An algorithm for pseudo-monotone operators with application to rational approximation

Reinier Díaz Millán

Deakin University (r.diazmillan@deakin.edu.au)

Joint work with: Nadezda Sukhorukova and Julien Ugon

Variational Analysis and Optimisation Webinar October, 7 Melbourne, Victoria.

Index

Introduction

- The Variational Inequality Problem (VIP(T,C))
- Preliminaries
- 2 The algorithm
 - Convergence of Algorithm F
- Best Approximation of continuous functions
- 4 Numerical Experiences
 - Rational Approximation with Polynomials
 - Non-polynomial rational approximation

5 Conclusions

Notations

- **()** \mathbb{R}^n : finite dimensional Euclidean space
- 2 $\langle \cdot, \cdot \rangle$: the inner product
- ③ || · || : the induced norm
- I · I : the absolute value
- convD the convex hull of the set D
- linD the linear span of the set D
- **O** Gr(T) the graph of $T: \{(x, u) \in \mathbb{R}^n \times \mathbb{R}^n : u \in T(x)\}.$
- **(a)** \mathbb{P}_n : The set of polynomials with degree $\leq n$
- \mathbb{F}_n : $lin\{h_0(t), h_1(t), h_2(t), h_3(t), \cdots, h_n(t)\}, h_i : \mathbb{R} \to \mathbb{R}$ is a function.

The VIP(T,C)

Consider the operator $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ and the set $C \subseteq \mathbb{R}^n$, the variational inequality problem for *T* and *C*, denoted by VIP(T,C), is defined as:

Find
$$x^* \in C$$
: $\exists u^* \in T(x^*)$: $\langle u^*, x - x^* \rangle \ge 0, \forall x \in C$, (1)

we denote the solution set of problem (1), by S_* .

Consider the operator $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ and the set $C \subseteq \mathbb{R}^n$, the variational inequality problem for T and C, denoted by VIP(T,C), is defined as:

Find
$$x^* \in C$$
: $\exists u^* \in T(x^*)$: $\langle u^*, x - x^* \rangle \ge 0, \forall x \in C$, (1)

we denote the solution set of problem (1), by S_* .

Related with the VIP(T,C) is the dual variational inequality problem (DVIP(T,C)):

Find
$$x^* \in C$$
: $\forall u \in T(x)$: $\langle u, x - x^* \rangle \ge 0, \forall x \in C$, (2)

which solution set is denoted by S_0 .

Consider the operator $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ and the set $C \subseteq \mathbb{R}^n$, the variational inequality problem for T and C, denoted by VIP(T,C), is defined as:

Find
$$x^* \in C$$
: $\exists u^* \in T(x^*)$: $\langle u^*, x - x^* \rangle \ge 0, \forall x \in C$, (1)

we denote the solution set of problem (1), by S_* .

Related with the VIP(T,C) is the dual variational inequality problem (DVIP(T,C)):

Find
$$x^* \in C$$
: $\forall u \in T(x)$: $\langle u, x - x^* \rangle \ge 0, \forall x \in C$, (2)

which solution set is denoted by S_0 .

When the operator *T* is pseudo-monotone, it is known that both problems are equivalents, i.e., $S_* = S_0$. But there are examples (see Burachik, R. and Díaz Millán, R.) for which $S_* \neq S_0$.

Given a convex, closed and non-empty subset $C \subseteq \mathbb{R}^n$ and a point $x \in \mathbb{R}^n$. We define the projection of *x* onto *C*, denoted by $P_C(x)$, by the unique solution of the problem

 $\min_{z \in C} \|z - x\|.$

Given a convex, closed and non-empty subset $C \subseteq \mathbb{R}^n$ and a point $x \in \mathbb{R}^n$. We define the projection of *x* onto *C*, denoted by $P_C(x)$, by the unique solution of the problem

