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The setting

Notation to (mostly) follow [BC17].
H a real Hilbert space with inner product È·, ·Í, and norm-induced topology
For D µ H be nonempty and T : D æ H denote
Fix T := {x œ D : Tx = x}
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T : D æ H is called
firmly nonexpansive if for all x , y œ D,

ÎTx ≠ TyÎ
2 + Î(Id ≠T )x ≠ (Id ≠T )yÎ

2
Æ Îx ≠ yÎ

2; (1)
nonexpansive if it is Lipschitz continuous with constant 1, i.e., for all
x , y œ D,

ÎTx ≠ TyÎ Æ Îx ≠ yÎ; (2)
strictly nonexpansive if for all x , y œ D,

x ”= y =∆ ÎTx ≠ TyÎ < Îx ≠ yÎ; (3)
firmly quasinonexpansive if for all x œ D, y œ Fix T ,

ÎTx ≠ yÎ
2 + ÎTx ≠ xÎ

2
Æ Îx ≠ yÎ

2; (4)
quasinonexpansive if for all x œ D, y œ Fix T ,

ÎTx ≠ yÎ Æ Îx ≠ yÎ; (5)
and
strictly quasinonexpansive if for all x œ D \ Fix T , y œ Fix T ,

ÎTx ≠ yÎ < Îx ≠ yÎ. (6)
Clearly (1) =∆ (2) =∆ (5); (1) =∆ (4) =∆ (6) =∆ (5); and
(3) =∆ (6).

H
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Nonexpansiveness under compositions, structure of Fix T

Let T1, T2 : D æ D be quasinonexpansive, one of them strictly
quasinonexansive, with Fix T1 fl Fix T2 ”= ÿ. Then the composition T1T2 is
quasinonexpansive and Fix T1T2 = Fix T1 fl Fix T2.
If both T1 and T2 are strictly quasinonexansive then so is T1T2.
If T1, T2 : D æ H are nonexpansive, then so is T1T2, and 1

2

!
Id +T1

"
is

firmly nonexpansive.
If T : D æ H is quasinonexpansive, D nonempty, closed and convex, then
Fix T is closed and convex.
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Projectors onto convex sets, precompactness

Let C µ H be nonempty, closed, and convex. The projector onto C ,
denoted by PC : H æ C , maps each x œ H to the unique y œ C that
attains dist(x , C) := infyœC Îx ≠ yÎ.
The projector PC is firmly nonexpansive and hence continuous, and
Fix PC = C .
The map RC := 2PC ≠ Id is the reflector across C and is nonexpansive.

A set in H is precompact if it is contained in a compact set, or,
equivalently, if its closure is compact.

p

r
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The main problem

Problem

Given two nonempty, closed, convex subsets A, B µ H, find x œ A fl B.

A
B
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Di�erent but same problem

Given: n nonempty, closed, convex sets Ci , i = 1, . . . , n

Aim: find x œ
u

n

i=1 Ci

“Solution”: Let
A := C1 ◊ C2 ◊ . . . ◊ Cn µ H

n

with projector PA = (PC1
, . . . , PCn

) and

B := {z = (x , x , . . . , x) œ H
n : x œ H}

and projector PBz = ( 1

n

q
i zi , . . . , 1

n

q
i zi).
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MAP/POCS

The first algorithm is known as the Method of Alternating Projections (MAP)
or Projections onto Convex Sets (POCS), and it is simply to iterate the system

x
+ = PAPBx (7)

The problem is consistent if A fl B ”= ÿ.

Theorem (Brègman)

If Problem 1 is consistent then algorithm (7) converges weakly to a point in

A fl B.

