## Constraint Splitting and Projection Methods for Optimal Control

Variational Analysis and Optimization Webinar<br>Mathematics of Computation and Optimization ( MoCaO )

Adelaide, Australia
30 September 2020
C. Yalçın Kaya

University of South Australia

Joint work with

Heinz H. Bauschke<br>University of British Columbia

Regina S. Burachik<br>University of South Australia

Early part based on

- H. H. Bauschke, R. S. Burachik, C. Y. Kaya, Constraint splitting and projection methods for optimal control of double integrator. Chapter in Springer Edited Book "Splitting Algorithms, Modern Operator Theory, and Applications," pp. 45-68, 2019. (arXiv:1804.03767, 2018).


## Outline

1 Cubic curves in $\mathbb{R}^{n}$ : Minimum-energy control of the double integrator

2 Constraint splitting and projections
3 Best approx. algorithms: Dykstra $|M A P| D R|A A C| F I S T A$
4 Numerical experiments: parametric behaviour | error analysis

## Motivation

- Douglas-Rachford splitting method applied to discrete-time optimal control problems.
(O'Donoghue-Stathopoulos-Boyd 2013)
Also see (Eckstein-Ferris 1998).
- No known example of application of best approximation algorithms to continuous-time optimal control problems except Bauschke-Burachik-K (2019).
- Minimum-energy control of the double integrator - building block for cubic splines.


## Cubic Curves in $\mathbb{R}^{n}$

$$
(\mathrm{P})\left\{\begin{aligned}
\min & \frac{1}{2} \int_{0}^{1}\|u(t)\|_{2}^{2} d t \\
\text { subject to } & \dot{x}_{1}(t)=x_{2}(t), \quad x_{1}(0)=s_{0}, \quad x_{1}(1)=s_{f} \\
& \dot{x}_{2}(t)=u(t), \quad x_{2}(0)=v_{0}, \quad x_{2}(1)=v_{f}
\end{aligned}\right.
$$

$x_{1}(t), x_{2}(t) \in \mathbb{R}^{n}:$ state variable vectors
$u(t) \in \mathbb{R}^{n}$ : control variable vector
$x_{i}(t)=\left(x_{i, 1}(t), \ldots, x_{i, n}(t)\right), i=1,2 ; \quad u(t)=\left(u_{1}(t), \ldots, u_{n}(t)\right)$
$n=1$ : Min.-energy control of the the double integrator
$n=2,3:$ Spatial curves with minimum ave. acceleration

## Cubic Curves in $\mathbb{R}^{n}$

$$
(\mathrm{P})\left\{\begin{aligned}
\min & \frac{1}{2} \int_{0}^{1}\|u(t)\|_{2}^{2} d t \\
\text { subject to } \quad & \dot{x}_{1}(t)=x_{2}(t), \quad x_{1}(0)=s_{0}, \quad x_{1}(1)=s_{f} \\
& \dot{x}_{2}(t)=u(t), \quad x_{2}(0)=v_{0}, \quad x_{2}(1)=v_{f} \\
& \|u(t)\|_{2} \leq a . \text { (constrained acceleration) }
\end{aligned}\right.
$$

$x_{1}(t), x_{2}(t) \in \mathbb{R}^{n}:$ state variable vectors
$u(t) \in \mathbb{R}^{n}$ : control variable vector
$x_{i}(t)=\left(x_{i, 1}(t), \ldots, x_{i, n}(t)\right), i=1,2 ; \quad u(t)=\left(u_{1}(t), \ldots, u_{n}(t)\right)$
$n=1: \quad$ Min.-energy control of the the double integrator
$n=2,3:$ Spatial curves with minimum ave. acceleration

Examples with $n=1,2,3$

$$
n=1:
$$



## Examples with $n=1,2,3$

$$
n=1:
$$



$$
n=2:
$$



## Examples with $n=1,2,3$

$n=3:$


## Min.-energy Control of Double Integrator


(P0) $\left\{\begin{aligned} \min & \frac{1}{2} \int_{0}^{1} u^{2}(t) d t \\ \text { subject to } & \dot{x}_{1}(t)=x_{2}(t), \quad x_{1}(0)=s_{0}, \quad x_{1}(1)=s_{f}, \\ & \dot{x}_{2}(t)=u(t), \quad x_{2}(0)=v_{0}, \quad x_{2}(1)=v_{f} .\end{aligned}\right.$
$x_{1}(t), x_{2}(t)$ : state variables; $u(t)$ : control variable.

