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1. Scalarization approach in vector optimization

Let Y be a real linear (topological) space, A C Y, A #= 0, Ry
be the set of all nonnegative numbers. A is said to be solid if
int A% (), proper if A#( and A # Y, pointed if An(—A) C {0},
a cone if Va € A, Vt € Ry : ta € A, and a convex cone if A is a
cone and A+ A= A. A proper cone is called nontrivial.

Ct:={y*eY*|vyeC: y*(y) > 0}.

The recession cone of A is defined by
Ao :={y €Y |Vac A, VEtEe Ry a+ty € A}

bar A denotes the domain of the support function of A or the
barrier cone of A.



Let Y be equipped with a binary relation generated by a domina-
tion set © C Y being proper and 0 € cl ®. Denoting the relation
on Y with respect to © by <g, we have:

y1 <o Y2 <= y1 € yo — O. (1)

When © = (C' is a nontrivial, closed, convex and pointed cone,
<c is a partial order in Y. We do not impose either the convexity
property or the conical property for the domination set ©.

We say that a point y € =, where = C Y is a nonempty subset
in Y, is a ©-minimal point of = with respect to the domination
set ©, if

=N —-90)={y} (2)
i.e., for every y e =, y <g y implies y = 7.



Definition 1 (scalarization directions of sets). Let A be a
proper subset in a linear space Y. A nonzero vector k € Y is
called a scalarization direction of A if A does not contain lines
parallel to k and the scalarization condition

Vt€R+:A+tk§A (3)

holds. Set of all scalarization directions of A: dir (A).

Definition 2 (translation invariant functionals / nonlinear
scalarization functionals). Let A be a proper set in a linear
space Y and k € dir(A) be a scalarization direction of A. The
functional ¢4 1 Y — RU{+oco} defined by

pax(y) ;=inf{t ER |y € tk — A}, (4)

where inf(0) = 4o0, is called nonlinear scalarization functional
with respect to the set A and the scalarization direction k.



Lemma 3 (GTZ1999, GRTZ2003, Theorem 2.3.1) Assu-
me that A is a closed set in a topological linear space Y. Then,

(@) ¢4k is lower semicontinuous over its domain dom (v 4 k) =
Rk — A. For every 7 € R, the t-level set of ¢4y Iis given by

Lev(Tipak) ={v €Y |pax(y) <7} =7k - A
(b) w4 is translation invariant along the scalarization
direction k (linearly shifted along the scalarization direction k):

VyeY, Vi e R: o a(y+tk) =@ (y) +1.

(C) wax Is convex if and only if A is convex, and positively
homogeneous if and only if A is a cone.

Remark: Jaschke and Kiichler (2001) have shown that each
translation invariant functional has a representation (4).



Remark 1 (on the closedness of A). We always have

SOA,k — SOVClk(A),k
for any set A in Y, where vcli (A) is defined by

vl (A) ' ={yeY |Vr>0, dte[0,7]: y+tke A}

and is called the vector closure of A in the direction k. If A is
a closed set, then A =cl(A) = vcli(A). However, the reverse is
not true.

Example: Let A := {(a,b) € R? |Va € (0,—1) : b= —/1—a?} be
a set and k = (1,1) be a direction in R2. We have A = vcli (A)
but clA = AU {(—1,0), (0, —1)}.
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Lemma 4 (DT2009, Lemma 2.1). LetY be a topological li-
near space, C be a nontrivial, closed, solid and convex cone in'Y,
and k € int (C) be a scalarization direction of C. Then, oc de-
fined in Definition 2 is continuous, sublinear, int (C')-monotone,
and translation invariant along the direction k. For every 5 €Y,
the subdifferential of o aty €Y is given by

docx@ ={y* € CT |y* &) =1Ay* @) = pox@}.  (5)
When 5 = 0, (5) becomes

dpc1(0) = CT N Hy(k) with Hy(k) == {y* € Y* | y*(k) = 1}.



Lemma 5 (DT2009, Theorem 2.2) LetY be a real topolo-
gical linear space, and let A be a nontrivial, closed and convex
set in'Y, and k be a scalarization direction of A. Then, for every
gy € domo 4 i, the subdifferential (of convex analysis) of ¢ 4 at
y IS given by

0pax@) ={y €Y |y (k) =1AVWeA: y@—y)—pax(@ > 0}.