Note: Convergence

x 0 1
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Weak vs strong convergence

A sequence {xn}nœN in H converges (strongly, or “in norm”) to x , in
symbols xn æ x as n æ Œ, if Îxn ≠ xÎ æ 0 as n æ Œ.
The sequence convergences weakly to x , in symbols xn Ô x , if instead for
all y œ H, Èxn ≠ x , yÍ æ 0 as n æ Œ.
More generally speaking, the weak topology is coarser than the strong
topology, and of course strong convergence implies weak convergence.
Both notions coincide if H is finite dimensional.
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Douglas–Rachford Algorithm

x
+ = 1

2
!
x + RBRAx

"
:= TA,Bx

y = PAx .
(8)

The dual of the Douglas–Rachford Algorithm is the Alternating Direction
Method of Multipliers (ADMM), and in this version the algorithm has seen
widespread applications in control theory.

Theorem (Lions and Mercier)

If Problem 1 is consistent, then the sequence xn generated by (8) converges

weakly to a point x œ Fix TA,B with y = PAx œ A fl B.

ra
Xo

u xKI s A et B
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Generalisations

The feasibility problem 1 is merely a special case of

min
xœH

f (x) + g(x) (9)

where f , g : H æ [≠Œ, Œ]. This contains Problem 1 when f = iA and g = iB,
the indicator functions of the sets A and B, where

iC (x) =
I

0 for x œ C ,

Œ otherwise.

Problem (9) in turn is a special case of the inclusion problem,

find x œ H such that 0 œ A(x) + B(x)

for set-valued, maximally monotone operators A,B : H ◆ H.
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Lyapunov perspective

weak convergence and Lyapynov functions?
Borwein–Sims: circle and line problem (non-convex)
Benoist 2015: convergence proof for DRA of circle and line using Lyapunov
function
Dao–Tam 2019: convergence proof for DRA of line and graph of a
function (non-convex) using Lyapunov function
Gildadi–R 2019: convergence proof for DRA of line and two lines
(non-convex) using Lyapunov function
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Abstract dynamical system

A map „ : N ◊ H æ H is a dynamical system if
1. „(0, x) = x for all x œ H;

2. „
!
n, „(k, x)

"
for all n, k œ N and x œ H;

3. „ is continuous in the sense that xk æ x and n œ N implies
„(n, xk) æ „(n, x).

Associated with a dynamical system is the di�erence equation

x
+ = Tx (10)

with Tx := „(1, x), and conversely, (10) with continuous T gives rise to the
dynamical system „(n, x) = T

n
x .
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Notation

The orbit of x is denoted by O(x) := {„(n, x) : n œ N} and it is forward
invariant, i.e. TO(x) µ O(x).
The limit set Ê(x) :=

u
nØ0 O

!
„(n, x)

"
=

)
z œ H : ÷{nj}jœN µ N, nj æ

Œ as j æ Œ, „(nj , x) æ z
*

is closed and forward invariant.
If O(x) is precompact, then Ê(x) is nonempty, precompact, and invariant,
i.e., TÊ(x) = Ê(x).
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Lyapunov functions in the sense of LaSalle

Let D µ H. A function V : D æ R is a Lyapunov function of (10) if

1. V is continuous; and
2. V̇ (x) := V (Tx) ≠ V (x) Æ 0 for all x œ D.

We define
E := {x œ D : V̇ = 0}.

Denote by M the largest invariant set in E , and by

V
≠1(c) =

)
x œ D : V (x) = c

*
.

x I
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LaSalle’s inariance principle

Theorem ([LaS76])

Let V : D æ R be a Lyapunov function for (10). If O(x) is precompact and

O(x) µ D, then Ê(x) µ M fl V
≠1(c) for some c = c(x).

xt Tx
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Back to the projection algorithms

Both algorithms are of the form (10) with T continuous as the
composition of continuous operators.
For the method of alternating projections, both PA and PB are firmly
nonexpansive, so T = PAPB is nonexpansive as well as strictly
quasinonexpansive and Fix T = A fl B.
For the Douglas–Rachford Algorithm, T = TA,B is firmly nonexpansive, as
RBRA is nonexpansive as composition of nonexpansive operators, so in
particular, T is strictly quasinonexpansive. The fixed point set of T can be
characterised quite precisely, however, here we simply note that in general
it is not equal to A fl B.
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Theorem

Let T be strictly quasinonexpansive and Fix T be nonempty. The function

V : H æ R given by V (x) := dist(x , Fix T ) is a Lyapunov function for (10),
positive definite with respect to Fix T, and E = M = V

≠1(0) = Fix T.

