kissing number k,,

30|46

The kissing number problem seeks maximum number k,, of
non-overlapping spheres of radius 7 in R™ that simultaneously touch
(kiss) a central sphere of the same radius. Formulated as smooth
problem:

max
(P2) { subject to |wl?=1, k=1,...p,
||yi_yj‘|22a27 Z',jzl,.-.,p, ]>Z7

where « € R, y;, € R™ (the coordinates of the kth sphere’s centre), are
the optimization variables. Here, the radii r of the spheres is r = 1/2.

We used wgy1 = 1/(k+ 1)%
A



Kissing number problem

Numerical Experiments

For n =3, k, = 12

Figure from E.W. Weisstein, Kissing Number,

mathworld.wolfram.com/KissingNumber.html. _—
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Background on (P2)

@ The maximum p, for which o > 1 is k.

University of
South Australia
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@ Many stationary points, so k, difficult to compute.
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Background on (P2)

@ The maximum p, for which o > 1 is k.

@ Many stationary points, so k, difficult to compute.

@ For n=1,2,3 and 4, k, = 2,6,12 and 24, respectively.

@ Only lower/upper bounds are known for n = 5,6 and 7, namely

40< k<44, T2<kKkg<T78 and 126 <k; <134.

University of
South Australia
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Background on (P2)

@ The maximum p, for which o > 1 is k.

@ Many stationary points, so k, difficult to compute.

@ For n=1,2,3 and 4, k, = 2,6,12 and 24, respectively.

@ Only lower/upper bounds are known for n = 5,6 and 7, namely

40< k<44, T2<kKkg<T78 and 126 <k; <134.

@ Our aim is not to improve these bounds (very hard!), but test
PDPM'’s performance, and compare it with Knitro on its own.

University of
South Australia
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Results for (P2)

Problem size Max of min dist. betw. two spheres
n # of # of . . " Percentage  CPU time
[ P ] var.  constr. Approach Fmin Cave Cmax at >1 [sec]
[ 5 } 191 41 Knitro on its own  0.9807810 0.9927489  1.0019176 0.7% 0.89
38 PDPM 0.9912749  0.9968095 1.0037513 16.7% 0.92
[ 6 } 373 1953 Knitro on its own  0.9804186  0.9890666 0.9961310 0.0% 8.8
62 PDPM 0.9875817  0.9938880  1.0041174 1.1% 4.7
[ 7 } 645 4278 Knitro on its own  0.9886343  0.9953140  0.9991757 0.0% 65
92 PDPM 0.9946906  0.9987890  1.0021734 13.2% 25

Table: (P2) — Numerical results with Knitro on its own and PDPM, after
1,000 runs. The locally optimal solutions (with values a*) are found by
each approach with random initial guesses.
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Histogram of local optima: n =5, p = 38
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Figure: (P2) Knitro (green) vs. PDPM (red), overlaps (brown).
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Histogram of local optima: n =6, p = 62

80
.
60 ] I
40 L
20
0 Uil et .
0.98 0.985 0.99 0.995 1 1.005
o

Figure: (P2) Knitro (green) vs. PDPM (red), overlaps (brown)
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Histogram of local optima: n =7, p = 92
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Figure: (P2) Knitro (green) vs. PDPM (red), overlaps (brown).

36|46




An equality-constrained problem
(issi mber problem

: ) : /~Dubins path
Numerical Experiments s pa

Observations for (P2)

@ Distribution of maxima found by PDPM skewed to the right,
indicating tendency to find higher maxima.

University of
South Australia
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@ Tendency in finding higher maxima accentuated for larger
instances.
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Observations for (P2)

@ Distribution of maxima found by PDPM skewed to the right,
indicating tendency to find higher maxima.

@ Tendency in finding higher maxima accentuated for larger
instances.

@ For n = 6,7, PDPM finds viable solution in ~ 7.2 and 31.7 min,
respectively, while Knitro is expected not to find any.

University of
South Australia
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Posed, studied by Markov, 1889, solved by Dubins, 1957

Aim: Find the shortest planar curve of constrained curvature joining
two points with prescribed tangents. [Kaya, 2017] re-formulates as
optimal control problem, and by maximum principle reduces it to
finite-dimensional, denoted below as (Ps).

5
min ¢ = Z &, s.t.
j=1
1
o — x + — (—sinfy + 2 sinfy — 2 sinfy + 2 sinfy — sinfy) + &3 cosfy =0,
a

1
Yo — Yy + — (cosy — 2 cos b + 2 cosfy — 2 cos By + cosby) + &3 sinfy =0,
a

sinfy =sinfs, cosfy =cosbs, >0, forj=1,...,5,
where 6’1:90+a§1, 92:0170,52, 04:92+a§4,and

05:94—0,55.
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Problem (Ps), run PDPM with wy, = 1/(k + 1)°

o After simplification, (Ps) is expressed in terms of £ and four
equality constraints.
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Problem (Ps), run PDPM with wy, = 1/(k + 1)°

o After simplification, (Ps) is expressed in terms of £ and four
equality constraints.