## Min.-energy Control of Double Integrator


$(\mathrm{P} 0)\left\{\begin{aligned} \min & \frac{1}{2} \int_{0}^{1} u^{2}(t) d t \\ \text { subject to } & \dot{x}_{1}(t)=x_{2}(t), \\ & x_{1}(0)=s_{0}, x_{1}(1)=s_{f}, \\ & \dot{x}_{2}(t)=u(t), \quad x_{2}(0)=v_{0}, x_{2}(1)=v_{f} .\end{aligned}\right.$
$x_{1}(t), x_{2}(t)$ : state variables; $u(t)$ : control variable.

## Min.-energy Control of Double Integrator


(P0) $\left\{\begin{aligned} \min & \frac{1}{2} \int_{0}^{1} u^{2}(t) d t \\ \text { subject to } \quad & \dot{x}_{1}(t)=x_{2}(t), \quad x_{1}(0)=s_{0}, \quad x_{1}(1)=s_{f}, \\ & \dot{x}_{2}(t)=u(t), \quad x_{2}(0)=v_{0}, \quad x_{2}(1)=v_{f} .\end{aligned}\right.$
$x_{1}(t), x_{2}(t)$ : state variables; $u(t)$ : control variable.

## Min.-energy Control of Double Integrator

$$
\begin{aligned}
u(t) & =c_{1} t+c_{2} \\
x_{1}(t) & =\frac{1}{6} c_{1} t^{3}+\frac{1}{2} c_{2} t^{2}+v_{0} t+s_{0} \\
x_{2}(t) & =\frac{1}{2} c_{1} t^{2}+c_{2} t+v_{0},
\end{aligned}
$$

for all $t \in[0,1]$, where

$$
\begin{aligned}
& c_{1}=-12\left(s_{f}-s_{0}\right)+6\left(v_{0}+v_{f}\right), \\
& c_{2}=6\left(s_{f}-s_{0}\right)-2\left(2 v_{0}+v_{f}\right) .
\end{aligned}
$$

## Min.-energy Control of Double Integrator

Solution with $s_{0}=0, s_{f}=0, v_{0}=1, v_{f}=0$ :



$$
\begin{aligned}
u(t) & =6 t-4 \\
x_{1}(t) & =t^{3}-2 t^{2}+t \\
x_{2}(t) & =3 t^{2}-4 t+1
\end{aligned}
$$

## Min.-energy Control with Constraints



$$
\min \frac{1}{2} \int_{0}^{1} u^{2}(t) d t
$$

(P) $\left\{\begin{aligned} \text { subject to } \quad \dot{x}_{1}(t)=x_{2}(t), & x_{1}(0)=s_{0}, x_{1}(1)=s_{f}, \\ & \dot{x}_{2}(t)=u(t), \quad x_{2}(0)=v_{0}, \quad x_{2}(1)=v_{f},\end{aligned}\right.$

$$
-a \leq u(t) \leq a
$$

$a>0$ some real constant.

## Min.-energy Control with Constraints

Maximum Principle
Define the Hamiltonian function:

$$
H\left(x_{1}, x_{2}, u, \lambda_{1}, \lambda_{2}\right):=\frac{1}{2} u^{2}+\lambda_{1} x_{2}+\lambda_{2} u,
$$

where the adjoint variables $\lambda_{1}(t)$ and $\lambda_{2}(t)$ satisfy

$$
\dot{\lambda}_{1}=-\partial H / \partial x_{1} \quad \text { and } \quad \dot{\lambda}_{2}=-\partial H / \partial x_{2},
$$

i.e.,

$$
\lambda_{1}(t)=c_{1} \quad \text { and } \quad \lambda_{2}(t)=-c_{1} t-c_{2},
$$

$c_{1}, c_{2}$ real constants.

## Optimality Conditions (DI)

## Maximum Principle

If $u$ is an optimal control for Problem (P), then there exists a continuously differentiable vector of adjoint variables $\lambda$, as defined before, such that $\lambda(t) \neq 0$ for all $t \in\left[0, t_{f}\right]$, and that, for a.e. $t \in\left[0, t_{f}\right]$,

$$
u(t)=\underset{v \in[-a, a]}{\operatorname{argmin}} H(x, v, \lambda(t)),
$$

i.e.,

$$
u(t)=\underset{v \in[-a, a]}{\operatorname{argmin}} \frac{1}{2} v^{2}+\lambda_{2}(t) v .
$$

## Optimality Conditions (DI)

## Optimal control

$$
u(t)=\left\{\begin{aligned}
-\lambda_{2}(t), & \text { if }-a \leq \lambda_{2}(t) \leq a, \\
a, & \text { if } \lambda_{2}(t) \leq-a, \\
-a, & \text { if } \lambda_{2}(t) \geq a .
\end{aligned}\right.
$$

Note that the optimal control $u$ for Problem ( P ) is continuous.