Lemma 6 (TZ2010, Corollary 4.2) Let Y be a separated
locally convex vector space, A C Y be a nontrivial, closed and
convex set enjoying the free-disposal property, and k € —Ax.
Then, for every y € Y the subdifferential (of convex analysis) of

pak aty is given by
0pax(@) ={y" €barAly"(k) =1AVyec Ay (T —y)—vax® > 0}.



2. Limiting generalized differentiation

Definition 7 (Normal cones) Let Q C X, Q %= 0, X is an
Asplund space.
(i) The regular (Fréchet) normal cone to Q2 at x € Q2:

* R
N(z;Q) :={z*c X*| limsup — (w=2) 451 (6)
Q |u — |
U—>I

(ii) Assume that 2 is locally closed around T € 2. The limiting
normal cone (basic normal cone) to Q2 at z:

N(z: Q) := LimsupN(z; Q)

rT—T
= {m*eX*E T — T, mzﬂ—wx*, wZEﬁ(wk;Q)}a

where Limsup stands for the sequential Painlevée-KuratowsKi
outer limit as x tends to 7.



Definition 8 Let F: X ==Y, X,Y Asplund spaces, gph F' locally
closed around (z,7y) € gph F.

(i) Regular coderivative D*F(z,5) : Y* = X* of F at (z,7%):
D*F@,7)(y*) == {z* € X* | (=", —y*) € N((z,7); gph F')}.
(ii) Normal limiting coderivative DY F(Z,y) : Y* = X* of F at
(z,9)
DNF(z,9)(y") = {z" € X* | (", ~y") € N((z.9); gph F')}

h F *
= {a" € X" |3 () 2 @0, (v B @)

with (af, ~yi) € N((og i) 9ph F) .



(ili) The mixed Mordukhovich/limiting coderivative D}, F(Z,7) -

Y* = X* is defined by replacing the weak® convergence y; 2
IRl

y* in (ii) with the norm convergence y; — y*, i.e.,
* — *\ . * * gph F* ,__ _ « W
DiF(@ (") = {a* € X" |3 (ap) P (2,9, o} % o,

I, v _ |
i 4y with (af, —yi) € N (o, )i gph F) |



Definition 9 Given a set 2 C X x Y in the product of Asplund
spaces; in particular, 2 = gph F', where F' : X — Y is a set-valued
mapping. Assume that 2 is locally closed around (z,7y) € Q2. Q2
is sequentially normally compact (SNC) at v = (z,y) if for any
sequences {vy, xy, Y.} satisfying

Q . o~
v = T, (x3,y;) € N(vg, Q) (k €N), (7)
one has
(o u) 5 0 = (a},9]) V0.



Assume in addition that the space Y is equipped with a domina-
tion set © of Y. Then, the epigraph of F with respect to © is
defined by

epi F:={(z,y) e X XY |y € F(x) + O}

we omit © in the epigraph notation for simplicity. We call the
set-valued mapping £ : X = Y defined by

Ep(x) :=F(z) + © (8)

the epigraphical multifunction with F (and ©) due to the fact
that gph&r = epi F. Adopting coderivatives of set-valued map-
pings to epigraphical multifunctions, we define subdifferential
constructions for F..



Definition 10 (Subdifferentials of set-valued mappings).
Let F': X =Y be a set-valued mapping and © be a domination
set of Y. Assume that epi I is locally closed at (z,7y) € epi F.
(i) The regular subdifferential OF (z,7) : Y* = X* of F at (z,7)
is defined by

OF (z,9)(y") := D*ep(z,7) (v*).
(i) The basic subdifferential OF (z,y) : Y* = X* of I at (z,v)
is defined by

OF (z,y)(y*) := DNER(T, ) (Y")- (9)

(iii) The singular subdifferential 0°°F (x,y) of F at (x,7y) is de-
fined by

OFF(z,y) = DyEr(z,7)(0). (10)



3. Subdifferentials of scalarization functionals

Theorem 11 (Subdifferentials of scalarization functionals).
Let Y be an Asplund space, A a proper and closed set in Y, and
k € dir (A) be a scalarization direction of A. Consider ¢4 and
y € domypy k. Then, the regular and limiting subdifferentials of

wax at (7,t) € epipyx are (for A € R)

Do 4 (M) (N) = Hy(k) N (= No(tk —7; A)), (11)

where Hy(k) = {y* € Y* | y*(k) = A}, and e stands for both
regular and limiting constructions.



