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Notations

1 R
n : finite dimensional Euclidean space

2 〈·, ·〉 : the inner product
3 ‖ · ‖ : the induced norm
4 | · | : the absolute value
5 convD the convex hull of the set D
6 linD the linear span of the set D
7 Gr(T ) the graph of T : {(x, u) ∈ Rn ×Rn : u ∈ T (x)}.
8 Pn: The set of polynomials with degree ≤ n
9 Fn: lin{h0(t), h1(t), h2(t), h3(t), · · · , hn(t)}, hi : R→ R is a

function.



The VIP(T,C)

Consider the operator T : Rn ⇒ Rn and the set C ⊆ Rn, the
variational inequality problem for T and C, denoted by VIP(T,C), is
defined as:

Find x∗ ∈ C : ∃u∗ ∈ T (x∗) : 〈u∗, x − x∗〉 ≥ 0,∀x ∈ C, (1)

we denote the solution set of problem (1), by S ∗.

Related with the VIP(T,C) is the dual variational inequality problem
(DVIP(T,C)):

Find x∗ ∈ C : ∀u ∈ T (x) : 〈u, x − x∗〉 ≥ 0,∀x ∈ C, (2)

which solution set is denoted by S 0.
When the operator T is pseudo-monotone, it is known that both
problems are equivalents, i.e., S ∗ = S 0. But there are examples
(see Burachik, R. and Dı́az Millán, R.) for which S ∗ , S 0.
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Preliminaries results

Definition
Given a convex, closed and non-empty subset C ⊆ Rn and a point
x ∈ Rn. We define the projection of x onto C, denoted by PC(x), by
the unique solution of the problem

min
z∈C
‖z − x‖.

Orthogonal Projection Properties

Let C ⊆ Rn be closed and convex. For all x, y ∈ Rn and all z ∈ C,
the following holds:

1 ‖PC(x) − PC(y)‖2 ≤ ‖x − y‖2 − ‖(x − PC(x)) − (y − PC(y))‖2.

2 〈x − PC(x), z − PC(x)〉 ≤ 0.
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Preliminaries results

Definition

Let S be a nonempty subset of Rn. A sequence (xk)k∈N ⊂ R
n is

said to be Fejér convergent to S if and only if for all x ∈ S there
exists k0 ∈ N such that ‖xk+1 − x‖ ≤ ‖xk − x‖ for all k ≥ k0.

Fact

If (xk)k∈N is Fejér convergent to S , then the following hold

1 The sequence (xk)k∈N is bounded.

2 The sequence
(
‖xk − x‖

)
k∈N converges for all x ∈ S .

3 If an accumulation point x∗ belongs to S , then the sequence
(xk)k∈N converges to x∗.
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Preliminaries results

Definition
A point-to-set operator T : Rn ⇒ Rn is called:

Monotone, iff for all (x, u), (y, v) ∈ Gr(T ),

〈u − v, x − y〉 ≥ 0.

Pseudo-monotone, iff for all (x, u), (y, v) ∈ Gr(T ), the following
implication holds:

〈u, y − x〉 ≥ 0 =⇒ 〈v, y − x〉 ≥ 0.

Quasi-monotone, iff for all (x, u), (y, v) ∈ Gr(T ), the following
implication holds:

〈u, y − x〉 > 0 =⇒ 〈v, y − x〉 ≥ 0.

It is clear that every monotone operator is pseudo-monotone, and
every pseudo-monotone operator is quasi-monotone.
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The Linesearch

Now, we present a modification of the Linesearch F, used in
Burachik-Millán, suitable for our problem:

Linesearch
Input: x ∈ C, β > 0 and δ ∈ (0, 1). Set α← 1 and θ ∈ (0, 1). Define
z = PC(x − βu) with u ∈ T (x). If for all u ∈ T (x)

min
uα∈T (xα)

〈uα, x − z〉 < δ〈u, x − z〉,

where xα = αz + (1 − α)x,
then α← θα, Else Stop and choose uα ∈ T (xα):
〈uα, x − z〉 ≥ δ〈u, x − z〉
Output: (α, uα).



The algorithm

Agorithm F

Given (βk)k∈N ⊂ [β̌, β̂] such that 0 < β̌ ≤ β̂ < +∞ and δ ∈ (0, 1).
Initialization: Take x0 ∈ C and set k ← 0. Step 1: Set
zk = PC

(
xk − βkuk

)
with uk ∈ T (xk) and

(αk, uαk ) = Linesearch(xk, βk, δ),

Step 2 (Stopping Criterion): If zk = xk or xk = PC
(
xk − vk

)
with

vk ∈ T (xk), then stop. Otherwise,
Step 3: Set

x̄k := αkzk + (1 − αk)xk, (3a)

and xk+1 := F (xk); (3b)

Step 4: If xk+1 = xk, stop. Otherwise, set k ← k + 1 and go to
Step 1.



