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1. Introduction

The Clarke’s inverse function theorem [6, Theorem 1] generalizes the classi-
cal inverse mapping theorem from C1 smooth to locally Lipschitz continuous
mappings and can be stated as follows:

If all matrices in the Clarke generalized Jacobian at a reference point of a
locally Lipschitz continuous mapping from a Euclidean space into itself are non-
singular, then this mapping admits locally an inverse which is Lipschitz contin-
uous.

For mappings with values in another Euclidean space having a smaller dimen-
sion, we have the Pourciau’s open mapping theorem [16, Theorem 6.1]:

If all matrices in the Clarke generalized Jacobian at a reference point of a
locally Lipschitz continuous mapping from a Euclidean space into another Eu-
clidean space have full rank, then this mapping is open around the reference point
with a linear rate.

This statement means, in particular, that the inverse (set-valued) mapping
admits a local (single-valued) selection which is defined around and calm at the
reference point. A. V. Arutyunov, A. F. Izmailov, and S. E. Zhukovskiy [2]
proved that one can find a selection which is, in addition, continuous around the
reference point.

In the second section, we use the Ekeland’s variational principle to establish Ioffe-type conditions guaran-

teeing the existence of a solution of a non-linear non-smooth equation. This statement easily implies criteria

for the usual openness with a linear rate at/around a point for mappings acting in Banach spaces as well as

in Fréchet spaces. Most importantly, it also implies a sufficient condition for the existence of a continuous and

calm selection for the inverse of a single-valued Lipschitz continuous mapping between Banach spaces having

a closed domain. In the third section, by example of the Bartle-Graves theorem, we illustrate that the general

criterion yields elegant proofs following the same pattern, as in the case of linear openness, by considering

mappings instead of points. In the fourth section, we concentrate on approximations of a mapping in question

by positively homogeneous mappings. We derive conditions ensuring the usual openness with a linear rate

around the reference point. Then, under stronger assumptions, we present a related statement on the existence

of a continuous and calm selection for the inverse mapping. In the last section, we derive corollaries in case

that a positively homogeneous approximation of the mapping under consideration is generated by bunches of

linear operators, in order to illustrate that our general results cover and unify various statements from the

literature.
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2. Regularity criteria

The Ekeland’s variational principle implies a condition guaranteeing that
a non-linear non-smooth equation is solvable for a given right-hand side.

Proposition 2.1. Let X and Y be non-empty sets, let x̄ ∈ X, let a mapping
g : X → Y be defined on all of X, and fix a point y ∈ Y . Suppose that there
exists a complete metrics ζ = ζy on X and a function ϑ = ϑy : Y → [0,∞],
defined on the whole Y , such that ϑ(g(x̄)) <∞, that ϑ−1(0) = {y}, and that the
function ϑ ◦ g is lower semi-continuous on (X, ζ). If for each x ∈ X satisfying

(1) 0 < ϑ(g(x)) ≤ ϑ(g(x̄))− ζ(x, x̄)

there is a (better) point x̂ ∈ X such that

(2) ϑ(g(x̂)) < ϑ(g(x))− ζ(x̂, x),

then there exists a point u ∈ X such that g(u) = y and ζ(u, x̄) ≤ ϑ(g(x̄)).

Proof. If g(x̄) = y, then u := x̄ satisfies the conclusion. Further, assume that y 6= g(x̄). The Ekeland’s
variational principle yields a point u ∈ X such that

(3) ϑ(g(u)) ≤ ϑ(g(x̄))− ζ(u, x̄)

and

(4) ϑ(g(x)) ≥ ϑ(g(u))− ζ(x, u) for every x ∈ X.

Then ζ(u, x̄) ≤ ϑ(g(x̄)). Assume that g(u) 6= y. Thus ϑ(g(u)) > 0 and (3) says that (1), with x := u, holds.

By the assumption, there is a point x̂ ∈ X such that ϑ(g(x̂)) < ϑ(g(u))− ζ(x̂, u). Setting x := x̂ in (4), we get

that ϑ(g(x̂)) ≥ ϑ(g(u))− ζ(x̂, u), a contradiction. Consequently g(u) = y. �

Remark 2.2. If the values of ϑ are finite, then the result above follows from [12, Lemma 1], a slight refor-

mulation and generalization of the Caristi’s fixed point principle, proved by an iterative procedure since that
time the use of the Ekeland’s variational principle was not so common in variational analysis. Note that a less

general version of [12, Lemma 1] was rediscovered as [1, Theorem 3].

Since the function ϑ as well as the metrics ζ in Proposition 2.1 are allowed to depend on the choice of the
right-hand side y, we get [4, Proposition 3] in Fréchet spaces. This is straightforward and a precise formulation

requests several specific notions, we leave performing details to an interested reader (if any).