Sketch of the proof:
e Define a set-valued mapping FF: R =Y by F(t) =tk — A.
e Application of Lemma 3 vyields gph F—1 = epi 4 k.-

e Apply the coderivative sum rule with equality from Theorem
1.62 in Mordukhovich (2006).

e T he normal cone to Cartesian sets is the product of the
normal cones to component sets (Proposition 1.2 in Mor-
dukhovich (2006)).



Corollary 12 (Subdifferentials of scalarization functionals).
Let YV, A, k, P Ak (y,t) as in Theorem 11. Then:

(i) The basic subdifferential of w4y at ¥ is

dpax(@ = H1() N (= N(pax@k -7 4)),  (12)
where Hi(k) :={y* e Y* | y*(k) = 1}.

(ii) The singular subdifferential of w4 at 7 is

00 ax(@) = Ho(k) N (= N(pax@k -7:4)),  (13)
where Hgo(k) :={y* € Y* | y*(k) = 0}.



Definition 13 (Sequential normal epi-compactness of func-
tionals). Let ¢ : X — RU {400} be finite at Z. We say that ¢
is sequential normal epi-compact (SNEC) at z if its epigraph is
SNC at (7, o(Z)).

Remark: Theorem 11 provides subdifferentials of the scalariza-
tion functionals at pairs in the epigraph which are essential for
us to study the equivalence between the SNC property of the set
A and the SNEC property of the scalarization functional P A K-
Since we do not assume that A is solid, we need to compute the
singular subdifferential 9y 4 i Of w4 in order to verify the ful-
fillment of the so-called qualification condition of calculus rules
for generalized differentiation.



Corollary 14 (SNEC property of scalarization functionals).
Let YV, A, k, P Ak (g,t) as in Theorem 11. pak IS SNEC at
yedomepyy if and only if Ais SNC at ¢4 ,(7)k — 7.

Theorem 15 LetY, A, k, oy, (¥,t) as in Theorem 11. Then,
P A Kk is locally Lipschitz continuous at y € dom P Ak it and only if
Ais SNC at v := p4x(¥)k — 7y and

Ho(k) N (—=N(v; A)) = {0}, (14)
where Ho(k) = {y* € Y* | y*(k) = 0}.

Proof: By Corollary 12, 0%¢p4x(y) = Ho(k) N (—N(v; A)). By Corollary 14,
vak IS SNEC at y. An extended-real-valued function is locally Lipschitz con-
tinuous at a point y in its domain if and only if its singular sudifferential is
trivial and it is SNEC at that point (Theorem 4.10 in Mordukhovich (2006)).



Corollary 16 (Lipschitz continuity of scalarization functio-
nals). Let Y be an Asplund space, C be a nontrivial, closed,
convex and solid cone in Y, and k € int(C) be a scalarization
direction of C. Then, POk is locally Lipschitz.

Corollary 17 (Subdifferentials along scalarization directions).
Let Y, A, k, DAk (y,t) as in Theorem 11. Then, for any y €
domy,x =Rk — A and for any t € R, we have

OpA k(T +tk) = 0py x(T) and 0%py (T + tk) = 0%¢p 4 k(7).



4. Application to set-valued optimization

© — Minimize F(x) subjectto z e, (SP)

where F: X =Y, X, Y are Asplund spaces, Q #0, QC X, ©
is a domination set in Y with dir (@) # 0.

Definition 18 (©-minimality). Consider problem (SP). Let T €
Q and (z,y) € gph F. We say that the pair (z,y) € gphF is a
©-minimal solution of problem (SP) if F(2)N(y —©) = {y}.



(NQC{F,2})) (norm-convergence qualification condition for {F, Q2}):
For any sequence (x1g, Tok, Y1k, T10 Tog, Y1) Satisfying

(T1k,Y1%) € 9PN Fxpp, € QQ, 27, € D*F(x1k, Y11) (Y1)
— . o . w*
xék S N($2sz Q)7 ($1kaylk) — (37,y),(172k — T, (wikaajgk) — ($>:I|<_>x§)
one has

(lz1g + 224l = O A Hlygll = 0) = [la1,ll + x4l = O.

(MQC{F,©})) (mixed qualification condition for {F,©}):
y* € Dy F1(3,2)(0) N (~N(0; ©)) and y*(k) = 0] = y* = 0.

Remark: (MQC({F,©})) could be replaced by the qualification
condition for {F, pg_z k}

Dy F~1(,7)(0) N (-9%pg_g1) (@) = {0}.