@ We consider (Ps) with ((9, y0),60) = ((0,0), —7/3),

((zf, yf),0¢) = ((0.4,0.4), —7/6), and a = 3
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Problem (Ps), run PDPM with wy, = 1/(k + 1)°

o After simplification, (Ps) is expressed in terms of £ and four
equality constraints.

@ We consider (Ps) with ((9, y0),60) = ((0,0), —7/3),

((zf, yf),0¢) = ((0.4,0.4), —7/6), and a = 3

o [Kaya, 2017] reports 7 stationary solutions.
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Results for (Ps)

Soln 1 Soln 2 Soln 3 Soln 4 Soln 5 Soln 6 Soln 7

0.0000 0.0000 0.7096 0.8627 0.0000 1.6036 0.0000

1.5822 1.7354 0.0000 0.3064 0.3818 1.7880 1.6781

' 0.5914 0.0000 0.5914 0.0000 0.0000 0.0000 1.0093

0.0000 0.3063 1.5594 1.7126 1.7880 0.3590 1.8526

0.3376 0.4908 0.0000 0.0000 1.2317 0.0000 0.0000

* 2.5113 2.5326 2.8603 2.8817 3.4015 3.7506 4.5401
Knitro on its own 8% 0% 3% 0% 40% 24% 25%
PDPM 36% 0% 62% 0% 2% 0% 0%

Table: (Ps) — Local optimal solutions, and percentage of the times
Knitro vs. PDPM, to find solution of length ¢*, after 20,000 runs of each
approach with random initial guesses.

University of
South Australia
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Summary of results for (Ps)

@ Knitro found 89% of the time solutions with £* > 3.4, while
PDPM found 98% of the time solutions with £* < 2.9.

University of
South Australia
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Summary of results for (Ps)

@ Knitro found 89% of the time solutions with £* > 3.4, while
PDPM found 98% of the time solutions with £* < 2.9.

@ We would expect to find good quality solution (Solutions 1 and
3) by running PDPM just once, in 0.3 sec. Knitro on its own is
expected to be run about nine times (= 0.4 sec) to get the same
quality solutions.

University of
South Australia
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Summary of results for (Ps)

@ Knitro found 89% of the time solutions with £* > 3.4, while
PDPM found 98% of the time solutions with £* < 2.9.

@ We would expect to find good quality solution (Solutions 1 and
3) by running PDPM just once, in 0.3 sec. Knitro on its own is
expected to be run about nine times (= 0.4 sec) to get the same
quality solutions.

@ As for Kissing Number Problem, PDPM is more time-efficient
when compared with Knitro, for larger instances.

University of
South Australia
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Soln 1: ¢* = 2.5113: 8% vs. 36%(PDPM)

1.2
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University of
South Australia
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Soln 3: ¢* = 2.8603: . 2% (PDPM)

1.2
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x
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Numerical Experiments

Sol 5: ¢* = 3.4015: 40% vs. 2%(PDPM)

Sol 6: £* = 3.7506: 24% vs. 0%(PDPM)
Sol 7: £* = 4.5401: 25% vs. 0%(PDPM)

1.2 1.2 121
058 1 0.8 0.8}
0.4 1 0.4 0.47
Y o0 { Y o0 Y oo}
0.4 1 0.4 0.4}
-0.8 1 -0.8 -0.8+
1-20m -1'.20,3 04 00 04 08 120m
T T @
Sol 5 Sol 6 Sol 7
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Conclusion

e We analyzed a primal-dual scheme with a sequence of dual
problems, established strong asymptotic duality.

University of
South Australia
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Conclusion

e We analyzed a primal-dual scheme with a sequence of dual
problems, established strong asymptotic duality.

@ We used the theory to define a primal-dual e-subgradient
algorithm which reduces wy in each iteration, forcing the
Lagrangians to approach the weighted-f;-penalty function.

University of
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Conclusion

e We analyzed a primal-dual scheme with a sequence of dual
problems, established strong asymptotic duality.

@ We used the theory to define a primal-dual e-subgradient
algorithm which reduces wy in each iteration, forcing the
Lagrangians to approach the weighted-f;-penalty function.

e The primal sequence accumulates at a solution of (P). If
the dual variables happen to be bounded, they converge to
a dual solution (an exact penalty parameter)
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Open questions

o Can we consider other types of Lagrangians that smoothly
approximate a nonsmooth Lagrangian, and devise similar
asymptotic schemes?

University of
South Australia
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Open questions

o Can we consider other types of Lagrangians that smoothly
approximate a nonsmooth Lagrangian, and devise similar
asymptotic schemes?

e What can be said if X is not compact?
o How will the numerical results be affected if we implement

an e-subgradient step?

University of
South Australia
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Open questions

o Can we consider other types of Lagrangians that smoothly
approximate a nonsmooth Lagrangian, and devise similar
asymptotic schemes?

e What can be said if X is not compact?

o How will the numerical results be affected if we implement
an e-subgradient step?

o Extensions to semi-infinite programming?
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