We derive two corollaries of the above result in the Banach space setting
(although they are valid in metric spaces as well).

Proposition 2.3. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let x̄ ∈ X, and
let c and r be positive constants. Consider a mapping f : X → Y , with closed
domain Ω 3 x̄, which is continuous on BX [x̄, r] ∩ Ω. Assume that for every
x ∈ BX [x̄, r] ∩ Ω and every y ∈ BY [f(x̄), cr] satisfying

(5) 0 < ‖f(x)− y‖ ≤ ‖f(x̄)− y‖ − c ‖x− x̄‖
there is a (better) point x̂ ∈ Ω such that

‖f(x̂)− y‖ < ‖f(x)− y‖ − c ‖x̂− x‖.
Then f

(
BX [x̄, t] ∩ Ω

)
⊃ BY [f(x̄), ct] for every t ∈ (0, r].

Proof. Fix an arbitrary t ∈ (0, r] and y ∈ BY [f(x̄), ct]. Apply Proposition 2.1
with X := BX [x̄, r] ∩ Ω, ϑ(v) := ‖v − y‖/c, v ∈ Y , and g := f . �
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The proofs in [2] are based on a reformulation of the Caristi’s fixed point
principle (see Remark 2.2). Proposition 2.1 gives a statement guaranteeing the
existence of a selection for the inverse mapping which is defined around, calm
at, and continuous around the reference point. Given Banach spaces (X, ‖ · ‖)
and (Y, ‖ · ‖), denote by C(D;R) the set of all continuous mappings h : X → Y ,
with domain D ⊂ X and values in R ⊂ Y .

Proposition 2.4. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let x̄ ∈ X, and
let c and r be positive constants. Consider a mapping f : X → Y , with closed
domain Ω 3 x̄, which is Lipschitz or just uniformly continuous on BX [x̄, r] ∩Ω.
Put ȳ := f(x̄) and assume that for each ϕ ∈ C(BY [ȳ, cr]; Ω) such that f(ϕ(y0)) 6=
y0 for some y0 ∈ BY [ȳ, cr] and that

(6) ‖f(ϕ(y))− y‖ ≤ ‖y − ȳ‖ − c ‖ϕ(y)− x̄‖ for each y ∈ BY [ȳ, cr]

there is a mapping ϕ̂ ∈ C(BY [ȳ, cr]; Ω) such that (6) with ϕ := ϕ̂ holds and that

(7) sup
y∈BY [ȳ,cr]

‖f(ϕ̂(y))−y‖ < sup
y∈BY [ȳ,cr]

‖f(ϕ(y))−y‖−c sup
y∈BY [ȳ,cr]

‖ϕ̂(y)−ϕ(y)‖.

Then there exists a mapping ϕ̃ ∈ C(BY [ȳ, cr]; Ω) such that f(ϕ̃(y)) = y and
c ‖ϕ̃(y)− x̄‖ ≤ ‖y − ȳ‖ for each y ∈ BY [ȳ, cr].

Proof. Put X := {ϕ ∈ C(BY [ȳ, cr]; Ω) : ϕ satisfies (6)}. The set X is non-empty
because it contains the constant function ϕ(·) ≡ x̄. Put g(ϕ) := f ◦ ϕ, ϕ ∈ X,
and Y := C(BY [ȳ, cr];BY [ȳ, 2cr]).

We intend to apply Proposition 2.1. Fix for a while any ϕ ∈ X. Then g(ϕ) is well-defined and maps into
BY [ȳ, 2cr], because ϕ maps into BX [x̄, r] ∩ Ω and for every y ∈ BY [y, cr] we have by (6) that

‖g(ϕ)(y)− ȳ‖ = ‖f(ϕ(y))− ȳ‖ ≤ ‖f(ϕ(y))− y‖+ ‖y − ȳ‖ ≤ 2‖y − ȳ‖ ≤ 2cr.

The continuity of f immediately implies that g(ϕ) is continuous. Thus g maps X into Y. Let I(y) := y, y ∈
BY [ȳ, cr]. Clearly I ∈ Y. Define ζ : X× X→ [0,∞) by

ζ(ϕ1, ϕ2) := sup
y∈BY [ȳ,cr]

‖ϕ1(y)− ϕ2(y)‖, ϕ1, ϕ2 ∈ X.

That ζ is a complete metrics on X follows from [10, Theorem 4.3.13] and from the easily verifiable fact that
the validity of (6) is conserved when going to limits in the metrics ζ. Define a function ϑ : Y→ [0,∞) by

ϑ(η) := c−1 sup
y∈BY [ȳ,cr]

‖η(y)− y‖, η ∈ Y.