## Numerical Solution Techniques

## Three approaches:

I. (First-)discretize-then-optimize

1. Discretize Problem $(\mathrm{P})$ over a partition of the time horizon $[0,1]$.
2. Use some (large-scale) finite-dimensional optimization software (e.g. AMPL + Ipopt) to get a discrete (finite-dimensional) approximation for the state and control variables $x(t)$ and $u(t)$.

## II. (First-)optimize-then-discretize

1. Write down conditions of optimality.
2. Solve the optimality conditions by using discretized functions.

## III. Arc parameterization

1. Parameterize w.r.t. a concatenation of $(u(t)=a)-,(u(t)=-a)$ - and $\left(u(t)=-\lambda_{2}(t)\right.$ )-arcs over intervals $\left[t_{i-1}, t_{i}\right], t_{i}$ unknown, $i=1, \ldots, N$.
2. Use some finite-dimensional optimization software (e.g. AMPL + Ipopt) to find the unknown $t_{i}, i=1, \ldots, N$.

## Analytical Solution (DI)


(a) Optimal state variables

(b) Optimal control variable

$$
\begin{aligned}
& s_{0}=0, s_{f}=0, v_{0}=1, v_{f}=0 \\
& a=\infty
\end{aligned}
$$

## Numerical Solution (DI)


(a) Optimal state variables

$$
\begin{aligned}
& s_{0}=0, s_{f}=0, v_{0}=1, v_{f}=0 \\
& a=2.5
\end{aligned}
$$


(b) Optimal control variable

(c) Optimal adjoint variables

## Constraint Splitting (DI)


$(\mathrm{P})\left\{\begin{aligned} \min & \frac{1}{2} \int_{0}^{1} u^{2}(t) d t \\ \text { subject to } \quad & \dot{x}_{1}(t)=x_{2}(t), \quad x_{1}(0)=s_{0}, \quad x_{1}(1)=s_{f}, \\ & \dot{x}_{2}(t)=u(t), \quad x_{2}(0)=v_{0}, \quad x_{2}(1)=v_{f}, \\ & -a \leq u(t) \leq a .\end{aligned}\right.$

## Constraint Splitting (DI in $\mathbb{R}^{n}$ )

$$
(\mathrm{Pc})\left\{\begin{aligned}
\min & \frac{1}{2} \int_{0}^{1}\|u(t)\|_{2}^{2} d t \\
\text { subject to } \quad & \dot{x}_{1}(t)=x_{2}(t), \quad x_{1}(0)=s_{0}, \quad x_{1}(1)=s_{f} \\
& \dot{x}_{2}(t)=u(t), \quad x_{2}(0)=v_{0}, \quad x_{2}(1)=v_{f} \\
& \|u(t)\|_{2} \leq a
\end{aligned}\right.
$$

## Constraint Splitting

$$
\begin{aligned}
\mathcal{A}:=\left\{u \in L^{2}\left(0,1 ; \mathbb{R}^{n}\right) \mid\right. & \exists x_{i} \in W^{1,2}\left(0,1 ; \mathbb{R}^{n}\right), i=1,2, \text { which solve } \\
& \dot{x}_{1}(t)=x_{2}(t), x_{1}(0)=s_{0}, x_{1}(1)=s_{f}, \\
& \dot{x}_{2}(t)=u(t), x_{2}(0)=v_{0}, x_{2}(1)=v_{f}, \\
& \forall t \in[0,1]\}, \\
\mathcal{B}:=\left\{u \in L^{2}\left(0,1 ; \mathbb{R}^{n}\right) \mid\right. & \left.\|u(t)\|_{2} \leq a, \text { for all } t \in[0,1]\right\} .
\end{aligned}
$$

$\mathcal{A}$ is an affine subspace and $\mathcal{B}$ a ball.

