On diametrically maximal sets, maximal premonotone mappings and premonotone bifunctions

Iusem Alfredo
 Sosa Wilfredo

Universidade Catolica de Brasilia
This research, partially, was developed at CRM under the Research in Pairs Call

Variational Analysis and Optimization Webinars
October, 21, 2020

Outline

- Preliminaries.

Iusem Alfredo Sosa Wilfredo Universidade Catolica de Brasilia On diametrically maximal sets, maximal premonotone mapping

Outline

- Preliminaries.
- Diametrically maximal sets and some properties.

Outline

- Preliminaries.
- Diametrically maximal sets and some properties.
- Premonotone mappings and new properties.

Outline

- Preliminaries.
- Diametrically maximal sets and some properties.
- Premonotone mappings and new properties.
- Maximal premonotone mappings.

Outline

- Preliminaries.
- Diametrically maximal sets and some properties.
- Premonotone mappings and new properties.
- Maximal premonotone mappings.
- Premonotone bifunctions.

Outline

- Preliminaries.
- Diametrically maximal sets and some properties.
- Premonotone mappings and new properties.
- Maximal premonotone mappings.
- Premonotone bifunctions.
- Canonical relations between mappings and bifunctions.

Preliminaries

- Here, we consider sets, mappings and bifunctions defined on finite dimensional Euclidean spaces.

Preliminaries

- Here, we consider sets, mappings and bifunctions defined on finite dimensional Euclidean spaces.
- We tackle the premonotonicity via the graph of the mappings instead of the mapping themselves.

Preliminaries

- Here, we consider sets, mappings and bifunctions defined on finite dimensional Euclidean spaces.
- We tackle the premonotonicity via the graph of the mappings instead of the mapping themselves.
- Each mapping T is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$, where $T(x):=\left\{u \in \mathbb{R}^{n}:(x, u) \in T\right\}$ and $\operatorname{dom}(T)=\left\{x \in \mathbb{R}^{n}: T(x) \neq \emptyset\right\}$.

Preliminaries

- Here, we consider sets, mappings and bifunctions defined on finite dimensional Euclidean spaces.
- We tackle the premonotonicity via the graph of the mappings instead of the mapping themselves.
- Each mapping T is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$, where $T(x):=\left\{u \in \mathbb{R}^{n}:(x, u) \in T\right\}$ and $\operatorname{dom}(T)=\left\{x \in \mathbb{R}^{n}: T(x) \neq \emptyset\right\}$.
- $\bar{A}, \operatorname{int}(A), \operatorname{co}(A), \partial A$ and A^{∞} denote the closure, the interior, the convex hull, the boundary and the recession sets of the set A respectively.

Preliminaries

- Here, we consider sets, mappings and bifunctions defined on finite dimensional Euclidean spaces.
- We tackle the premonotonicity via the graph of the mappings instead of the mapping themselves.
- Each mapping T is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$, where $T(x):=\left\{u \in \mathbb{R}^{n}:(x, u) \in T\right\}$ and $\operatorname{dom}(T)=\left\{x \in \mathbb{R}^{n}: T(x) \neq \emptyset\right\}$.
- $\bar{A}, \operatorname{int}(A), \operatorname{co}(A), \partial A$ and A^{∞} denote the closure, the interior, the convex hull, the boundary and the recession sets of the set A respectively.
- $B(x, r)$ denote the open ball with center in x and radio $r \geq 0$

Preliminaries

- Here, we consider sets, mappings and bifunctions defined on finite dimensional Euclidean spaces.
- We tackle the premonotonicity via the graph of the mappings instead of the mapping themselves.
- Each mapping T is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$, where $T(x):=\left\{u \in \mathbb{R}^{n}:(x, u) \in T\right\}$ and $\operatorname{dom}(T)=\left\{x \in \mathbb{R}^{n}: T(x) \neq \emptyset\right\}$.
- $\bar{A}, \operatorname{int}(A), \operatorname{co}(A), \partial A$ and A^{∞} denote the closure, the interior, the convex hull, the boundary and the recession sets of the set A respectively.
- $B(x, r)$ denote the open ball with center in x and radio $r \geq 0$
- $N_{A}(x)$ denote the normal cone of the set A at a point $x \in \bar{A}$.

Preliminaries

- Here, we consider sets, mappings and bifunctions defined on finite dimensional Euclidean spaces.
- We tackle the premonotonicity via the graph of the mappings instead of the mapping themselves.
- Each mapping T is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$, where $T(x):=\left\{u \in \mathbb{R}^{n}:(x, u) \in T\right\}$ and $\operatorname{dom}(T)=\left\{x \in \mathbb{R}^{n}: T(x) \neq \emptyset\right\}$.
- $\bar{A}, \operatorname{int}(A), \operatorname{co}(A), \partial A$ and A^{∞} denote the closure, the interior, the convex hull, the boundary and the recession sets of the set A respectively.
- $B(x, r)$ denote the open ball with center in x and radio $r \geq 0$
- $N_{A}(x)$ denote the normal cone of the set A at a point $x \in \bar{A}$.
- If A is a bounded set, the diameter of A is denoted by $\operatorname{diam}(A)=\sup \{\|x-y\|:(x, y) \in A \times A\}$.