Then ϑ(g(ϕ)) = r < ∞ and ϑ−1(0) = I. The uniform continuity of f at once implies that g is continuous.
From this, we can easily conclude that the function ϑ ◦ g is lower semi-continuous on (X, ζ).

Now, consider any ϕ ∈ X satisfying (1) (where x := ϕ and x̄ := ϕ̄), that is, 0 < ϑ(g(ϕ)) ≤ ϑ(g(ϕ̄))− ζ(ϕ, ϕ̄).

Then, in particular ϑ(g(ϕ)) > 0, i.e., g(ϕ) 6= I, i.e., f(ϕ(y)) 6= y for some y ∈ BY [ȳ, cr]. Also, (6) holds as

ϕ ∈ X. Thus there is a mapping ϕ̂ ∈ X such that (7) holds, which is (2), where x := ϕ and x̂ := ϕ̂. Applying

Proposition 2.1, with y := I, we find a mapping ϕ̃ ∈ X such that g(ϕ̃) = I and ζ(ϕ̃, ϕ̄) ≤ ϑ(g(ϕ̄)). Thus, for

every y ∈ BY [ȳ, cr], we have f(ϕ̃(y)) = y and c‖ϕ̃(y)− x̄‖ ≤ ‖y − ȳ‖ − ‖f(ϕ̃(y))− y‖ = ‖y − ȳ‖; here we used

that ϕ̃ ∈ X, and so (6) with ϕ := ϕ̃ holds. �
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3. Approximation by one linear operator

As an illustration, let us prove the (updated) Graves’ theorem [9, Theorem
5D.1] and as well as the theorem by Bartle and Graves [9, Theorem 5J.3]. Propo-
sition 2.3 and Proposition 2.4, allow us to avoid the iteration, that is, the con-
struction of a sequence of points [continuous functions] the limit of which is the
desired solution of the equation f(x) = y [continuous selection for f−1].

Theorem 3.1. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let x̄ ∈ X, let α, µ,
and δ be positive constants. Consider a mapping f : X → Y along with a linear
bounded mapping A : X → Y such that A(BX) ⊃ (α + µ)BY and that

(8) ‖f(u)− f(x)− A(u− x)‖ ≤ µ ‖u− x‖ for each u, x ∈ BX [x̄, δ].

Then for each c ∈ (0, α), each x̃ ∈ BX(x̄, δ), and each r ∈ (0, δ − ‖x̃ − x̄‖], the
following statements hold true:

(i) For an arbitrary y ∈ BY [f(x̃), cr], there is a point x ∈ BX [x̃, r] such that
f(x) = y and c ‖x− x̃‖ ≤ ‖y − f(x̃)‖.

(ii) There is a function ϕ̃ ∈ C(BY [f(x̃), cr];X) such that f(ϕ̃(y)) = y and
c ‖ϕ̃(y)− x̃‖ ≤ ‖y − f(x̃)‖ for each y ∈ BY [f(x̃), cr].

Proof. Fix arbitrary c, x̃, and r as in the premise. Pick an ε > 0 such that
c < α− ε. Put ỹ := f(x̃) and λ := α + µ− ε. Pick a γ ∈ (0, 1/(α + µ)).
As A(BX) ⊃ (α + µ)BY , conclude that

(9) ∀ v ∈ Y ∃h ∈ X : Ah = v and λ‖h‖ ≤ ‖v‖.

(i) Fix arbitrary x ∈ BX [x̃, r] and y ∈ BY [ỹ, cr] such that

0 < ‖f(x)− y‖ ≤ ‖ỹ − y‖ − c ‖x− x̃‖.
Let v := y − f(x). Then x ∈ BX [x̃, r] ⊂ BX [x̄, δ]. By (9), there is an h ∈ X
such that Ah = v and λ‖h‖ ≤ ‖v‖. Set x̂ := x+ γλh. Then

‖x̂− x‖ = γλ‖h‖ ≤ γ‖v‖,
and, as cγ < 1, we conclude that

c ‖x̂− x̃‖ ≤ c ‖x− x̃‖+ c ‖x̂− x‖ ≤ c ‖x− x̃‖+ cγ‖v‖ ≤ ‖ỹ − y‖ ≤ cr.

Therefore x̂ ∈ BX [x̃, r] ⊂ BX [x̄, δ]. By (8), we get that

‖f(x̂)− f(x)− A(γλh)‖ ≤ µγλ ‖h‖ ≤ µγ ‖v‖.
Since A(γλh) = γλv and γλ < 1, we may estimate

‖y − f(x̂)‖ ≤ ‖y − f(x)− γλv‖+ ‖f(x)− f(x̂) + A(γλh)‖
= (1− γλ) ‖v‖+ ‖f(x̂)− f(x)− A(γλh)‖
≤ (1− γλ) ‖v‖+ µγ‖v‖ = (1− γ(α− ε)) ‖v‖ < (1− γc) ‖v‖
≤ ‖v‖ − γcλ‖h‖ = ‖y − f(x)‖ − c ‖x̂− x‖.
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Proposition 2.3, with x̄ := x̃ and t := r, implies the conclusion in (i).