## Projections

The projection onto $\mathcal{A}$ from a current iterate $u^{-}$is $u$ which solves

$$
\text { (P1) }\left\{\begin{aligned}
\min & \frac{1}{2} \int_{0}^{1}\left\|u(t)-u^{-}(t)\right\|_{2}^{2} d t \\
\text { subject to } & u \in \mathcal{A}
\end{aligned}\right.
$$

The projection onto $\mathcal{B}$ from a current iterate $u^{-}$is $u$ which solves

$$
\text { (P2) }\left\{\begin{aligned}
\min & \frac{1}{2} \int_{0}^{1}\left\|u(t)-u^{-}(t)\right\|_{2}^{2} d t \\
\text { subject to } & u \in \mathcal{B}
\end{aligned}\right.
$$

## Projections

Proposition 1 (Projection onto $\mathcal{A}$ ). The projection $P_{\mathcal{A}}$ of $u^{-} \in L^{2}\left(0,1 ; \mathbb{R}^{n}\right)$ onto the constraint set $\mathcal{A}$, as the solution of Problem (P1), is given by

$$
P_{\mathcal{A}}\left(u^{-}\right)(t)=u^{-}(t)+c_{1} t+c_{2},
$$

for all $t \in[0,1]$, where

$$
\begin{aligned}
& c_{1}=12\left(x_{1}(1)-s_{f}\right)-6\left(x_{2}(1)-v_{f}\right), \\
& c_{2}=-6\left(x_{1}(1)-s_{f}\right)+2\left(x_{2}(1)-v_{f}\right),
\end{aligned}
$$

and $x_{1}(1)$ and $x_{2}(1)$ are obtained by solving the IVP

$$
\begin{array}{ll}
\dot{x}_{1}(t)=x_{2}(t), & x_{1}(0)=s_{0}, \\
\dot{x}_{2}(t)=u^{-}(t), & x_{2}(0)=v_{0},
\end{array}
$$

for all $t \in[0,1]$.

## Projections

Proposition 2 (Projection onto $\mathcal{B}$ ). The projection $P_{\mathcal{B}}$ of $u^{-} \in L^{2}\left(0,1 ; \mathbb{R}^{n}\right)$ onto the constraint set $\mathcal{B}$, as the solution of Problem (P2), is given by

$$
P_{\mathcal{B}}\left(u^{-}\right)(t)=\left\{\begin{aligned}
u^{-}(t), & \text { if }\left\|u^{-}(t)\right\|_{2} \leq a \\
a \frac{u^{-}(t)}{\left\|u^{-}(t)\right\|_{2}}, & \text { if }\left\|u^{-}(t)\right\|_{2}>a
\end{aligned}\right.
$$

for all $t \in[0,1]$.

## Best Approximation Algorithms

## $X$ is a real Hilbert space

with inner product $\langle\cdot, \cdot\rangle$, induced norm $\|\cdot\|$.
$A$ is a closed affine subspace of $X$, and $B$ is a nonempty closed convex subset of $X$.

Given $z \in X$, our aim is to find

$$
P_{A \cap B}(z),
$$

the projection of $z$ onto the intersection $A \cap B \neq \emptyset$.

## Best Approximation Algorithms

We test five methods when $X=L^{2}\left(0,1 ; \mathbb{R}^{n}\right), A=\mathcal{A}, B=\mathcal{B}$, and $z=0$ :

- Dykstra's Algorithm [strongly convergent] (Boyle-Dykstra 1985)
- Method of Alternating Projections (MAP) [weakly convergent] (von Neumann 1948, Bregman 1965)
- Douglas-Rachford (DR) Algorithm [weakly convergent] (Douglas-Rachford 1956, Lions-Mercier 1979, Eckstein-Bertsekas 1992)
- Aragón Artacho-Campoy (AAC) Algorithm [strongly convergent] (Aragón Artacho-Campoy 2018, Alwadani-Bauschke-Moursi-Wang 2018)
- Fast Iterative Shrinkage-thresholding Algorithm (FISTA) [strong. conv.] (Beck-Teboulle 2009, Attouch-Cabot 2018, Bauschke-Bui-Wang 2019)


## Best Approximation Algorithms

## Algorithm 1 (Dykstra)

Step 1 (Initialization) Choose the initial iterates $u^{0}=0$ and $q^{0}=0$. Choose a small parameter $\varepsilon>0$, and set $k=0$.

Step 2 (Projection onto $\mathcal{B}$ ) Set $u^{-}=u^{k}+q^{k}$. Compute $\widetilde{u}=P_{\mathcal{B}}\left(u^{-}\right)$.
Step 3 (Projection onto $\mathcal{A}$ ) Set $u^{-}:=\widetilde{u}$. Compute $\widehat{u}=P_{\mathcal{A}}\left(u^{-}\right)$.
Step 4 (Update) Set $u^{k+1}:=\widehat{u}$ and $q^{k+1}:=u^{k}+q^{k}-\widetilde{u}$.
Step 5 (Stopping criterion) If $\left\|u^{k+1}-u^{k}\right\|_{L^{\infty}} \leq \varepsilon$, then return $\widetilde{u}$ and stop. Otherwise, set $k:=k+1$ and go to Step 2.