 $\min_{z \in C} \|z - x\|.$

Orthogonal Projection Properties

Let $C \subseteq \mathbb{R}^n$ be closed and convex. For all $x, y \in \mathbb{R}^n$ and all $z \in C$, the following holds:

$$||P_C(x) - P_C(y)||^2 \le ||x - y||^2 - ||(x - P_C(x)) - (y - P_C(y))||^2.$$

$$(x - P_C(x), z - P_C(x)) \le 0.$$

Let *S* be a nonempty subset of \mathbb{R}^n . A sequence $(x^k)_{k \in \mathbb{N}} \subset \mathbb{R}^n$ is said to be Fejér convergent to *S* if and only if for all $x \in S$ there exists $k_0 \in \mathbb{N}$ such that $||x^{k+1} - x|| \le ||x^k - x||$ for all $k \ge k_0$.

Let *S* be a nonempty subset of \mathbb{R}^n . A sequence $(x^k)_{k \in \mathbb{N}} \subset \mathbb{R}^n$ is said to be Fejér convergent to *S* if and only if for all $x \in S$ there exists $k_0 \in \mathbb{N}$ such that $||x^{k+1} - x|| \leq ||x^k - x||$ for all $k \geq k_0$.

Fact

If $(x^k)_{k \in \mathbb{N}}$ is Fejér convergent to *S*, then the following hold

- The sequence $(x^k)_{k \in \mathbb{N}}$ is bounded.
- 2 The sequence $(||x^k x||)_{k \in \mathbb{N}}$ converges for all $x \in S$.
- If an accumulation point x_∗ belongs to S, then the sequence (x^k)_{k∈ℕ} converges to x_∗.

Preliminaries results

Definition

A point-to-set operator $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ is called:

• *Monotone*, iff for all $(x, u), (y, v) \in Gr(T)$,

$$\langle u - v, x - y \rangle \ge 0.$$

• *Pseudo-monotone*, iff for all (*x*, *u*), (*y*, *v*) ∈ *Gr*(*T*), the following implication holds:

$$\langle u, y - x \rangle \ge 0 \Longrightarrow \langle v, y - x \rangle \ge 0.$$

• *Quasi-monotone*, iff for all (*x*, *u*), (*y*, *v*) ∈ *Gr*(*T*), the following implication holds:

$$\langle u, y - x \rangle > 0 \Longrightarrow \langle v, y - x \rangle \ge 0.$$

Preliminaries results

Definition

A point-to-set operator $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ is called:

• *Monotone*, iff for all $(x, u), (y, v) \in Gr(T)$,

$$\langle u - v, x - y \rangle \ge 0.$$

• *Pseudo-monotone*, iff for all (*x*, *u*), (*y*, *v*) ∈ *Gr*(*T*), the following implication holds:

$$\langle u, y - x \rangle \ge 0 \Longrightarrow \langle v, y - x \rangle \ge 0.$$

• *Quasi-monotone*, iff for all (*x*, *u*), (*y*, *v*) ∈ *Gr*(*T*), the following implication holds:

$$\langle u, y - x \rangle > 0 \Longrightarrow \langle v, y - x \rangle \ge 0.$$

It is clear that every monotone operator is pseudo-monotone, and every pseudo-monotone operator is quasi-monotone.

- The Variational Inequality Problem (VIP(T,C))
- Preliminaries
- 2 The algorithm
 - Convergence of Algorithm F
- 3 Best Approximation of continuous functions
- 4 Numerical Experiences
 - Rational Approximation with Polynomials
 - Non-polynomial rational approximation

5 Conclusions

Now, we present a modification of the Linesearch F, used in Burachik-Millán, suitable for our problem:

Linesearch

Input: $x \in C$, $\beta > 0$ and $\delta \in (0, 1)$. Set $\alpha \leftarrow 1$ and $\theta \in (0, 1)$. Define $z = P_C(x - \beta u)$ with $u \in T(x)$. If for all $u \in T(x)$

$$\min_{u^{\alpha}\in T(x_{\alpha})}\langle u^{\alpha}, x-z\rangle < \delta\langle u, x-z\rangle,$$

where $x_{\alpha} = \alpha z + (1 - \alpha)x$, then $\alpha \leftarrow \theta \alpha$, Else Stop and choose $u^{\alpha} \in T(x_{\alpha})$: $\langle u^{\alpha}, x - z \rangle \ge \delta \langle u, x - z \rangle$ Output: (α, u^{α}) .