(ii) In view of (9), the mapping

Y 3 v 7−→ Ξ(v) :=
{
h ∈ X : Ah = v and λ‖h‖ ≤ ‖v‖

}
has non-empty closed convex values and is lower semi-continuous on Y . Indeed,

fix an arbitrary v̄ ∈ Y . If v̄ = 0, then Ξ is continuous at v̄ because Ξ(0) = {0}. Suppose that v̄ 6= 0. Let Ω be

an open set in X such that Ξ(v̄) ∩Ω 6= ∅. Pick any h̃ ∈ Ξ(v̄) ∩Ω. There is a non-zero ĥ such that Aĥ = v̄ and

λ‖ĥ‖ < (α+ µ)‖ĥ‖ ≤ ‖v̄‖. As h̃, ĥ ∈ A−1(v̄), we can find τ ∈ (0, 1) such that h̄ := h̃+ τ(ĥ− h̃) ∈ Ω∩A−1(v̄).

Since λ‖h̄‖ < ‖v̄‖, there are open neighborhoods U ⊂ Ω of h̄ and V of v̄ such that λ‖h‖ < ‖v‖ whenever

h ∈ U and v ∈ V . As A is an open mapping, the inverse A−1 is lower semi-continuous at v̄. Hence there is a

neighborhood W ⊂ V of v̄ such that A−1(v) ∩ U 6= ∅ for each v ∈ W . Consequently, for each v ∈ W we have

Ξ(v) ∩ Ω ⊃ A−1(v) ∩ U 6= ∅.

By the Michael’s selection theorem, there is a continuous mapping η : Y → X
such that

(10) Aη(v) = v and λ‖η(v)‖ ≤ ‖v‖ for each v ∈ Y.
We are going to use Proposition 2.4 with (x̄, ȳ) replaced by (x̃, ỹ). Inequality

(8) ensures that f is Lipschitz continuous on BX [x̄, δ] ⊃ BX [x̃, r]. Let ϕ ∈
C(BY [ỹ, cr];X) be such that f(ϕ(y0)) 6= y0 for some y0 ∈ BY [ỹ, cr] and that

(11) ‖f(ϕ(y))− y‖ ≤ ‖y − ỹ‖ − c ‖ϕ(y)− x̃‖ for each y ∈ BY [ỹ, cr].

We shall construct a ϕ̂ ∈ C(BY [ỹ, cr];X) satisfying (11) with ϕ := ϕ̂ such that

(12) sup
y∈BY [ỹ,cr]

‖f(ϕ̂(y))−y‖ < sup
y∈BY [ỹ,cr]

‖f(ϕ(y))−y‖−c sup
y∈BY [ỹ,cr]

‖ϕ̂(y)−ϕ(y)‖.

Define v : Y → Y and ϕ̂ : Y → X for each y ∈ BY [ỹ, cr], respectively, by

(13) v(y) := y − f(ϕ(y)) and ϕ̂(y) := ϕ(y) + γλ η(v(y)).

Given an arbitrary y ∈ BY [ỹ, cr], (11) implies that

ϕ(y) ∈ BX [x̃, r] ⊂ BX [x̄, δ] and ‖v(y)‖ = ‖y − f(ϕ(y))‖ ≤ ‖y − ỹ‖ ≤ cr.

Thus v(·) and ϕ̂(·) are well-defined and continuous. By (10), we get that

(14) ‖ϕ̂(y)− ϕ(y)‖ = γλ ‖η(v(y))‖ ≤ γ ‖v(y)‖ for all y ∈ BY [ỹ, cr].

As cγ < 1, (11) and (14) imply that for each y ∈ BY [ỹ, cr] we have that

c ‖ϕ̂(y)− x̃‖ ≤ c ‖ϕ(y)− x̃‖+ c ‖ϕ̂(y)− ϕ(y)‖
≤ ‖y − ỹ‖ − ‖v(y)‖+ cγ ‖v(y)‖ ≤ ‖y − ỹ‖ ≤ cr;(15)

thus ϕ̂(y) ∈ BX [x̃, r] ⊂ BX [x̄, δ].
We claim that

(16) ‖y − f(ϕ̂(y))‖ ≤ ‖v(y)‖(1− (α− ε)γ) for each y ∈ BY [ỹ, cr].