## Best Approximation Algorithms

## Algorithm 2 (MAP)

Step 1 (Initialization) Choose the initial iterate $u^{0}=0$
Choose a small parameter $\varepsilon>0$, and set $k=0$.
Step 2 (Projection onto $\mathcal{B}$ ) Set $u^{-}=u^{k} \quad$. Compute $\widetilde{u}=P_{\mathcal{B}}\left(u^{-}\right)$.
Step 3 (Projection onto $\mathcal{A}$ ) Set $u^{-}:=\widetilde{u}$. Compute $\widehat{u}=P_{\mathcal{A}}\left(u^{-}\right)$.
Step 4 (Update) Set $u^{k+1}:=\widehat{u}$
Step 5 (Stopping criterion) If $\left\|u^{k+1}-u^{k}\right\|_{L^{\infty}} \leq \varepsilon$, then return $\widetilde{u}$ and stop. Otherwise, set $k:=k+1$ and go to Step 2.

## Best Approximation Algorithms

## Algorithm 3 (DR)

Step 1 (Initialization) Choose a parameter $\lambda \in] 0,1[$ and the initial iterate $u^{0}$ arbitrarily. Choose a small parameter $\varepsilon>0$, and set $k=0$.

Step 2 (Projection onto $\mathcal{B}$ ) Set $u^{-}=\lambda u^{k}$. Compute $\widetilde{u}=P_{\mathcal{B}}\left(u^{-}\right)$.
Step 3 (Projection onto $\mathcal{A}$ ) Set $u^{-}:=2 \widetilde{u}-u^{k}$. Compute $\widehat{u}=P_{\mathcal{A}}\left(u^{-}\right)$.
Step 4 (Update) Set $u^{k+1}:=u^{k}+\widehat{u}-\widetilde{u}$.
Step 5 (Stopping criterion) If $\left\|u^{k+1}-u^{k}\right\|_{L^{\infty}} \leq \varepsilon$, then return $\widetilde{u}$ and stop. Otherwise, set $k:=k+1$ and go to Step 2.

## Best Approximation Algorithms

## Algorithm 4 (AAC)

Step 1 (Initialization) Choose the initial iterate $u^{0}$ arbitrarily. Choose a small parameter $\varepsilon>0$, two parameters ${ }^{1} \alpha$ and $\beta$ in $] 0,1[$, and set $k=0$.

Step 2 (Projection onto $\mathcal{B}$ ) Set $u^{-}=u^{k}$. Compute $\widetilde{u}=P_{\mathcal{B}}\left(u^{-}\right)$.
Step 3 (Projection onto $\mathcal{A}$ ) Set $u^{-}=2 \beta \widetilde{u}-u^{k}$. Compute $\widehat{u}=P_{\mathcal{A}}\left(u^{-}\right)$.
Step 4 (Update) Set $u^{k+1}:=u^{k}+2 \alpha \beta(\widehat{u}-\widetilde{u})$.
Step 5 (Stopping criterion) If $\left\|u^{k+1}-u^{k}\right\|_{L^{\infty}} \leq \varepsilon$, then return $\widetilde{u}$ and stop. Otherwise, set $k:=k+1$ and go to Step 2.
${ }^{1}$ Aragón Artacho and Campoy recommend $\alpha=0.9$ and $\beta \in[0.7,0.8]$ in their paper .

## Best Approximation Algorithms

## Algorithm 5 (FISTA)

Step 1 (Initialization) Choose $\widehat{u}_{1}=\widehat{u}_{2}=v=0, t_{0}=1$. Choose a small parameter $\varepsilon>0$, Lipschitz const. $L=2$ for $\ell_{2}$-norm, and $k=0$.