The algorithm

Agorithm F

Given $(\beta_k)_{k \in \mathbb{N}} \subset [\check{\beta}, \hat{\beta}]$ such that $0 < \check{\beta} \leq \hat{\beta} < +\infty$ and $\delta \in (0, 1)$. **Initialization:** Take $x^0 \in C$ and set $k \leftarrow 0$. **Step 1:** Set $z^k = P_C(x^k - \beta_k u^k)$ with $u^k \in T(x^k)$ and

 $(\alpha_k, u^{\alpha_k}) =$ **Linesearch** $(x^k, \beta_k, \delta),$

Step 2 (Stopping Criterion): If $z^k = x^k$ or $x^k = P_C(x^k - v^k)$ with $v^k \in T(x^k)$, then stop. Otherwise, **Step 3:** Set

$$\bar{x}^k := \alpha_k z^k + (1 - \alpha_k) x^k, \tag{3a}$$

and
$$x^{k+1} := \mathcal{F}(x^k);$$
 (3b)

Step 4: If $x^{k+1} = x^k$, stop. Otherwise, set $k \leftarrow k + 1$ and go to **Step 1**.

We consider two variants. Their main difference lies in the computation (3b):

$$\mathcal{F}_1(x^k) = P_C\left(P_{H\left(\bar{x}^k, u^{\alpha_k}\right)}(x^k)\right); \text{ (Variant 1)}$$
(4)

$$\mathcal{F}_2(x^k) = P_{C \cap H(\bar{x}^k, u^{\alpha_k})}(x^k); \text{ (Variant 2)}$$
(5)

where $u^{\alpha_k} \in T(\bar{x}^k)$ and

$$H(x, u) := \{ y \in \mathbb{R}^n : \langle u, y - x \rangle \le 0 \}$$
(6)

Assumptions

We assume that the operator $T : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ satisfy the following conditions:

- A1) T is closed.
- A2) *T* is bounded on bounded sets.
- A3) The solution sets of the dual and primal problems coincide $(S_0 = S_*)$.
- A1) The operator is *closed* when the graph is closed.
- A2) Classical assumption in the literature.
- A3) Weaker that pseudo-monotone. If *T* is pseudo-monotone and A1, then A3 is satisfied.

Proposition

If $x \in C$ is not a solution of Problem (1), **Linesearch** terminates after finitely many iterations.

Proposition

$$x^k \in S_* \leftrightarrow x^k \in H(\bar{x}^k, u^{\alpha_k}).$$

Proposition

If $x \in C$ is not a solution of Problem (1), **Linesearch** terminates after finitely many iterations.

Proposition

$$x^k \in S_* \leftrightarrow x^k \in H(\bar{x}^k, u^{\alpha_k}).$$

Proposition

If the algorithm stops in a finite number of iterations, then stops in a solutions set.

Proposition for both Variants

 $(x^k)_{n \in \mathbb{N}}$ generated by **Algorithm F**. The following hold:

- The sequence $(x^k)_{k \in \mathbb{N}}$ is Fejér convergent to S_* .
- 2 The sequence $(x^k)_{k \in \mathbb{N}}$ is bounded.

$$im_{k\to\infty}\langle u^{\alpha_k}, x^k - \bar{x}^k \rangle = 0.$$

Proposition for both Variants

 $(x^k)_{n \in \mathbb{N}}$ generated by **Algorithm F**. The following hold:

- The sequence $(x^k)_{k \in \mathbb{N}}$ is Fejér convergent to S_* .
- **2** The sequence $(x^k)_{k \in \mathbb{N}}$ is bounded.
- $Iim_{k\to\infty}\langle u^{\alpha_k}, x^k \bar{x}^k \rangle = 0.$

Variant 2

•
$$x^{k+1} = P_{C \cap H(\bar{x}^k, u^{\alpha_k})}(x^k) = P_{C \cap H(\bar{x}^k, u^{\alpha_k})} \left(P_{H(\bar{x}^k, u^{\alpha_k})}(x^k) \right).$$

• $\lim_{k \to \infty} ||x^{k+1} - x^k|| = 0.$

Proposition for both Variants

 $(x^k)_{n \in \mathbb{N}}$ generated by **Algorithm F**. The following hold:

- The sequence $(x^k)_{k \in \mathbb{N}}$ is Fejér convergent to S_* .
- 2 The sequence $(x^k)_{k \in \mathbb{N}}$ is bounded.
- $lim_{k\to\infty}\langle u^{\alpha_k}, x^k \bar{x}^k \rangle = 0.$

Variant 2

$$x^{k+1} = P_{C \cap H(\bar{x}^k, u^{\alpha_k})}(x^k) = P_{C \cap H(\bar{x}^k, u^{\alpha_k})} \left(P_{H(\bar{x}^k, u^{\alpha_k})}(x^k) \right).$$

$$\lim_{k \to \infty} \|x^{k+1} - x^k\| = 0.$$

Theorem for both Variants

The sequences generated by both variants of the **Algorithm F** converges to a point in S_* .

- The Variational Inequality Problem (VIP(T,C))
- Preliminaries
- 2 The algorithm
 - Convergence of Algorithm F

Best Approximation of continuous functions

- 4 Numerical Experiences
 - Rational Approximation with Polynomials
 - Non-polynomial rational approximation

5 Conclusions

Approximation of continuous functions

Consider the continuous function $f : I \to \mathbb{R}$, where $I \subset \mathbb{R}$ is a compact set.

We are interested in approximate f by a function $\frac{p}{q}$ where $p \in \mathbb{F}_n$ and $q \in \mathbb{F}_m$, over the set I. In others words, we want to solve the optimisation problem:

$$\min_{p \in \mathbb{F}_n, q \in \mathbb{F}_m} \sup_{t \in I} \left| f(t) - \frac{p(t)}{q(t)} \right|.$$
(7)

Consider the continuous function $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$ is a compact set.

We are interested in approximate f by a function $\frac{p}{q}$ where $p \in \mathbb{F}_n$ and $q \in \mathbb{F}_m$, over the set I. In others words, we want to solve the optimisation problem:

$$\min_{p \in \mathbb{F}_n, q \in \mathbb{F}_m} \sup_{t \in I} \left| f(t) - \frac{p(t)}{q(t)} \right|.$$
(7)

We denote $p(t) = \langle \mathbf{a}, \mathbf{p}_{t_n} \rangle = a_0 p_0(t) + a_1 p_1(t) + a_2 p_2(t) \cdots + a_n h_n(t)$, where $\mathbf{a} = (a_0, a_1, a_2, \dots, a_n) \in \mathbb{R}^{n+1}$, and $\mathbf{p}_{t_n} = (p_0(t), p_1(t), p_2(t), \dots, p_n(t)) \in \mathbb{R}^{n+1}$ for each $t \in I$. $q(t) = \langle \mathbf{b}, \mathbf{q}_{t_m} \rangle = b_0 q_0(t) + b_1 q_1(t) + \cdots + b_m q_m(t)$. where $p_i, q_j : \mathbb{R} \to \mathbb{R}$ are real functions, for all $i, j \in \mathbb{N}$. Problem (7) can be written as:

$$\min_{(\mathbf{a},\mathbf{b})\in C} \Psi^f(\mathbf{a},\mathbf{b}),\tag{8}$$

where $\Psi^{f}(\mathbf{a}, \mathbf{b}) = \sup_{t \in I} \left| f(t) - \frac{\langle \mathbf{a}, \mathbf{p}_{t_n} \rangle}{\langle \mathbf{b}, \mathbf{q}_{t_m} \rangle} \right|$ is a maximal deviation of f in I, and $C = \{(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{n+1} \times \mathbb{R}^{m+1} : \langle \mathbf{b}, \mathbf{t}_m \rangle \ge 1, \forall t \in I\}.$