To show this, pick an arbitrary y ∈ BY [ỹ, cr]. If y = f(ϕ(y)) then (16) holds
trivially because v(y) = 0 and thus ϕ̂(y) = ϕ(y). Assume further that y 6=
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f(ϕ(y)), i.e. v(y) 6= 0. We note that η(v(y)) 6= 0 because Aη(v(y)) = v(y).
From (8) and (14), we get that

‖f(ϕ̂(y))− f(ϕ(y))− A(ϕ̂(y)− ϕ(y))‖ ≤ µγ‖v(y)‖.(17)

Since A(ϕ̂(y)− ϕ(y)) = γλv(y) and γλ < 1, (17) yields that

‖y − f(ϕ̂(y))‖ = ‖(1− γλ)v(y) + f(ϕ(y))− f(ϕ̂(y)) + A(ϕ̂(y)− ϕ(y))‖
≤ (1− γλ) ‖v(y)‖+ µγ‖v(y)‖ = ‖v(y)‖(1− (α− ε)γ).

Inequality (16) is proved. As c < α − ε, given any y ∈ BY [ỹ, cr], (16) and (15)
imply that

‖y − f(ϕ̂(y))‖+ c ‖ϕ̂(y)− x̃‖ ≤ ‖v(y)‖ − cγ‖v(y)‖+ ‖y − ỹ‖ − ‖v(y)‖+ cγ‖v(y)‖
= ‖y − ỹ‖.

Hence (11) holds with ϕ := ϕ̂. By (14),

(18) sup
y∈BY [ỹ,cr]

‖ϕ̂(y)− ϕ(y)‖ ≤ sup
y∈BY [ỹ,cr]

γ‖v(y)‖.

By the choice of ϕ, we have y0 6= f(ϕ(y0)), therefore supy∈BY [ỹ,cr] ‖v(y)‖ > 0. As
c < α− ε, combining (16) and (18) we obtain

sup
y∈BY [ỹ,cr]

‖y − f(ϕ̂(y))‖ < (1− cγ) sup
y∈BY [ỹ,cr]

‖v(y)‖

= sup
y∈BY [ỹ,cr]

‖y − f(ϕ(y))‖ − c sup
y∈BY [ỹ,cr]

γ‖v(y)‖

≤ sup
y∈BY [ỹ,cr]

‖y − f(ϕ(y))‖ − c sup
y∈BY [ỹ,cr]

‖ϕ̂(y)− ϕ(y)‖,

which is (12). Using Proposition 2.4 we finish the proof of (ii). �
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4. Positively homogeneous approximations

First, we present a quantitative and slightly more general version of [5, The-
orem 3.4].

Theorem 4.1. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let x̄ ∈ X, and let
α, µ, and δ be positive constants. Consider a continuous mapping f : X → Y ,
with a closed convex domain K 3 x̄, and a mapping H : X ×X ⇒ Y such that
for each x ∈ BX(x̄, δ) ∩K the following conditions hold true:

(i) The mapping H(x, ·) is positively homogeneous;
(ii) For each y∗ ∈ SY ∗ there is a non-zero h ∈ BX ∩ cone(K − x) such that

inf 〈y∗, H(x, h)〉 ≥ α + µ;
(iii) For each h ∈ BX there is a τ > 0 such that for each t ∈ (0, τ), with

x+ th ∈ BX(x̄, δ)∩K, we have that f(x+ th)− f(x) ∈ H(x, th) +µtBY .

Assume finally that one of the following three conditions holds:

(a) For each x ∈ BX(x̄, δ) ∩K and each h ∈ SX the set H(x, h) is bounded
and Y is either reflexive or the norm on Y is Fréchet smooth;

(b) For each x ∈ BX(x̄, δ) ∩K and each h ∈ SX the set H(x, h) is relatively
norm-compact and Y is either separable or the norm on Y is Gateaux
smooth;

(c) For each x ∈ BX(x̄, δ) ∩K and each h ∈ SX the set H(x, h) is relatively
weakly compact and the norm on Y is weakly Hadamard smooth.

Then f
(
BX(x̃, t)∩K

)
⊃ BY (f(x̃), ct) for each x̃ ∈ BX(x̄, δ)∩K, each c ∈ (0, α),

and each t ∈ (0, δ − ‖x̃− x̄‖].
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Now, we present a continuous version of Theorem 4.1.