The algorithm

We consider two variants. Their main difference lies in the
computation (3b):

F1(xk) =PC
(
PH(x̄k ,uαk )(xk)

)
; (Variant 1) (4)

F2(xk) =PC∩H(x̄k ,uαk )(xk); (Variant 2) (5)

where uαk ∈ T (x̄k) and

H(x, u) :=
{
y ∈ Rn : 〈u, y − x〉 ≤ 0

}
(6)



Assumptions

Assumptions

We assume that the operator T : Rn ⇒ Rn satisfy the following
conditions:

A1) T is closed.

A2) T is bounded on bounded sets.

A3) The solution sets of the dual and primal problems coincide
(S 0 = S ∗).

A1) The operator is closed when the graph is closed.

A2) Classical assumption in the literature.

A3) Weaker that pseudo-monotone. If T is pseudo-monotone and
A1, then A3 is satisfied.



Convergence

Proposition

If x ∈ C is not a solution of Problem (1), Linesearch terminates
after finitely many iterations.

Proposition

xk ∈ S ∗ ↔ xk ∈ H(x̄k, uαk ).

Proposition

If the algorithm stops in a finite number of iterations, then stops in
a solutions set.
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Proposition for both Variants

(xk)n∈N generated by Algorithm F. The following hold:
1 The sequence (xk)k∈N is Fejér convergent to S ∗.
2 The sequence (xk)k∈N is bounded.
3 limk→∞〈uαk , xk − x̄k〉 = 0.
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The sequences generated by both variants of the Algorithm F
converges to a point in S ∗.
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Approximation of continuous functions

Consider the continuous function f : I → R, where I ⊂ R is a
compact set.
We are interested in approximate f by a function p

q where p ∈ Fn

and q ∈ Fm, over the set I. In others words, we want to solve the
optimisation problem:

min
p∈Fn,q∈Fm

sup
t∈I

∣∣∣∣∣ f (t) −
p(t)
q(t)

∣∣∣∣∣ . (7)

We denote p(t) = 〈a,ptn〉 = a0 p0(t) + a1 p1(t) + a2 p2(t) · · · + anhn(t),
where a = (a0, a1, a2, . . . , an) ∈ Rn+1, and
ptn = (p0(t), p1(t), p2(t), . . . , pn(t)) ∈ Rn+1 for each t ∈ I.
q(t) = 〈b,qtm〉 = b0q0(t) + b1q1(t) + · · · + bmqm(t).
where pi, q j : R→ R are real functions, for all i, j ∈ N.
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Definitions and Results

Problem (7) can be written as:

min
(a,b)∈C

Ψ f (a,b), (8)

where Ψ f (a,b) = supt∈I

∣∣∣∣ f (t) − 〈a,ptn〉

〈b,qtm〉

∣∣∣∣ is a maximal deviation of f in

I, and C = {(a,b) ∈ Rn+1 ×Rm+1 : 〈b, tm〉 ≥ 1,∀t ∈ I}.

If for all i, j ∈ N we define pi(t) = qi(t) = ti, the problems (7) and (8)
becomes in the classical Rational Approximation of a continuous
function.
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Definitions and Results

We denote by A+(a,b) and A−(a,b) the sets of actives values, i.e.,
A+(a,b) =

{
t ∈ I : Ψ f (a,b) = σ

f
t (a,b)

}
and

A−(a,b) =
{
t ∈ I : Ψ f (a,b) = −σ

f
t (a,b)

}
, where

σ
f
t (a,b) := f (t) − 〈a,ptn〉

〈b,qtm〉
.

Lemma
For all real function f : R→ R and I ⊆ R compact, the maximal
deviation Ψ f : Rn+1 ×Rm+1 → R is a quasi-convex function on C.

Proof

For all t0 ∈ I, the function
∣∣∣∣∣ f (t0) −

〈a,p0
t n〉

〈b,q0
t m〉

∣∣∣∣∣, is a quasi-linear function,

then it is a quasi-convex. Since Ψ f is the supremum of
quasi-convex functions, it is quasi-convex.
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Definitions and Results

Theorem (Rockafellar and Wets book)

The Clarke subdifferential of the function Ψ f can be computed as
follow:

∂Ψ f (a,b) = conv
{
∇σ

f
t (a,b),−∇σ f

l (a,b) : t ∈ A+(a,b), l ∈ A−(a,b)
}
.

(9)

Proposition

Given a continuous function f , if 0 ∈ ∂Ψ f (a,b) then (a,b) is a
global minimizer of Ψ f .

Theorem

The function Ψ f is a pseudo-convex function. Consequently the
Clarke Subdifferential ∂Ψ f is a pseudomonotone operator.
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Some facts

Since ∂Ψ f is a pseudo-monotone operator, taking T = ∂Ψ f we
have S 0 = S ∗, satisfying (A3).