Problem (7) can be written as:

$$\min_{(\mathbf{a},\mathbf{b})\in C} \Psi^f(\mathbf{a},\mathbf{b}),\tag{8}$$

where
$$\Psi^{f}(\mathbf{a}, \mathbf{b}) = \sup_{t \in I} \left| f(t) - \frac{\langle \mathbf{a}, \mathbf{p}_{t_n} \rangle}{\langle \mathbf{b}, \mathbf{q}_{t_m} \rangle} \right|$$
 is a maximal deviation of f in I , and $C = \{(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{n+1} \times \mathbb{R}^{m+1} : \langle \mathbf{b}, \mathbf{t}_m \rangle \ge 1, \forall t \in I\}.$

If for all $i, j \in \mathbb{N}$ we define $p_i(t) = q_i(t) = t^i$, the problems (7) and (8) becomes in the classical *Rational Approximation* of a continuous function.

Definitions and Results

We denote by $A^+(\mathbf{a}, \mathbf{b})$ and $A^-(\mathbf{a}, \mathbf{b})$ the sets of actives values, i.e., $A^+(\mathbf{a}, \mathbf{b}) = \{t \in I : \Psi^f(\mathbf{a}, \mathbf{b}) = \sigma_t^f(\mathbf{a}, \mathbf{b})\}$ and $A^-(\mathbf{a}, \mathbf{b}) = \{t \in I : \Psi^f(\mathbf{a}, \mathbf{b}) = -\sigma_t^f(\mathbf{a}, \mathbf{b})\}$, where $\sigma_t^f(\mathbf{a}, \mathbf{b}) := f(t) - \frac{\langle \mathbf{a}, \mathbf{p}_{tn} \rangle}{\langle \mathbf{b}, \mathbf{q}_{tn} \rangle}$.

Lemma

For all real function $f : \mathbb{R} \to \mathbb{R}$ and $I \subseteq \mathbb{R}$ compact, the maximal deviation $\Psi^f : \mathbb{R}^{n+1} \times \mathbb{R}^{m+1} \to \mathbb{R}$ is a quasi-convex function on *C*.

Definitions and Results

We denote by $A^+(\mathbf{a}, \mathbf{b})$ and $A^-(\mathbf{a}, \mathbf{b})$ the sets of actives values, i.e., $A^+(\mathbf{a}, \mathbf{b}) = \{t \in I : \Psi^f(\mathbf{a}, \mathbf{b}) = \sigma_t^f(\mathbf{a}, \mathbf{b})\}$ and $A^-(\mathbf{a}, \mathbf{b}) = \{t \in I : \Psi^f(\mathbf{a}, \mathbf{b}) = -\sigma_t^f(\mathbf{a}, \mathbf{b})\}$, where $\sigma_t^f(\mathbf{a}, \mathbf{b}) := f(t) - \frac{\langle \mathbf{a}, \mathbf{p}_{tn} \rangle}{\langle \mathbf{b}, \mathbf{q}_{tn} \rangle}$.

Lemma

For all real function $f : \mathbb{R} \to \mathbb{R}$ and $I \subseteq \mathbb{R}$ compact, the maximal deviation $\Psi^f : \mathbb{R}^{n+1} \times \mathbb{R}^{m+1} \to \mathbb{R}$ is a quasi-convex function on *C*.