Theorem 4.2. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let x̄ ∈ X, let α,
λ, µ, and δ be positive constants. Consider a mapping f : X → Y , which has
a closed convex domain K 3 x̄ and is uniformly continuous on BX [x̄, δ] ∩ K,
along with a mapping H : X ×X ⇒ Y such that for each x ∈ BX(x̄, δ) ∩K the
following conditions hold true:

(i∗) The mapping H(x, ·) is positively homogeneous and

(19) H(x, u+ v) ⊂ H(x, u) +H(x, v) for each u, v ∈ X;

(ii) For each y∗ ∈ SY ∗ there is a non-zero h ∈ BX such that x+ λh ∈ K and
inf 〈y∗, H(x, h)〉 ≥ α + µ;

(iii) For each h ∈ BX and each t ∈ (0, λ) such that x + th ∈ BX(x̄, δ) ∩ K,
we have that f(x+ th)− f(x) ∈ H(x, th) + µtBY ;

(iv) For each ε > 0 there is a β > 0 such that H(u, h) ⊂ H(x, h) + εBY

whenever h ∈ BX and u ∈ BX(x, β) ∩K with u+ λh ∈ K.

Assume finally that one of the following two conditions holds:

(a∗) The set H(BX(x̄, δ) ∩ K,SX) is bounded and either Y is superreflexive
or the norm on Y is uniformly Fréchet smooth;

(b∗) The set H(BX(x̄, δ) ∩K,SX) is relatively norm-compact and either Y is
separable or the norm on Y is uniformly Gateaux smooth.

Then for each c ∈ (0, α), each x̃ ∈ BX(x̄, δ) ∩K, and each r ∈ (0, δ − ‖x̃− x̄‖),
there is ϕ̃ ∈ C(BY [f(x̃), cr];K) such that f(ϕ̃(y)) = y and c ‖ϕ̃(y) − x̃‖ ≤
‖y − f(x̃)‖ for each y ∈ BY [f(x̃), cr].

Remark 4.3. 1. If we replace BX(x̄, δ) by BX [x̄, δ] in all the assumptions of Theorem 4.2, then the
conclusion holds also for r := δ − ‖x̄− x̃‖.

2. Often, we can assume that µ := 0 in Theorem 4.1 and Theorem 4.2. Indeed, suppose that there is
a constant µ > 0 such that f(x + h) − f(x) ∈ H(x, h) + µ‖h‖BY for each (x, h) ∈ X × X. Then

H̃(x, h) := H(x, h) +µ‖h‖BY , x, h ∈ X, satisfies (iii) with µ := 0. If H(x, ·) satisfies (i), (i∗), (ii), or

(iv) then so does H̃(x, ·) with µ := 0. If H(x, h) is bounded [relatively norm-compact] then H̃(x, h)
is bounded [has the measure of non-compactness less or equal to µ].



10 RADEK CIBULKA AND MARIÁN FABIAN

5. Approximations generated by sets of linear operators

The key tool is a slightly extended version of [5, Proposition 3.7].

Proposition 5.1. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces, let K ⊂ X be
a closed convex set with 0 ∈ K, let α > 0, and let y∗ ∈ SY ∗. Consider a convex
set A ⊂ L(X, Y ) such that

(20) A(BX ∩K) ⊃ αBY for every A ∈ A,

or only that

(21) sup 〈A∗y∗, BX ∩K〉 ≥ α for every A ∈ A.

If X is reflexive, then there exists a non-zero h ∈ BX∩K such that inf 〈y∗,Ah〉 ≥
α. If the set A∗y∗ is weak∗ compact and ε ∈ (0, α), then there exists a non-zero
h ∈ BX ∩K such that inf 〈y∗,Ah〉 ≥ α− ε.
Remark 5.2. 1. Assume that A ⊂ L(X,Y ) is compact in WOT, then the set A∗y∗ is weak∗ compact

for every y∗ ∈ Y ∗. This follows immediately from the WOT-to-weak∗ continuity of the assignment

A 3 A 7−→ A∗y∗;
2. In reflexive spaces, the statement above can be found in [12, Lemma 2], and was inspired by Clarke’s

proof of [6, Lemma 3]. Proposition 5.1 can be generalized for bounded fans using the notion of the

adjoint fan [13];

A bounded linear operator between Banach spaces is surjective if and only if
σ(A) > 0, where

σ(A) := sup{c > 0 : A(BX) ⊃ cBY }.
The function (L(X, Y ), ‖·‖) 3 A 7−→ σ(A) is continuous (even Lipschitz with the
constant 1), see [12, Corollary 6], [15, Lemma 1] or [17, Lemma 2.1]. This also
follows from the Graves’ theorem [9, Theorem 5D.2], which was generalized to
mappings with closed convex domains, cf. [5, Theorem 3.9]. Hence, in particular,
given a closed convex subset K 3 0 of X, the function

(L(X, Y ), ‖ · ‖) 3 A 7−→ σK(A) := sup{c > 0 : A(BX ∩K) ⊃ cBY }
is continuous (even locally Lipschitz).