Step 2 (Projection onto $\mathcal{B}$ ) Set $u^{-}:=v-L \widehat{u}_{1}$. Compute $\widetilde{u}_{1}^{k+1}=\widehat{u}_{1}-\left(v-P_{\mathcal{B}}\left(u^{-}\right)\right) / L$.
Step 3 (Projection onto $\mathcal{A}$ ) Set $u^{-}:=v-L \widehat{u}_{2}$. Compute $\widetilde{u}_{2}^{k+1}=\widehat{u}_{2}-\left(v-P_{\mathcal{A}}\left(u^{-}\right)\right) / L$.
Step 4 (Update) Set $u^{k+1}=\widetilde{u}_{1}^{k+1}+\widetilde{u}_{2}^{k+1}$.
Step 5 (Stopping criterion) If $\left\|u^{k+1}-u^{k}\right\|_{L^{\infty}} \leq \varepsilon$, then return $\widetilde{u}$ and stop. Otherwise, set: $t_{k+1}=\frac{1}{2}\left(1+\sqrt{1+4 t_{k}^{2}}\right), \widehat{u}_{i}:=\widetilde{u}_{i}^{k+1}+\frac{t_{k}-1}{t_{k+1}}\left(\widetilde{u}_{i}^{k+1}-\widetilde{u}_{i}^{k}\right), i=1,2 \quad$ (Nesterov 1983) OR $\quad \widehat{u}_{i}:=\widetilde{u}_{i}^{k+1}+\frac{1-\alpha}{k+1}\left(\widetilde{u}_{i}^{k+1}-\widetilde{u}_{i}^{k}\right), \quad i=1,2, \quad \alpha>3$ (Attouch-Cabot 2018) OR $\quad \widehat{u}_{i}:=\widetilde{u}_{i}^{k+1}+\frac{1-\ln ^{\theta}(k+1)}{k+1}\left(\widetilde{u}_{i}^{k+1}-\widetilde{u}_{i}^{k}\right), \quad i=1,2, \quad \theta>0$ (Attouch-Cabot 2018) Set $v:=\widehat{u}_{1}+\widehat{u}_{2}, \quad k:=k+1$ and go to Step 2.

## Numerical Experiments

- Algorithms 1-5 carry out iterations with functions.
- Use discrete approximations of the functions over the partition $0=t_{0}<t_{1}<\ldots<t_{N}=1$. For the IVP in computing $P_{\mathcal{A}}$, use Euler's method over the same partition. (Could use any other ODE solverinterested only in $\left.x_{i}(1)\right)$
- Define

$$
\sigma_{u}^{k}:=\max _{0 \leq i \leq N-1}\left|u_{i}^{k}-u^{*}\left(t_{i}\right)\right| \quad \text { and } \quad \sigma_{x}^{k}:=\max _{0 \leq i \leq N}\left\|x_{i}^{k}-x^{*}\left(t_{i}\right)\right\|_{\infty}
$$

## Numerical Experiments ( $n=1$ )

Parametric Behaviour

(a) Algorithm 3 (DR)

(b) Algorithm 4 (AAC) $\alpha=1$

## Numerical Experiments ( $n=1$ )

Parametric Behaviour

(c) Algorithm 4 (AAC)

## Numerical Experiments ( $n=1$ )

Behaviour in Early Iterations ( $N=2 \times 10^{3}$ )

(a) Algorithm 1 (Dykstra).

(c) Algorithm 4 (AAC, $\alpha=1, \beta=0.8617$ ).

(b) Algorithm 3 ( $\mathrm{DR}, \lambda=0.7466$ ).

## Numerical Experiments ( $n=1$ )

Error in Each Iteration

(a) $L^{\infty}$-error in control with $N=10^{3}$.

(b) $L^{\infty}$-error in states with $N=10^{3}$.

## Numerical Experiments ( $n=1$ )

Error in Each Iteration


(a) $L^{\infty}$-error in control with $N=10^{4}$.
(b) $L^{\infty}$-error in states with $N=10^{4}$.

## Numerical Experiments ( $n=1$ )

Error in Each Iteration


(a) $L^{\infty}$-error in control with $N=10^{5}$.
(b) $L^{\infty}$-error in states with $N=10^{5}$.

## Numerical Experiments ( $n=1$ )

| $N$ | Dykstra | DR | AAC | Ipopt |
| :---: | :---: | :---: | :---: | :---: |
| $10^{3}$ | $3.2 \times 10^{-2}$ | $2.5 \times 10^{-2}$ | $2.8 \times 10^{-2}$ | $3.2 \times 10^{-2}$ |
| $10^{4}$ | $3.2 \times 10^{-3}$ | $2.5 \times 10^{-3}$ | $2.8 \times 10^{-3}$ | $7.7 \times 10^{-3}$ |
| $10^{5}$ | $3.0 \times 10^{-4}$ | $2.4 \times 10^{-4}$ | $2.6 \times 10^{-4}$ | $1.6 \times 10^{-2}$ |

(a) $L^{\infty}$-error in control, $\sigma_{u}^{k}$.

| $N$ | Dykstra | DR | AAC | Ipopt |
| :---: | :---: | :---: | :---: | :---: |
| $10^{3}$ | $2.2 \times 10^{-3}$ | $3.6 \times 10^{-3}$ | $3.0 \times 10^{-3}$ | $2.2 \times 10^{-3}$ |
| $10^{4}$ | $2.1 \times 10^{-4}$ | $3.6 \times 10^{-4}$ | $2.9 \times 10^{-4}$ | $2.3 \times 10^{-4}$ |
| $10^{5}$ | $2.0 \times 10^{-5}$ | $3.4 \times 10^{-5}$ | $2.8 \times 10^{-5}$ | $8.7 \times 10^{-5}$ |

(b) $L^{\infty}$-error in states, $\sigma_{x}^{k}$.