Diametrically maximal sets

- It is evident that for each bounded set A, its diameter $\operatorname{diam}(A)$ is unique.

Diametrically maximal sets

- It is evident that for each bounded set A, its diameter $\operatorname{diam}(A)$ is unique.
- A set A is called diametrically maximal (diamax, from now on) set if for any set B such that $A \subset B$ and $\operatorname{diam}(A)=\operatorname{diam}(B)$, then $A=B$. This definition is equivalent to another one, which appears in the literature as a diameter complete set. This class of sets was introduced by Meissner, as a diametrically complete set, in 1911 and Eggleston (1965) called it as diametrically maximal.

Diametrically maximal sets

- It is evident that for each bounded set A, its diameter $\operatorname{diam}(A)$ is unique.
- A set A is called diametrically maximal (diamax, from now on) set if for any set B such that $A \subset B$ and $\operatorname{diam}(A)=\operatorname{diam}(B)$, then $A=B$. This definition is equivalent to another one, which appears in the literature as a diameter complete set. This class of sets was introduced by Meissner, as a diametrically complete set, in 1911 and Eggleston (1965) called it as diametrically maximal.
- Let A be a nonempty bounded set. The following function $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f_{A}(x)=\sup _{y \in A}\|y-x\|$ has the following properties:

Diametrically maximal sets

- It is evident that for each bounded set A, its diameter $\operatorname{diam}(A)$ is unique.
- A set A is called diametrically maximal (diamax, from now on) set if for any set B such that $A \subset B$ and $\operatorname{diam}(A)=\operatorname{diam}(B)$, then $A=B$. This definition is equivalent to another one, which appears in the literature as a diameter complete set. This class of sets was introduced by Meissner, as a diametrically complete set, in 1911 and Eggleston (1965) called it as diametrically maximal.
- Let A be a nonempty bounded set. The following function $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f_{A}(x)=\sup _{y \in A}\|y-x\|$ has the following properties:
- It is convex (and so continuous) function and $f_{A}=f_{\overline{\operatorname{co}(A)}}$.

Diametrically maximal sets

- It is evident that for each bounded set A, its diameter $\operatorname{diam}(A)$ is unique.
- A set A is called diametrically maximal (diamax, from now on) set if for any set B such that $A \subset B$ and $\operatorname{diam}(A)=\operatorname{diam}(B)$, then $A=B$. This definition is equivalent to another one, which appears in the literature as a diameter complete set. This class of sets was introduced by Meissner, as a diametrically complete set, in 1911 and Eggleston (1965) called it as diametrically maximal.
- Let A be a nonempty bounded set. The following function $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f_{A}(x)=\sup _{y \in A}\|y-x\|$ has the following properties:
- It is convex (and so continuous) function and $f_{A}=f_{\overline{c o(A)}}$.
- It has a unique minimizer, and it is called centroid of A and denoted by $C(A) . f_{A}(C(A))$ is called Chebyshed radius.

Diametrically maximal sets

- It is evident that for each bounded set A, its diameter $\operatorname{diam}(A)$ is unique.
- A set A is called diametrically maximal (diamax, from now on) set if for any set B such that $A \subset B$ and $\operatorname{diam}(A)=\operatorname{diam}(B)$, then $A=B$. This definition is equivalent to another one, which appears in the literature as a diameter complete set. This class of sets was introduced by Meissner, as a diametrically complete set, in 1911 and Eggleston (1965) called it as diametrically maximal.
- Let A be a nonempty bounded set. The following function $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f_{A}(x)=\sup _{y \in A}\|y-x\|$ has the following properties:
- It is convex (and so continuous) function and $f_{A}=f_{\overline{c o(A)}}$.
- It has a unique minimizer, and it is called centroid of A and denoted by $C(A) . f_{A}(C(A))$ is called Chebyshed radius.
- $A \subset \overline{B\left(x, f_{A}(x)\right)} \forall x \in \mathbb{R}^{n}$,

Properties of diamax sets

- Proposition 1

Properties of diamax sets

- Proposition 1
- Diamax sets are convex and closed.

Properties of diamax sets

- Proposition 1
- Diamax sets are convex and closed.
- If A is a diamax set, then $\alpha A+a$ is also a diamax set.