Let us present a generalization of [2, Theorem 4.1], for the case that the
solutions are requested to lie in a prescribed closed convex set.

Theorem 5.3. Let m ≤ n be positive integers and let x̄ ∈ Rn be given. Consider
a mapping f : Rn → Rm, Lipschitz continuous around x̄, and a closed convex
subset K of Rn containing x̄. Assume that σK−x̄(A) > 0 for each A from the
Clarke generalized Jacobian ∂f(x̄) ⊂ Rm×n. Then

σ̄ := min{σK−x̄(A) : A ∈ ∂f(x̄)} > 0,

and for each c ∈ (0, σ̄) there exist a neighborhood V of f(x̄) and a continuous

mapping ϕ̃ : V → K such that f(ϕ̃(y)) = y and c ‖ϕ̃(y) − x̄‖ ≤ ‖y − f(x̄)‖ for
each y ∈ V .
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Proof. The set ∂f(x̄) is compact by [7, Theorem 2.6.2 (a)] and the function σK−x̄
on ∂f(x̄) is (Lipschitz) continuous. Hence the minimum in the definition of σ̄
exists and is positive. Let c ∈ (0, σ̄) be arbitrary. Pick an ε > 0 such that
c < σ̄ − 2ε. Thus ε < σ̄/2. As ∂f(x̄) is a bounded set, there is an s > 0 such
that

A := ∂f(x̄) + εBRn×m ⊂ sBRn×m .

Find δ ∈ (0, ε/(s + σ̄)) such that f is Lipschitz continous on BRn [x̄, δ] and
that ∂f(z) ⊂ A for each z ∈ BRn(x̄, δ); the latter is possible thanks to the
upper semi-continuity of ∂f [7, Proposition 2.6.2 (c)]. Define H(x, h) := Ah,
(x, h) ∈ BRn [x̄, δ]×Rn. Note that A is a convex set. For all u, x ∈ BRn(x̄, δ)∩K,
the Lipschitz mean value theorem [7, Proposition 2.6.5] implies that

f(u)− f(x) ∈ co
(
∂f([u, x])

)
(u− x) ⊂ A(u− x) = H(x, u− x).

(Here we stress that, given a set M ⊂ Rn, the symbol ∂f(M) always means the
union

⋃
x∈M ∂f(x).) Therefore (i∗), (iii) with µ := 0 and λ := 1, (iv), and (a∗)

in Theorem 4.2 are satisfied. We will show that (ii) therein holds as well. So, fix
any x ∈ BRn(x̄, δ)∩K and any y ∈ SRm . Since 0 ∈ K − x̄ and σK−x̄(A) > σ̄− ε
for each A ∈ A, Proposition 5.1, with α := σ̄ − ε, implies that there is a
u ∈ BRn ∩ (K − x̄) such that inf 〈y,Au〉 ≥ σ̄ − ε. Let h := (1 − δ)u + (x̄ − x).
As δ < ε/σ̄ < 1/2, we have that ‖h‖ < (1− δ) + δ = 1; that

x+ h = x̄+ (1− δ)u ∈ x̄+ (1− δ)(K − x̄) ⊂ x̄+K − x̄ = K;

and also that

inf 〈y,Ah〉 ≥ (1− δ) inf 〈y,Au〉 − s‖x− x̄‖ > (1− δ)(σ̄ − ε)− sδ
> σ̄ − ε− δ(σ̄ + s) > σ̄ − 2ε.

As H(x, h) = Ah for each x ∈ BRn(x̄, δ), we showed (ii) with λ := 1, α := σ̄−2ε,
and µ := 0. Now Theorem 4.2, with r := δ/2 and x̃ := x̄, finishes the proof. �

Finally, we derive [2, Theorem 5.1], which is a semi-local version of the above
statement, that is, the size of the neighborhoods is prescribed. For simplicity we
consider K = Rn only, but a generalization to arbitrary closed convex domain
is immediate.

Theorem 5.4. Let m ≤ n be positive integers, let δ be a positive constant, and
let x̄ ∈ Rn be given. Consider a mapping f : Rn → Rm, which is locally Lipschitz
continuous on an open set U ⊃ BRn [x̄, δ] and such that

σ̄ := min
{
σ(A) : A ∈ ∂f(x), x ∈ BRn [x̄, δ]

}
> 0.