Proof

For all $t_0 \in I$, the function $\left| f(t_0) - \frac{\langle \mathbf{a}, \mathbf{p}_{t,n}^0 \rangle}{\langle \mathbf{b}, \mathbf{q}_{t,n}^0 \rangle} \right|$, is a quasi-linear function, then it is a quasi-convex. Since Ψ^f is the supremum of quasi-convex functions, it is quasi-convex.

Theorem (Rockafellar and Wets book)

The Clarke subdifferential of the function Ψ^f can be computed as follow:

$$\partial \Psi^{f}(\mathbf{a}, \mathbf{b}) = conv \left\{ \nabla \sigma_{t}^{f}(\mathbf{a}, \mathbf{b}), -\nabla \sigma_{l}^{f}(\mathbf{a}, \mathbf{b}) : t \in A^{+}(\mathbf{a}, \mathbf{b}), l \in A^{-}(\mathbf{a}, \mathbf{b}) \right\}.$$
(9)

Theorem (Rockafellar and Wets book)

The Clarke subdifferential of the function Ψ^f can be computed as follow:

$$\partial \Psi^{f}(\mathbf{a}, \mathbf{b}) = conv \left\{ \nabla \sigma_{t}^{f}(\mathbf{a}, \mathbf{b}), -\nabla \sigma_{l}^{f}(\mathbf{a}, \mathbf{b}) : t \in A^{+}(\mathbf{a}, \mathbf{b}), l \in A^{-}(\mathbf{a}, \mathbf{b}) \right\}.$$
(9)

Proposition

Given a continuous function f, if $0 \in \partial \Psi^{f}(\mathbf{a}, \mathbf{b})$ then (\mathbf{a}, \mathbf{b}) is a global minimizer of Ψ^{f} .

Theorem (Rockafellar and Wets book)

The Clarke subdifferential of the function Ψ^f can be computed as follow:

$$\partial \Psi^{f}(\mathbf{a}, \mathbf{b}) = conv \left\{ \nabla \sigma_{t}^{f}(\mathbf{a}, \mathbf{b}), -\nabla \sigma_{l}^{f}(\mathbf{a}, \mathbf{b}) : t \in A^{+}(\mathbf{a}, \mathbf{b}), l \in A^{-}(\mathbf{a}, \mathbf{b}) \right\}.$$
(9)

Proposition

Given a continuous function f, if $0 \in \partial \Psi^{f}(\mathbf{a}, \mathbf{b})$ then (\mathbf{a}, \mathbf{b}) is a global minimizer of Ψ^{f} .

Theorem

The function Ψ^f is a pseudo-convex function. Consequently the Clarke Subdifferential $\partial \Psi^f$ is a pseudomonotone operator.

- The Variational Inequality Problem (VIP(T,C))
- Preliminaries
- 2 The algorithm
 - Convergence of Algorithm F
- 3 Best Approximation of continuous functions
- 4 Numerical Experiences
 - Rational Approximation with Polynomials
 - Non-polynomial rational approximation

5 Conclusions

Since $\partial \Psi^f$ is a pseudo-monotone operator, taking $T = \partial \Psi^f$ we have $S_0 = S_*$, satisfying (A3).

Since $\partial \Psi^f$ is a pseudo-monotone operator, taking $T = \partial \Psi^f$ we have $S_0 = S_*$, satisfying (A3). It is not difficult to see that $\partial \Psi^f$ satisfy (A1) and (A2).

Since $\partial \Psi^f$ is a pseudo-monotone operator, taking $T = \partial \Psi^f$ we have $S_0 = S_*$, satisfying (A3). It is not difficult to see that $\partial \Psi^f$ satisfy (A1) and (A2). It is well know that problems (8) and (1) when $T = \partial \Psi^f$ are equivalents. Then, solving problem (8) is enough to solve problem (1). Since $\partial \Psi^f$ is a pseudo-monotone operator, taking $T = \partial \Psi^f$ we have $S_0 = S_*$, satisfying (A3). It is not difficult to see that $\partial \Psi^f$ satisfy (A1) and (A2). It is well know that problems (8) and (1) when $T = \partial \Psi^f$ are equivalents. Then, solving problem (8) is enough to solve problem (1).