Properties of diamax sets

- Proposition 1
- Diamax sets are convex and closed.
- If A is a diamax set, then $\alpha A+a$ is also a diamax set.
- Definition

Properties of diamax sets

- Proposition 1
- Diamax sets are convex and closed.
- If A is a diamax set, then $\alpha A+a$ is also a diamax set.
- Definition
- A pair $(a, b) \in \bar{A} \times \bar{A}$ is called antipodal if $\|a-b\|=\operatorname{diam}(A)$.

Properties of diamax sets

- Proposition 1
- Diamax sets are convex and closed.
- If A is a diamax set, then $\alpha A+a$ is also a diamax set.
- Definition
- A pair $(a, b) \in \bar{A} \times \bar{A}$ is called antipodal if $\|a-b\|=\operatorname{diam}(A)$.
- A midpoint of a bounded set C is the midpoint of an antipodes pair (a, b) of C (i.e. $\frac{a+b}{2}$).

Properties of diamax sets

- Proposition 1
- Diamax sets are convex and closed.
- If A is a diamax set, then $\alpha A+a$ is also a diamax set.
- Definition
- A pair $(a, b) \in \bar{A} \times \bar{A}$ is called antipodal if $\|a-b\|=\operatorname{diam}(A)$.
- A midpoint of a bounded set C is the midpoint of an antipodes pair (a, b) of C (i.e. $\frac{a+b}{2}$).
- Proposition 2

Properties of diamax sets

- Proposition 1
- Diamax sets are convex and closed.
- If A is a diamax set, then $\alpha A+a$ is also a diamax set.
- Definition
- A pair $(a, b) \in \bar{A} \times \bar{A}$ is called antipodal if $\|a-b\|=\operatorname{diam}(A)$.
- A midpoint of a bounded set C is the midpoint of an antipodes pair (a, b) of C (i.e. $\frac{a+b}{2}$).
- Proposition 2
- Every bounded set has antipodes.

Properties of diamax sets

- Proposition 1
- Diamax sets are convex and closed.
- If A is a diamax set, then $\alpha A+a$ is also a diamax set.
- Definition
- A pair $(a, b) \in \bar{A} \times \bar{A}$ is called antipodal if $\|a-b\|=\operatorname{diam}(A)$.
- A midpoint of a bounded set C is the midpoint of an antipodes pair (a, b) of C (i.e. $\frac{a+b}{2}$).
- Proposition 2
- Every bounded set has antipodes.
- Proposition 3

Properties of diamax sets

- Proposition 1
- Diamax sets are convex and closed.
- If A is a diamax set, then $\alpha A+a$ is also a diamax set.
- Definition
- A pair $(a, b) \in \bar{A} \times \bar{A}$ is called antipodal if $\|a-b\|=\operatorname{diam}(A)$.
- A midpoint of a bounded set C is the midpoint of an antipodes pair (a, b) of C (i.e. $\frac{a+b}{2}$).
- Proposition 2
- Every bounded set has antipodes.
- Proposition 3
- A bounded set A admits a ball as a diamax set extension if and only if it has one unique midpoint.

Properties of diamax sets

- Proposition 4

Properties of diamax sets

- Proposition 4
- If C is a diamax set with diameter $s>0$, then the ball $B(c, r)$ is contained in C for any midpoint c of C and $r=\left(1-\frac{\sqrt{3}}{2}\right) s$. It implies that any diamax set, with diameter strictly positive, has nonempty interior.

Properties of diamax sets

- Proposition 4
- If C is a diamax set with diameter $s>0$, then the ball $B(c, r)$ is contained in C for any midpoint c of C and $r=\left(1-\frac{\sqrt{3}}{2}\right) s$. It implies that any diamax set, with diameter strictly positive, has nonempty interior.
- $\overline{B\left(\bar{x}, f_{A}(\bar{x})\right)}$ is the minimal ball contains the set A if and only if $\bar{x}=C(A)$.

Properties of diamax sets

- Proposition 4
- If C is a diamax set with diameter $s>0$, then the ball $B(c, r)$ is contained in C for any midpoint c of C and $r=\left(1-\frac{\sqrt{3}}{2}\right) s$. It implies that any diamax set, with diameter strictly positive, has nonempty interior.
- $\overline{B\left(\bar{x}, f_{A}(\bar{x})\right)}$ is the minimal ball contains the set A if and only if $\bar{x}=C(A)$.
- For any bounded set A, any point in the boundary of any diamax extension set D of A is part of an antipodal pair of D.