Table 1: Least errors by Algorithms 1, 3-4 and Ipopt ( $\varepsilon=10^{-8}$ )

## Numerical Experiments ( $n=1$ )

| $N$ | Dykstra | DR | AAC | Ipopt |
| :---: | :---: | :---: | :---: | :---: |
| $10^{3}$ | 0.03 | 0.01 | 0.01 | 0.08 |
| $10^{4}$ | 0.16 | 0.05 | 0.05 | 0.71 |
| $10^{5}$ | 1.6 | 0.41 | 0.28 | 7.3 |

Table 2: CPU times taken by Algorithms 1, 3-4 and Ipopt.

## Numerical Experiments $(n=2)$



$$
s_{0}=(0,0), \quad v_{0}=(0,1), \quad s_{f}=(1,1), \quad v_{f}=(-1,0)
$$

## Numerical Experiments $(n=2)$





## Numerical Experiments $(n=2)$

Objective Functional Error in Each Iteration


Numerical Experiments $(n=2)$
Objective Functional Error in Each Iteration


Numerical Experiments $(n=2)$
Objective Functional Error in Each Iteration


Numerical Experiments $(n=2)$
Objective Functional Error in Each Iteration


## Numerical Experiments $(n=2)$

State and Control Error in Each Iteration

(a) $L^{\infty}$-error in control with $N=10^{2}$.

(b) $L^{\infty}$-error in states with $N=10^{2}$.

## Numerical Experiments ( $n=2$ )

State and Control Error in Each Iteration

(a) $L^{\infty}$-error in control with $N=10^{3}$.

(b) $L^{\infty}$-error in states with $N=10^{3}$.

## Numerical Experiments ( $n=2$ )

State and Control Error in Each Iteration

(a) $L^{\infty}$-error in control with $N=10^{4}$.

(b) $L^{\infty}$-error in states with $N=10^{4}$.

## Numerical Experiments ( $n=2$ )

State and Control Error in Each Iteration

(a) $L^{\infty}$-error in control with $N=10^{5}$.

(b) $L^{\infty}$-error in states with $N=10^{5}$.

## Numerical Experiments ( $n=2$ )

| $N$ | Dykstra | MAP | DR | AAC | FISTA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{2}$ | $3.3 \times 10^{-1}$ | $3.3 \times 10^{-1}$ | $1.8 \times 10^{-1}$ | $1.9 \times 10^{-1}$ | $7.6 \times 10^{-1}$ |
| $10^{3}$ | $3.4 \times 10^{-2}$ | $5.4 \times 10^{-2}$ | $1.9 \times 10^{-2}$ | $2.0 \times 10^{-2}$ | $7.5 \times 10^{-2}$ |
| $10^{4}$ | $3.4 \times 10^{-3}$ | $5.7 \times 10^{-2}$ | $1.9 \times 10^{-3}$ | $2.0 \times 10^{-3}$ | $7.5 \times 10^{-3}$ |
| $10^{5}$ | $3.4 \times 10^{-4}$ | $5.8 \times 10^{-2}$ | $1.9 \times 10^{-4}$ | $2.0 \times 10^{-4}$ | $7.6 \times 10^{-4}$ |

(a) $L^{\infty}$-error in control, $\sigma_{u}^{k}$.

| $N$ | Dykstra | MAP | DR | AAC | FISTA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{2}$ | $1.9 \times 10^{-2}$ | $1.9 \times 10^{-2}$ | $6.4 \times 10^{-2}$ | $6.0 \times 10^{-2}$ | $3.0 \times 10^{-1}$ |
| $10^{3}$ | $1.9 \times 10^{-3}$ | $3.5 \times 10^{-3}$ | $6.6 \times 10^{-3}$ | $6.2 \times 10^{-3}$ | $3.1 \times 10^{-2}$ |
| $10^{4}$ | $1.9 \times 10^{-4}$ | $3.8 \times 10^{-3}$ | $6.6 \times 10^{-4}$ | $6.2 \times 10^{-4}$ | $3.1 \times 10^{-3}$ |
| $10^{5}$ | $1.9 \times 10^{-5}$ | $3.8 \times 10^{-3}$ | $6.6 \times 10^{-5}$ | $6.2 \times 10^{-5}$ | $3.1 \times 10^{-4}$ |

(b) $L^{\infty}$-error in states, $\sigma_{x}^{k}$.