How can we implement the Linesearch F?

Linesearch F for Problem (8)

Input: $(a, b) \in C, \beta > 0$ and $\delta \in (0, 1)$. Set $\alpha \leftarrow 1$ and $\theta \in (0, 1)$. For all $(u_a, u_b) \in \{\nabla \sigma_t^f(a, b), -\nabla \sigma_l^f(a, b) : t \in A^+(a, b), l \in A^-(a, b)\},$ define $(z_a, z_b) = P_C((a, b) - \beta(u_a, u_b))$. If for each (u_a, u_b) we have

 $\min_{(u_a^{\alpha}, u_b^{\alpha}) \in D_{\alpha}} \langle (u_a^{\alpha}, u_b^{\alpha}), (a, b) - (z_a, z_b) \rangle < \delta \langle (u_a, u_b), (a, b) - (z_a, z_b) \rangle,$

where $D_{\alpha} := \left\{ \nabla \sigma_{t}^{f}(a_{\alpha}, b_{\alpha}), -\nabla \sigma_{l}^{f}(a_{\alpha}, b_{\alpha}) : t \in A^{+}(a_{\alpha}, b_{\alpha}), l \in A^{-}(a_{\alpha}, b_{\alpha}) \right\}$ and

 $(a_{\alpha}, b_{\alpha}) = \alpha(z_a, z_b) + (1 - \alpha)(a, b),$ then $\alpha \leftarrow \theta \alpha$, Else Return α . Output: $(\alpha, (u_a^{\alpha}, u_b^{\alpha})).$

Rational Approximation with Polynomial

Unknown Solution on the interval

- 200 iterations and *I* = [−1, 1].
- Ψ_i^f with i = 1, 2 denotes the function value for the Variants 1 and 2 respectively.
- *iter* is the iteration number in which was attained the best result.
- *n*, *m* represent the degree of the numerator and denominator polynomials respectively.
- In all pictures, the blue colour is for Variant 1, the red colour for Variant 2. In green colour is the graph of the function *f*.

f(t)	(<i>n</i> , <i>m</i>)	Iter	$\Psi_1^f(a,b)$	Iter	$\Psi_2^f(a,b)$
<i>t</i>	(2, 2)	161	0.068	186	0.070
<i>t</i>	(3,3)	193	0.072	191	0.069
<i>t</i>	(4,3)	198	0.069	198	0.069
sin(t)	(2, 2)	186	0.0097	186	0.014
$ \sin(t) $	(3,3)	189	0.0714	193	0.0700
$\sqrt{ t }$	(4,4)	193	0.186	185	0.182

Objective function Ψ^{f}

f and p/q and Objective function Ψ^{f}

Objective function Ψ_i^f

f and p/q and Objective function Ψ^{f}

f and p/q and Objective function Ψ^{f}

In this subsection we testing rational functions as the objective function.

In this subsection we testing rational functions as the objective function.

Known Solution over discrete I

- *d_i(x, S^{*})* denotes the distance between the last point to the solution set for the variant *i*.
- We stopped the algorithm when the function value Ψ_i^f at the current point be less or equal to 10^{-3} .
- For the compact set *I*, we used a collection of *M* equidistant points on the interval [−1, 1].