Properties of diamax sets

- Proposition 4
- If C is a diamax set with diameter $s>0$, then the ball $B(c, r)$ is contained in C for any midpoint c of C and $r=\left(1-\frac{\sqrt{3}}{2}\right) s$. It implies that any diamax set, with diameter strictly positive, has nonempty interior.
- $\overline{B\left(\bar{x}, f_{A}(\bar{x})\right)}$ is the minimal ball contains the set A if and only if $\bar{x}=C(A)$.
- For any bounded set A, any point in the boundary of any diamax extension set D of A is part of an antipodal pair of D.
- Theorem

Properties of diamax sets

- Proposition 4
- If C is a diamax set with diameter $s>0$, then the ball $B(c, r)$ is contained in C for any midpoint c of C and $r=\left(1-\frac{\sqrt{3}}{2}\right) s$. It implies that any diamax set, with diameter strictly positive, has nonempty interior.
- $\overline{B\left(\bar{x}, f_{A}(\bar{x})\right)}$ is the minimal ball contains the set A if and only if $\bar{x}=C(A)$.
- For any bounded set A, any point in the boundary of any diamax extension set D of A is part of an antipodal pair of D.
- Theorem
- The following statements are equivalent

Properties of diamax sets

- Proposition 4
- If C is a diamax set with diameter $s>0$, then the ball $B(c, r)$ is contained in C for any midpoint c of C and $r=\left(1-\frac{\sqrt{3}}{2}\right) s$. It implies that any diamax set, with diameter strictly positive, has nonempty interior.
- $\overline{B\left(\bar{x}, f_{A}(\bar{x})\right)}$ is the minimal ball contains the set A if and only if $\bar{x}=C(A)$.
- For any bounded set A, any point in the boundary of any diamax extension set D of A is part of an antipodal pair of D.
- Theorem
- The following statements are equivalent
- A is a diamax set

Properties of diamax sets

- Proposition 4
- If C is a diamax set with diameter $s>0$, then the ball $B(c, r)$ is contained in C for any midpoint c of C and $r=\left(1-\frac{\sqrt{3}}{2}\right) s$. It implies that any diamax set, with diameter strictly positive, has nonempty interior.
- $\overline{B\left(\bar{x}, f_{A}(\bar{x})\right)}$ is the minimal ball contains the set A if and only if $\bar{x}=C(A)$.
- For any bounded set A, any point in the boundary of any diamax extension set D of A is part of an antipodal pair of D.
- Theorem
- The following statements are equivalent
- A is a diamax set
- A is convex and compact, and $\partial A=\left\{x \in \mathbb{R}^{n}: f_{A}(x)=\operatorname{diam}(A)\right.$.

Properties of diamax sets

- Proposition 4
- If C is a diamax set with diameter $s>0$, then the ball $B(c, r)$ is contained in C for any midpoint c of C and $r=\left(1-\frac{\sqrt{3}}{2}\right) s$. It implies that any diamax set, with diameter strictly positive, has nonempty interior.
- $\overline{B\left(\bar{x}, f_{A}(\bar{x})\right)}$ is the minimal ball contains the set A if and only if $\bar{x}=C(A)$.
- For any bounded set A, any point in the boundary of any diamax extension set D of A is part of an antipodal pair of D.
- Theorem
- The following statements are equivalent
- A is a diamax set
- A is convex and compact, and $\partial A=\left\{x \in \mathbb{R}^{n}: f_{A}(x)=\operatorname{diam}(A)\right.$.
- $A=\cap_{x \in \partial A} \overline{B(x, \operatorname{diam}(A))}$.

Premonotone mappings

- For each mapping $T \subset \mathbb{R}^{n} \times R^{n}$, we consider $\forall x \in \operatorname{dom}(T)$:

Premonotone mappings

- For each mapping $T \subset \mathbb{R}^{n} \times R^{n}$, we consider $\forall x \in \operatorname{dom}(T)$:
$-\delta_{T}(x)=\sup _{y \neq x, y \in \operatorname{dom}(T)}\left\{\sup _{(u, v) \in(T(x) \times T(y))}\left\{u-v, \frac{y-x}{\|y-x\|}\right\rangle\right\}$

Premonotone mappings

- For each mapping $T \subset \mathbb{R}^{n} \times R^{n}$, we consider $\forall x \in \operatorname{dom}(T)$:
$-\delta_{T}(x)=\sup _{y \neq x, y \in \operatorname{dom}(T)}\left\{\sup _{(u, v) \in(T(x) \times T(y))}\left\langle u-v, \frac{y-x}{\|y-x\|}\right\rangle\right\}$
- $\sigma_{T}(x)=\max \left\{0, \delta_{T}(x)\right\}$

Premonotone mappings

- For each mapping $T \subset \mathbb{R}^{n} \times R^{n}$, we consider $\forall x \in \operatorname{dom}(T)$:
- $\delta_{T}(x)=\sup _{y \neq x, y \in \operatorname{dom}(T)}\left\{\sup _{(u, v) \in(T(x) \times T(y))}\left\{u-v, \frac{y-x}{\|y-x\|}\right\rangle\right\}$
- $\sigma_{T}(x)=\max \left\{0, \delta_{T}(x)\right\}$
- Definition