Theorem 19 (necessary conditions for ©-minimal solutions).
Consider problem (SP) and a ©-minimal solution (z,7y). Let
k € dir(©) be a scalarization direction of ©, and ¢ = pg_y k-
Assume that the following conditions hold:

(H1) (closedness condition) the domination set © is locally clo-
sed around the origin, gph F' is closed around (z,y), and €2 is
locally closed around =.

(H2) (SNC conditions) One of the following conditions holds:
(@) © is SNC at 0 and 2 is SNC at z;

(b) F is SNC at (z,7).

(H3) (Qualification conditions)

Either (NQC(HF,2})) for {F,2} is satisfied in the case of the
SNC condition (a), or (MQCHF,©})) for {F,®} is fulfilled in
the case of the SNC condition (b).



The qualification condition for {©, F, 2} is satisfied: For any se-
quence
{(ajlka Loks Y1k :Cﬂ]ika x;ka yik)}

satisfying
(1%, Y1k) € 9PN F, 2o € 2,27, € D*F (1%, y15) (¥11),
why, € N(xop Q), (21, v1k) = (F,9), 20 = T, (2}, 2%;,) — (27, 23),

one has
T Ii)*ﬂf{,ﬂjzk = ¥, |27, + 25| = O, N [ 7] = x5 =0 ] |
yi, = —yi, vl € —N(0;©) N Ho(k)
Then, there is y* €¢ —N(0; ©) with y*(k) = 1 satisfying
0 coF(z,z)(¥") + N(z, Q). (15)



5. Application in approximation theory

X,Y and Z are real Banach spaces, © is a nontrivial, closed,
convex and pointed cone in Y.

Vector-valued norm: || - || : Z — © which for all z,2z1,20 € Z and
for all A € R satisfies:

(1) |z]| =0 < 2 = 0;
(2)  xzl=IA] l=[;
(3)  llzr 22l € llz1ll + =2l — ©.

Subdifferential (denoted <) for the vector-valued norm || - ||
(L(Z,Y) denotes the space of linear continuous operators from
Z into Y):

05| (z0) = {T € L(Z, Y)IT(20) = llz0ll A (Vz € Z : ||| = T(2) € ©)}.



Furthermore, we assume that 9<|| - || # 0.

Suppose that the cost function g : X xW — Y is locally Lipschitz,
QCX, A, e L(X,Z),a* e Zand a; >0 (i = 1,...,n). Consider
the vector-valued approximation problem (VOP)

n
minimize f(z,w) = g(z,w)+ >_ ;| A;(z) — a'|| subject to z € Q,
i=1
where w € W(x) stands for the control parameter and minimi-
zation is understood with respect to the partial order generated
by a proper, closed, pointed and convex cone © C Z in (1) and
Q2 C X is closed. By considering G(z) = {g(z,w)|lw € W(x)},
(VOP) is equivalent to the set-valued approximation problem
(SP):

n .
minimize F(z) := G(z) +{) _ «4)|4;(z) — a’||} subject to z € Q.
1=1



Theorem 20 Suppose that X.,Y, Z are reflexive Banach spaces,
© C Z a proper convex Daniell cone with a weakly compact base,
| - || is continuous and €2 is a closed subset of X. Assume that
(z,9) WithT € Q, z€ G(@), and §:=z+ 2" ; ]| A;(Z) — @' is a
©-minimal solution of problem (SP) and that G is Lipschitzian-
like at (z,7). Assume that © is SNC at 0 and the qualification
condition y* € —N(0;©) N Ho(k),0 € D*F(z,v)(y*) + N(7;2) =
y* = 0 for some k € dir (®) holds. Then, Jy* € Z* with y*(k) = 1
and
mn
0 € 0G(Z, 1) (y*) + D Aly'T; + N(z; Q2),
i=1
where T; € L(Z,Y), T;(A;(T) — a*) = ||A;(T) — o',
VzeZ: |z|| -T;(z) e ©, (i=1,...,n).



6. Conclusions

e [0 derive optimality conditions for set optimization problems
based on other solution concepts (set approach) and to de-
velop numerical procedures based on scalarization.

e Compute the subdifferential of scalarizing functionals related
to vector optimization w.r.t. variable domination structure.

e Computation of the subdifferential of the vector-valued norm
where a general domination set © is involved.

e Applications in locational analysis and optimization under un-
certainty.
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