Then for each c ∈ (0, σ̄) and each x̃ ∈ BRn(x̄, δ) there is a continuous mapping
ϕ̃ : BRm [f(x̃), cr] → Rn such that f(ϕ̃(y)) = y and c ‖ϕ̃(y) − x̃‖ ≤ ‖y − f(x̃)‖
for each y ∈ BRm [f(x̃), cr], where r := δ − ‖x̃− x̄‖.
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Proof. Fix any c ∈ (0, σ̄). Put Ω := BRn [x̄, δ]. As f is locally Lipschitz con-
tinuous on U , it is Lipschitz continuous on the (compact) set Ω. Hence there
is an s > 0 such that ∂f(Ω) ⊂ sBRm×n . By [7, Proposition 2.6.2], ∂f is upper
semi-continuous with compact (convex) values. This justifies taking “min” in
the definition of σ̄.

Consider any λ ∈ (0,∞). Find a finite set Fλ ⊂ Ω such that
⋃
y∈Fλ BRn(y, λ)

contains Ω. For x, y ∈ Ω put

γλ,y(x) := dist
(
x,Ω \BRn(y, λ)

)
and then

νλ,y(x) := γλ,y(x)
/∑

z∈Fλγλ,z(x).

It is easy to check that νλ,y(·)’s are continuous (even locally Lipschitz) functions.
Also

∑
y∈Fλ νλ,y(x) = 1 for every x ∈ Ω. Finally, define the mapping Aλ : Ω ⇒

Rm×n by

Aλ(x) :=
∑
y∈Fλ

νλ,y(x) co ∂
(
BRn(y, 2λ) ∩ Ω

)
, x ∈ Ω.

Clearly, Aλ has compact convex values. It is left for a reader to verify that
Aλ : Ω ⇒ Rm×n is upper (and also lower) semi-continuous. Further, we note
that, given any x ∈ Ω, we have

(22) ∂f
(
BRn(x, λ) ∩ Ω

)
⊂ Aλ(x) ⊂ co ∂f

(
BRn(x, 3λ) ∩ Ω

)
(⊂ sBRm×n).

Indeed, for each y ∈ Fλ such that νλ,y(x) > 0 we have x ∈ BRn(y, λ); thus
BRn(x, λ) ⊂ BRn(y, 2λ) ⊂ BRn(x, 3λ), which implies both the inclusions.

Pick an α ∈ (c, σ̄); say α := (c + σ̄)/2. We claim that there is a λ ∈ (0,∞)
such that for each u ∈ Ω and each A ∈ Aλ(u) we have σ(A) ≥ α. Suppose,
on the contrary, that for each i ∈ N, there are ui ∈ Ω and Ai ∈ A1/i(ui) such
that σ(Ai) < α. Assume, without any loss of generality, that the sequence (ui)
converges to a u ∈ Ω. From the upper semi-continuity of ∂f at u, find an i ∈ N
so big that

∂f
(
BRn(u, 3/i+ ‖u− ui‖)

)
⊂ ∂f(u) + (σ̄ − α)BRm×n .

Then, using the latter inclusion in (22), we get

Ai ∈ A1/i(ui) ⊂ co ∂f
(
BRn(ui, 3/i) ∩ Ω

)
⊂ co ∂f

(
BRn(u, 3/i+ ‖u− ui‖)

)
⊂ ∂f(u) + (σ̄ − α)BRm×n .

Thus, there is an A ∈ ∂f(u) such that ‖A − Ai‖ ≤ σ̄ − α. Therefore, using a
well known fact that the function σ(·) is 1-Lipschitzian, we get that

α > σ(Ai) ≥ σ(A)− ‖A− Ai‖ ≥ σ̄ − (σ̄ − α) = α,

a contradiction.
Now we are ready to apply Theorem 4.2, by verifying all the assumptions

therein. Consider the α defined in the previous paragraph and keep the λ found
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in the Claim above. Put µ := 0, K := Rn, and H(x, h) := Aλ(x)h for each
(x, h) ∈ Ω × Rn. Then the assumptions (i∗), (iv), and (a∗) in Theorem 4.2 are
clearly satisfied. To verify (ii), fix any x ∈ Ω and any y ∈ SRm . As α < σ̄,
Proposition 5.1, with A := Aλ(x), yields an h ∈ BRn such that inf 〈y,H(x, h)〉 =
inf 〈y,Aλ(x)h〉 ≥ α. Trivially x+λh ∈ K = Rn. Concerning (iii), pick arbitrary
t ∈ (0, λ) and h ∈ BRn with x + th ∈ Ω. The Lipschitz mean value theorem [7,
Proposition 2.6.5] and the first inclusion in (22) imply that

f(x+ th)− f(x) ∈
(
co ∂f

[
x, x+ th]

)
(th)

⊂
(
co ∂f

(
BRn(x, λ) ∩ Ω

))
(th) ⊂ Aλ(x)(th) = H(x, th).

Apply Theorem 4.2 to finish the proof (see Remark 4.3.1). �
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