Premonotone mappings

- For each mapping $T \subset \mathbb{R}^{n} \times R^{n}$, we consider $\forall x \in \operatorname{dom}(T)$:
- $\delta_{T}(x)=\sup _{y \neq x, y \in \operatorname{dom}(T)}\left\{\sup _{(u, v) \in(T(x) \times T(y))}\left\{u-v, \frac{y-x}{\|y-x\|}\right\rangle\right\}$
- $\sigma_{T}(x)=\max \left\{0, \delta_{T}(x)\right\}$
- Definition
- A mapping $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is premonotone if $\sigma_{T}: \operatorname{dom}(T) \rightarrow[0, \infty)$

Premonotone mappings

- For each mapping $T \subset \mathbb{R}^{n} \times R^{n}$, we consider $\forall x \in \operatorname{dom}(T)$:
- $\delta_{T}(x)=\sup _{y \neq x, y \in \operatorname{dom}(T)}\left\{\sup _{(u, v) \in(T(x) \times T(y))}\left\{u-v, \frac{y-x}{\|y-x\|}\right\rangle\right\}$
- $\sigma_{T}(x)=\max \left\{0, \delta_{T}(x)\right\}$
- Definition
- A mapping $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is premonotone if $\sigma_{T}: \operatorname{dom}(T) \rightarrow[0, \infty)$
- Lemma 1

Premonotone mappings

- For each mapping $T \subset \mathbb{R}^{n} \times R^{n}$, we consider $\forall x \in \operatorname{dom}(T)$:
- $\delta_{T}(x)=\sup _{y \neq x, y \in \operatorname{dom}(T)}\left\{\sup _{(u, v) \in(T(x) \times T(y))}\left\{u-v, \frac{y-x}{\|y-x\|}\right\rangle\right\}$
- $\sigma_{T}(x)=\max \left\{0, \delta_{T}(x)\right\}$
- Definition
- A mapping $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is premonotone if $\sigma_{T}: \operatorname{dom}(T) \rightarrow[0, \infty)$
- Lemma 1
- If T is premonotone, then for each $x \in \operatorname{dom}(T)$,
$\sigma_{T}(x) \leq \sup _{y \neq x, y \in \operatorname{dom}(T)} \sigma_{T}(y)$

Premonotone mappings

- For each mapping $T \subset \mathbb{R}^{n} \times R^{n}$, we consider $\forall x \in \operatorname{dom}(T)$:
- $\delta_{T}(x)=\sup _{y \neq x, y \in \operatorname{dom}(T)}\left\{\sup _{(u, v) \in(T(x) \times T(y))}\left\{u-v, \frac{y-x}{\|y-x\|}\right\rangle\right\}$
- $\sigma_{T}(x)=\max \left\{0, \delta_{T}(x)\right\}$
- Definition
- A mapping $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is premonotone if $\sigma_{T}: \operatorname{dom}(T) \rightarrow[0, \infty)$
- Lemma 1
- If T is premonotone, then for each $x \in \operatorname{dom}(T)$,
$\sigma_{T}(x) \leq \sup _{y \neq x, y \in \operatorname{dom}(T)} \sigma_{T}(y)$
- Proposition 6

Premonotone mappings

- For each mapping $T \subset \mathbb{R}^{n} \times R^{n}$, we consider $\forall x \in \operatorname{dom}(T)$:
- $\delta_{T}(x)=\sup _{y \neq x, y \in \operatorname{dom}(T)}\left\{\sup _{(u, v) \in(T(x) \times T(y))}\left\{u-v, \frac{y-x}{\|y-x\|}\right\rangle\right\}$
- $\sigma_{T}(x)=\max \left\{0, \delta_{T}(x)\right\}$
- Definition
- A mapping $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is premonotone if $\sigma_{T}: \operatorname{dom}(T) \rightarrow[0, \infty)$
- Lemma 1
- If T is premonotone, then for each $x \in \operatorname{dom}(T)$,
$\sigma_{T}(x) \leq \sup _{y \neq x, y \in \operatorname{dom}(T)} \sigma_{T}(y)$
- Proposition 6
- Let $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ be a mapping. T is premonotone if and only if $\langle u-v, y-x\rangle \leq \min \left\{\sigma_{T}(x), \sigma_{T}(y)\right\}\|y-x\|<+\infty$ $\forall\{(x, u),(y, v)\} \subset T$

Premonotone mappings

- Given $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, we consider the mappings $\mathrm{cl}(T), \operatorname{co}(T)$, defined as $\mathrm{cl}(T)(x)=\mathrm{cl}(T(x)), \operatorname{co}(T)(x)=\operatorname{co}(T(x))$. We consider also the mapping \bar{T} whose graph is the closure of the graph of T.