Proof.

V is defined on D = H, which is closed and convex, so that Fix T is also
closed and convex.
Both the norm and PFix T are continuous, so V (x) = Îx ≠ PFix T xÎ is
continuous as well.
Clearly, V (x) = 0 if and only if x œ Fix T , and V (x) > 0 for x /œ Fix T .
Let x /œ Fix T and y œ Fix T , then V (Tx) = dist(Tx , Fix T ) =
ÎTx ≠ PFix T TxÎ Æ ÎTx ≠ yÎ = ÎTx ≠ TyÎ < Îx ≠ yÎ, where inequality
comes from (6).
In particular, for y = PFix T x œ Fix T , we have
V (Tx) < Îx ≠ PFix T xÎ = dist(x , Fix T ) = V (x). This establishes that
E = V

≠1(0) = Fix T .
As Fix T is invariant under T , we clearly have M = E . $

xt Tx
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Corollary
Let T be strictly quasinonexpansive and Fix T ”= ÿ. Then every orbit O(x)
of (10) is bounded. If, in addition, O(x) is confined to a finite dimensional

subspace of H, then it is precompact, so that Ê(x) = Fix T, and in fact,

T
n
x æ Fix T as n æ Œ.

c
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Theorem

Let T be nonexpansive and Fix T ”= ÿ. The function V : H æ R given by

V (x) := Îx ≠ TxÎ is a Lyapunov function for (10) and positive definite with

respecet to Fix T.

Proof.

Again V is continuous as a composition of continuous functions and
operators.
Clearly V (x) = 0 if x = Tx and positive otherwise.
For x /œ Fix T we compute V (Tx) = ÎTx ≠ T

2
xÎ Æ Îx ≠ TxÎ = V (x),

using (2). $
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E x VCTx 4 1 03
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What about Hundal’s example of MAP failing strong convergence?
H infinite dimensional Hilber space with orthonormal basis {ei}iœN

Define

A := {x œ H : Èx , e1Í Æ 0} and
B := cone{p(t) : t Ø 0}, with

p(t) := eÂtÊ+2 cos f (t) + eÂtÊ+3 sin f (t) + e1e
≠100t

3 and

f (t) := fi

2
!
x ≠ ÂxÊ

"
.

A is a nonempty closed halfspace, hence convex.
B is the closure of the conical hull of a spiraling sequence of points p(t),
so convex as well.
With starting point x0 = p(1), Hundal then demonstrates through a
sequence of technical lemmas that the orbit O(x0) contains a subsequence
that remains close to the sequence of points p(n), n Ø 1, which all have
norm close to 1. However, the intersection A fl B = {0}, so clearly
T

n
x0 ”æ 0 in norm as n æ Œ. On the other hand, T

n
x0 Ô 0 by

Theorem 2.
Details: [Hun04]

t
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What about weak convergence?

Lemma
Let the sequence {xn}nœN be weakly convergent to x œ H, but not strongly.

Then the sequence is not precompact.

Proof. As {xn}nœN does not converge strongly to x , there must exist and ‘ > 0
and a subsequence {xnk

}kœN so that Îxnk
≠ xÎ > ‘ for all k Ø 0. Now we argue

by contradiction and assume that {xn}nœN is precompact. Hence {xnk
}kœN is

precompact as well and thus admits a convergent subsequence {xnk
l
}lœN, say

xnk
l

æ y as l æ Œ. By uniqueness of weak limits, we must have y = x .
However, this contradicts that the subsequence {xnk

}kœN stays away by an ‘
from x , a contradiction. Hence {xn}nœN is not precompact.
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Summary

aparent discrepancy between weak convergence results and strong
convergence implied by Lyapunov theory
Lyapunov theory only applies to precompact trajectories, ruling out
counterexamples
Lyapunov theory applies in finite dimensional settings
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