It is not difficult to see that ∂Ψ f

satisfy (A1) and (A2).
It is well know that problems (8) and (1) when T = ∂Ψ f are
equivalents. Then, solving problem (8) is enough to solve problem
(1).
How can we implement the Linesearch F?
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Linesearch F

Linesearch F for Problem (8)

Input: (a, b) ∈ C, β > 0 and δ ∈ (0, 1).
Set α← 1 and θ ∈ (0, 1).
For all (ua, ub) ∈

{
∇σ

f
t (a, b),−∇σ f

l (a, b) : t ∈ A+(a, b), l ∈ A−(a, b)
}
,

define (za, zb) = PC((a, b) − β(ua, ub)).
If for each (ua, ub) we have

min
(uαa ,uαb )∈Dα

〈(uαa , u
α
b ), (a, b) − (za, zb)〉 < δ〈(ua, ub), (a, b) − (za, zb)〉,

where
Dα :=

{
∇σ

f
t (aα, bα),−∇σ f

l (aα, bα) : t ∈ A+(aα, bα), l ∈ A−(aα, bα)
}

and
(aα, bα) = α(za, zb) + (1 − α)(a, b),
then α← θα, Else Return α. Output:

(
α, (uαa , u

α
b )

)
.



Rational Approximation with Polynomial

Unknown Solution on the interval
200 iterations and I = [−1, 1].

Ψ
f
i with i = 1, 2 denotes the function value for the Variants 1

and 2 respectively.

iter is the iteration number in which was attained the best
result.

n,m represent the degree of the numerator and denominator
polynomials respectively.

In all pictures, the blue colour is for Variant 1, the red colour
for Variant 2. In green colour is the graph of the function f .



Results

Algorithm F for unknown solution
f (t) (n,m) Iter Ψ

f
1(a, b) Iter Ψ

f
2(a, b)

|t| (2, 2) 161 0.068 186 0.070
|t| (3, 3) 193 0.072 191 0.069
|t| (4, 3) 198 0.069 198 0.069

sin(t) (2, 2) 186 0.0097 186 0.014
| sin(t)| (3, 3) 189 0.0714 193 0.0700
√
|t| (4, 4) 193 0.186 185 0.182



Objective function Ψ f
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Known Solution over discrete I

In this subsection we testing rational functions as the objective
function.

Known Solution over discrete I
di(x, S ∗) denotes the distance between the last point to the
solution set for the variant i.

We stopped the algorithm when the function value Ψ
f
i at the

current point be less or equal to 10−3.

For the compact set I, we used a collection of M equidistant
points on the interval [−1, 1].
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Results

Algorithm F for known solution
f (t) (n,m) M Iter1 d1(x, S ∗) Iter2 d2(x, S ∗)
1 (1, 1) 100 12 9.7 ∗ 10−4 12 9.8 ∗ 10−4

1 (2, 2) 200 455 0.004 381 0.002
1

t2+1 (1, 2) 100 423 0.009 135 0.004
1

t2+1 (2, 2) 200 4406 0.097 3950 0.097
t

t+1.5 (1, 1) 100 4240 0.013 3137 0.006
t

t+1.5 (2, 2) 200 6490 0.017 5875 0.009
t2−1
t+2 (2, 2) 200 2361 0.02 1730 0.043
t2−1
t+2 (3, 2) 100 14643 0.09 6306 0.039



Non-polynomial rational approximation

In this section we consider different rational function to
approximate continuous functions.

Non-Polynomials Approximation

CPU denotes the CPU time

By h(t), we denote the functions which compose the rational
function

For this subsection we consider as the objective function the
continuous function f (t) = sin t−cos t

t+2 .

The compact set in all cases are the collection of M
equidistant points in the interval [−1, 1]

The stopping criteria is Ψ f (a,b) ≤ 10−2.
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Results

Algorithm F with non-polynomial
h(t) (n,m) M Iter1 CPU1 Iter2 CPU2

et (3, 3) 20 625 16.9 410 11.3
et (3, 3) 100 585 21.1 569 23.4
et (5, 4) 200 2115 420.5 2094 419.2
et (10, 8) 100 5121 997.8 5099 940.1

sin(t) (3, 3) 20 255 12.0 255 11.4
sin(t) (3, 3) 100 429 44.6 311 35.3
sin(t) (5, 4) 200 235 52.1 184 37.4
sin(t) (10, 8) 100 136 23.9 214 20.9
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A new Algorithm, containing two variants, for point-to-set
Operators without continuity and monotonicity is proposed.

The Clarke subdifferential of the maximal deviation function is
a Pseudomonotone operator.

An application to Rational Approximation is provided.

Open problems

Can we extend Algorithm F to infinite dimensional spaces?

Can we find an full implementable linesearch?

Can we extend this algorithm for other Approximation
Problems?
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