Premonotone mappings

- Given $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, we consider the mappings $\mathrm{cl}(T), \operatorname{co}(T)$, defined as $\mathrm{cl}(T)(x)=\mathrm{cl}(T(x)), \operatorname{co}(T)(x)=\operatorname{co}(T(x))$. We consider also the mapping \bar{T} whose graph is the closure of the graph of T.
- Proposition 7

Premonotone mappings

- Given $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, we consider the mappings $\mathrm{cl}(T), \operatorname{co}(T)$, defined as $\mathrm{cl}(T)(x)=\mathrm{cl}(T(x)), \operatorname{co}(T)(x)=\operatorname{co}(T(x))$. We consider also the mapping \bar{T} whose graph is the closure of the graph of T.
- Proposition 7
- If $x \in \operatorname{dom}(T)$, then $T(x) \subset \operatorname{co}(T)(x), T(x) \subset$ $\operatorname{cl}(T)(x) \subset \bar{T}(x)$.

Premonotone mappings

- Given $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, we consider the mappings $\mathrm{cl}(T), \operatorname{co}(T)$, defined as $\mathrm{cl}(T)(x)=\mathrm{cl}(T(x)), \operatorname{co}(T)(x)=\operatorname{co}(T(x))$. We consider also the mapping \bar{T} whose graph is the closure of the graph of T.
- Proposition 7
- If $x \in \operatorname{dom}(T)$, then $T(x) \subset \operatorname{co}(T)(x), T(x) \subset$ $\operatorname{cl}(T)(x) \subset \bar{T}(x)$.
$-\operatorname{dom}(\operatorname{co}(T))=\operatorname{dom}(\operatorname{cl}(T))=\operatorname{dom}(T) \subset \operatorname{dom}(\bar{T})$.

Premonotone mappings

- Given $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, we consider the mappings $\mathrm{cl}(T), \operatorname{co}(T)$, defined as $\operatorname{cl}(T)(x)=\mathrm{cl}(T(x)), \operatorname{co}(T)(x)=\operatorname{co}(T(x))$. We consider also the mapping \bar{T} whose graph is the closure of the graph of T.
- Proposition 7
- If $x \in \operatorname{dom}(T)$, then $T(x) \subset \operatorname{co}(T)(x), T(x) \subset$ $\operatorname{cl}(T)(x) \subset \bar{T}(x)$.
$-\operatorname{dom}(\operatorname{co}(T))=\operatorname{dom}(\operatorname{cl}(T))=\operatorname{dom}(T) \subset \operatorname{dom}(\bar{T})$.
- If one among $\{T, \operatorname{cl}(T), \operatorname{co}(T), \bar{T}\}$ is premonotone, then all of them are premonotone.

Premonotone mappings

- Given $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, we consider the mappings $\mathrm{cl}(T), \mathrm{co}(T)$, defined as $\mathrm{cl}(T)(x)=\mathrm{cl}(T(x)), \operatorname{co}(T)(x)=\operatorname{co}(T(x))$. We consider also the mapping \bar{T} whose graph is the closure of the graph of T.
- Proposition 7
- If $x \in \operatorname{dom}(T)$, then $T(x) \subset \operatorname{co}(T)(x), T(x) \subset$ $\operatorname{cl}(T)(x) \subset \bar{T}(x)$.
$-\operatorname{dom}(\operatorname{co}(T))=\operatorname{dom}(\operatorname{cl}(T))=\operatorname{dom}(T) \subset \operatorname{dom}(\bar{T})$.
- If one among $\{T, \operatorname{cl}(T), \operatorname{co}(T), \bar{T}\}$ is premonotone, then all of them are premonotone.
- The sum of two premonotone operators is premonotone in each point in the intersection of its domains. Moreover, σ of the sum is the sum of σ s on the intersection of its domains.

Premonotone mappings

- Given $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, we consider the mappings $\mathrm{cl}(T), \mathrm{co}(T)$, defined as $\operatorname{cl}(T)(x)=\mathrm{cl}(T(x)), \operatorname{co}(T)(x)=\operatorname{co}(T(x))$. We consider also the mapping \bar{T} whose graph is the closure of the graph of T.
- Proposition 7
- If $x \in \operatorname{dom}(T)$, then $T(x) \subset \operatorname{co}(T)(x), T(x) \subset$ $\operatorname{cl}(T)(x) \subset \bar{T}(x)$.
$-\operatorname{dom}(\operatorname{co}(T))=\operatorname{dom}(\operatorname{cl}(T))=\operatorname{dom}(T) \subset \operatorname{dom}(\bar{T})$.
- If one among $\{T, \operatorname{cl}(T), \operatorname{co}(T), \bar{T}\}$ is premonotone, then all of them are premonotone.
- The sum of two premonotone operators is premonotone in each point in the intersection of its domains. Moreover, σ of the sum is the sum of σ s on the intersection of its domains.
- If T is premonotone, then there exists a premonotone mapping T^{\prime}, an extension of T, such that $T \subset T^{\prime}, \sigma_{T}(x) \leq \sigma_{T^{\prime}}(x)$ $\forall x \in \operatorname{dom}(T)$ and $\operatorname{int}\left(\operatorname{dom}\left(T^{\prime}\right)\right)$ is nonempty and convex.