Table 3: Least errors by Algorithms $1-5 \quad\left(\varepsilon=10^{-8}\right)$

## Numerical Experiments ( $n=3$ )



## Numerical Experiments ( $n=3$ )



## Numerical Experiments ( $n=3$ )

Objective Functional Error in Each Iteration


## Numerical Experiments ( $n=3$ )

Objective Functional Error in Each Iteration


Numerical Experiments ( $n=3$ )
Objective Functional Error in Each Iteration


## Numerical Experiments $(n=3)$

State and Control Error in Each Iteration

(a) $L^{\infty}$-error in control with $N=10^{2}$.

(b) $L^{\infty}$-error in states with $N=10^{2}$.

## Numerical Experiments $(n=3)$

State and Control Error in Each Iteration

(a) $L^{\infty}$-error in control with $N=10^{3}$.

(b) $L^{\infty}$-error in states with $N=10^{3}$.

## Numerical Experiments ( $n=3$ )

State and Control Error in Each Iteration

(a) $L^{\infty}$-error in control with $N=10^{4}$.

(b) $L^{\infty}$-error in states with $N=10^{4}$.

## Numerical Experiments $(n=3)$

| $N$ | Dykstra | MAP | DR | AAC | FISTA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{2}$ | $1.4 \times 10^{1}$ | $1.5 \times 10^{1}$ | $1.7 \times 10^{1}$ | $1.6 \times 10^{1}$ | $5.4 \times 10^{1}$ |
| $10^{3}$ | $1.7 \times 10^{-1}$ | $4.8 \times 10^{-1}$ | $2.2 \times 10^{-1}$ | $2.1 \times 10^{-1}$ | $1.0 \times 10^{1}$ |
| $10^{4}$ | $1.7 \times 10^{-2}$ | $4.4 \times 10^{-1}$ | $2.2 \times 10^{-3}$ | $2.1 \times 10^{-3}$ | $9.9 \times 10^{-2}$ |
| (a) $L^{\infty}$-error in control, $\sigma_{u}^{k}$ |  |  |  |  |  |
|  |  |  |  |  |  |
| $N$ | Dykstra | MAP | DR | AAC | FISTA |
| $10^{2}$ | $3.9 \times 10^{-2}$ | $3.6 \times 10^{-2}$ | $2.3 \times 10^{-1}$ | $2.2 \times 10^{-1}$ | $7.7 \times 10^{-1}$ |
| $10^{3}$ | $4.1 \times 10^{-3}$ | $3.2 \times 10^{-2}$ | $2.6 \times 10^{-2}$ | $2.5 \times 10^{-2}$ | $1.2 \times 10^{-1}$ |
| $10^{4}$ | $4.2 \times 10^{-4}$ | $3.4 \times 10^{-2}$ | $2.6 \times 10^{-3}$ | $2.5 \times 10^{-3}$ | $1.2 \times 10^{-2}$ |
|  |  | (b) $L^{\infty}$-error in states, $\sigma_{x}^{k}$. |  |  |  |

Table 4: Least errors by Algorithms $1-5 \quad\left(\varepsilon=10^{-8}\right)$

## Conclusion and Open Problems

We observe and note that

- Dykstra, DR, AAC (Algorithms 1, 3 and 4) are the most successful. Dykstra is best in generating optimal states (position and velocity).
- Projection methods are better than the standard discretization approach.
- MAP is observed to converge only weakly for $n=2$ and 3 .
- Models and algorithms here are prototypes for future extensions.


## Conclusion and Open Problems

We observe and note that

- Dykstra, DR, AAC (Algorithms 1, 3 and 4) are the most successful. Dykstra is best in generating optimal states (position and velocity).
- Projection methods are better than the standard discretization approach.
- MAP is observed to converge only weakly for $n=2$ and 3 .
- Models and algorithms here are prototypes for future extensions.


## Future work

- If $u^{-}(t)$ is piecewise linear then its projection is piecewise linear. This might simplify further the projection expressions.
- Extension to general control-constrained linear-quadratic problems.
- Extension to nonconvex optimal control problems.