	Algor	ithm F	for known solution			
f(t)	(<i>n</i> , <i>m</i>)	М	Iter ₁	$d_1(x, S^*)$	Iter ₂	$d_2(x, S^*)$
1	(1,1)	100	12	$9.7 * 10^{-4}$	12	$9.8 * 10^{-4}$
1	(2, 2)	200	455	0.004	381	0.002
$\frac{1}{t^2+1}$	(1,2)	100	423	0.009	135	0.004
$\frac{1}{t^2+1}$	(2, 2)	200	4406	0.097	3950	0.097
$\frac{t}{t+1.5}$	(1,1)	100	4240	0.013	3137	0.006
$\frac{t}{t+1.5}$	(2,2)	200	6490	0.017	5875	0.009
$\frac{t^2-1}{t+2}$	(2,2)	200	2361	0.02	1730	0.043
$\frac{t^2-1}{t+2}$	(3,2)	100	14643	0.09	6306	0.039

Non-polynomial rational approximation

In this section we consider different rational function to approximate continuous functions.

In this section we consider different rational function to approximate continuous functions.

Non-Polynomials Approximation

- CPU denotes the CPU time
- By *h*(*t*), we denote the functions which compose the rational function
- For this subsection we consider as the objective function the continuous function $f(t) = \frac{\sin t \cos t}{t+2}$.
- The compact set in all cases are the collection of *M* equidistant points in the interval [-1, 1]
- The stopping criteria is $\Psi^f(\mathbf{a}, \mathbf{b}) \le 10^{-2}$.

	Algori	thm F	with non-polynomial			
h(t)	(<i>n</i> , <i>m</i>)	М	<i>Iter</i> ₁	CPU_1	Iter ₂	CPU_2
e^t	(3, 3)	20	625	16.9	410	11.3
e^t	(3, 3)	100	585	21.1	569	23.4
e^t	(5,4)	200	2115	420.5	2094	419.2
e^t	(10, 8)	100	5121	997.8	5099	940.1
sin(t)	(3, 3)	20	255	12.0	255	11.4
sin(t)	(3, 3)	100	429	44.6	311	35.3
sin(t)	(5,4)	200	235	52.1	184	37.4
sin(t)	(10, 8)	100	136	23.9	214	20.9

- The Variational Inequality Problem (VIP(T,C))
- Preliminaries
- 2 The algorithm
 - Convergence of Algorithm F
- 3 Best Approximation of continuous functions
- 4 Numerical Experiences
 - Rational Approximation with Polynomials
 - Non-polynomial rational approximation

5 Conclusions

Conclusion Remarks

- A new Algorithm, containing two variants, for point-to-set Operators without continuity and monotonicity is proposed.
- The Clarke subdifferential of the maximal deviation function is a Pseudomonotone operator.

Conclusion Remarks

- A new Algorithm, containing two variants, for point-to-set Operators without continuity and monotonicity is proposed.
- The Clarke subdifferential of the maximal deviation function is a Pseudomonotone operator.
- An application to Rational Approximation is provided.

Conclusion Remarks

- A new Algorithm, containing two variants, for point-to-set Operators without continuity and monotonicity is proposed.
- The Clarke subdifferential of the maximal deviation function is a Pseudomonotone operator.
- An application to Rational Approximation is provided.

Open problems

- Can we extend Algorithm F to infinite dimensional spaces?
- Can we find an full implementable linesearch?
- Can we extend this algorithm for other Approximation Problems?

References

- Aussel, D. Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach. J. Opt. Th. Appl.: 97, No. I, pp. 29–45, (1998).
- Burachik, R.S., Millán, R.D. A Projection Algorithm for Non-Monotone Variational Inequalities. Set-Valued Var. Anal 28, 149166 (2020).
- Cruz, J.Y.B., Millán, R.D., Phan, H.M.: Conditional extragradient algorithms for variational inequalities. *Pacific Journal of Optimization*. **15** (3), 331-357, (2019).
- Millán R.D., Sukhorukova, N., Ugon, J.: An algorithm for best generalised rational approximation of continuous functions. (In preparation).
- Daniilidis A., Hadjisavvas N. On the Subdifferentials of Quasiconvex and Pseudoconvex Functions and Cyclic Monotonicity. J. Math. An. Appl. 237, 30–42, (1999).

Thanks!