Maximal premonotonicity

- Before to define the maximal premonotonicity, we consider two alternative form in order to understand how to add points to the premonotone mapping T using the function σ_{T}

Maximal premonotonicity

- Before to define the maximal premonotonicity, we consider two alternative form in order to understand how to add points to the premonotone mapping T using the function σ_{T}
- $T^{h}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq\right.$ $\left.\min \left\{\sigma_{T}(x), \sigma_{T}(y)\right\}\|y-x\| \forall(y, v) \in T\right\}$

Maximal premonotonicity

- Before to define the maximal premonotonicity, we consider two alternative form in order to understand how to add points to the premonotone mapping T using the function σ_{T}
- $T^{h}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq\right.$ $\left.\min \left\{\sigma_{T}(x), \sigma_{T}(y)\right\}\|y-x\| \forall(y, v) \in T\right\}$
- $T^{c}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq \sigma_{T}(y)\|y-x\| \forall(y, v) \in T\right\}$

Maximal premonotonicity

- Before to define the maximal premonotonicity, we consider two alternative form in order to understand how to add points to the premonotone mapping T using the function σ_{T}
- $T^{h}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq\right.$ $\left.\min \left\{\sigma_{T}(x), \sigma_{T}(y)\right\}\|y-x\| \forall(y, v) \in T\right\}$
- $T^{c}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq \sigma_{T}(y)\|y-x\| \forall(y, v) \in T\right\}$
- The following examples show that two mappings are different.

Maximal premonotonicity

- Before to define the maximal premonotonicity, we consider two alternative form in order to understand how to add points to the premonotone mapping T using the function σ_{T}
- $T^{h}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq\right.$ $\left.\min \left\{\sigma_{T}(x), \sigma_{T}(y)\right\}\|y-x\| \forall(y, v) \in T\right\}$
- $T^{c}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq \sigma_{T}(y)\|y-x\| \forall(y, v) \in T\right\}$
- The following examples show that two mappings are different.
- Example 1

Maximal premonotonicity

- Before to define the maximal premonotonicity, we consider two alternative form in order to understand how to add points to the premonotone mapping T using the function σ_{T}
- $T^{h}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq\right.$ $\left.\min \left\{\sigma_{T}(x), \sigma_{T}(y)\right\}\|y-x\| \forall(y, v) \in T\right\}$
- $T^{c}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq \sigma_{T}(y)\|y-x\| \forall(y, v) \in T\right\}$
- The following examples show that two mappings are different.
- Example 1
- Let $F \subset \mathbb{R} \times \mathbb{R}$ be a mapping defined by $F(x)=\sin (x)$ $\forall x \in \mathbb{R}$

Maximal premonotonicity

- Before to define the maximal premonotonicity, we consider two alternative form in order to understand how to add points to the premonotone mapping T using the function σ_{T}
- $T^{h}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq\right.$ $\left.\min \left\{\sigma_{T}(x), \sigma_{T}(y)\right\}\|y-x\| \forall(y, v) \in T\right\}$
- $T^{c}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq \sigma_{T}(y)\|y-x\| \forall(y, v) \in T\right\}$
- The following examples show that two mappings are different.
- Example 1
- Let $F \subset \mathbb{R} \times \mathbb{R}$ be a mapping defined by $F(x)=\sin (x)$ $\forall x \in \mathbb{R}$
- $\sigma_{F}(x)=1+|\sin (x)| \forall x \in \mathbb{R}$. So, F is premonotone

Maximal premonotonicity

- Before to define the maximal premonotonicity, we consider two alternative form in order to understand how to add points to the premonotone mapping T using the function σ_{T}
- $T^{h}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq\right.$ $\left.\min \left\{\sigma_{T}(x), \sigma_{T}(y)\right\}\|y-x\| \forall(y, v) \in T\right\}$
- $T^{c}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq \sigma_{T}(y)\|y-x\| \forall(y, v) \in T\right\}$
- The following examples show that two mappings are different.
- Example 1
- Let $F \subset \mathbb{R} \times \mathbb{R}$ be a mapping defined by $F(x)=\sin (x)$ $\forall x \in \mathbb{R}$
- $\sigma_{F}(x)=1+|\sin (x)| \forall x \in \mathbb{R}$. So, F is premonotone
- $F^{h}(x)=[-|\sin (x),|\sin (x)|] \forall x \in \mathbb{R}$.

Maximal premonotonicity

- Before to define the maximal premonotonicity, we consider two alternative form in order to understand how to add points to the premonotone mapping T using the function σ_{T}
- $T^{h}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq\right.$ $\left.\min \left\{\sigma_{T}(x), \sigma_{T}(y)\right\}\|y-x\| \forall(y, v) \in T\right\}$
- $T^{c}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq \sigma_{T}(y)\|y-x\| \forall(y, v) \in T\right\}$
- The following examples show that two mappings are different.
- Example 1
- Let $F \subset \mathbb{R} \times \mathbb{R}$ be a mapping defined by $F(x)=\sin (x)$ $\forall x \in \mathbb{R}$
- $\sigma_{F}(x)=1+|\sin (x)| \forall x \in \mathbb{R}$. So, F is premonotone
- $F^{h}(x)=[-|\sin (x),|\sin (x)|] \forall x \in \mathbb{R}$.
- $F^{c}(x)=[-1,1] \forall x \in \mathbb{R}$

Maximal premonotonicity

- Before to define the maximal premonotonicity, we consider two alternative form in order to understand how to add points to the premonotone mapping T using the function σ_{T}
- $T^{h}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq\right.$ $\left.\min \left\{\sigma_{T}(x), \sigma_{T}(y)\right\}\|y-x\| \forall(y, v) \in T\right\}$
- $T^{c}(x)=\left\{u \in \mathbb{R}^{n}:\langle u-v, y-x\rangle \leq \sigma_{T}(y)\|y-x\| \forall(y, v) \in T\right\}$
- The following examples show that two mappings are different.
- Example 1
- Let $F \subset \mathbb{R} \times \mathbb{R}$ be a mapping defined by $F(x)=\sin (x)$ $\forall x \in \mathbb{R}$
- $\sigma_{F}(x)=1+|\sin (x)| \forall x \in \mathbb{R}$. So, F is premonotone
- $F^{h}(x)=[-|\sin (x),|\sin (x)|] \forall x \in \mathbb{R}$.
- $F^{c}(x)=[-1,1] \forall x \in \mathbb{R}$
- $\sigma_{F}(x)=\sigma_{F^{h}}(x)<\sigma_{F^{c}}(x)=2$

Maximal premonotonicity

- Example 2

Iusem Alfredo Sosa Wilfredo Universidade Catolica de Brasilia On diametrically maximal sets, maximal premonotone mapping

Maximal premonotonicity

- Example 2
- Let $G \in \mathbb{R} \times \mathbb{R}$ be defined by $G(x)=\left\{\begin{array}{ccc}x+2 & \text { if } & x \leq-1 \\ x-2 & \text { if } & x \geq 1\end{array}\right.$

Maximal premonotonicity

- Example 2
- Let $G \in \mathbb{R} \times \mathbb{R}$ be defined by $G(x)=\left\{\begin{array}{ccc}x+2 & \text { if } & x \leq-1 \\ x-2 & \text { if } & x \geq 1\end{array}\right.$
- $\operatorname{dom}(G)=\{x:|x| \geq 1\}$ and

$$
\sigma_{G}(x)=\left\{\begin{array}{ccc}
0 & \text { if } & |x| \leq 3 \\
3-|x| & \text { if } & 1 \leq|x|<3
\end{array}\right.
$$

Maximal premonotonicity

- Example 2
- Let $G \in \mathbb{R} \times \mathbb{R}$ be defined by $G(x)=\left\{\begin{array}{ccc}x+2 & \text { if } & x \leq-1 \\ x-2 & \text { if } & x \geq 1\end{array}\right.$
- $\operatorname{dom}(G)=\{x:|x| \geq 1\}$ and
$\sigma_{G}(x)=\left\{\begin{array}{clc}0 & \text { if } & |x| \leq 3 \\ 3-|x| & \text { if } & 1 \leq|x|<3\end{array}\right.$
- $G^{h}(x)=\left\{\begin{array}{clc}x+2 & \text { if } & x \leq-3 \\ {[-1,2+x]} & \text { if } & -3<x \leq-1 \\ {[x-2,1]} & \text { if } & 1 \leq x<3 \\ x-2 & \text { if } & x \geq 3\end{array}\right.$

Maximal premonotonicity

- Example 2
- Let $G \in \mathbb{R} \times \mathbb{R}$ be defined by $G(x)=\left\{\begin{array}{ccc}x+2 & \text { if } & x \leq-1 \\ x-2 & \text { if } & x \geq 1\end{array}\right.$
- $\operatorname{dom}(G)=\{x:|x| \geq 1\}$ and
$\sigma_{G}(x)=\left\{\begin{array}{clc}0 & \text { if } & |x| \leq 3 \\ 3-|x| & \text { if } & 1 \leq|x|<3\end{array}\right.$
- $G^{h}(x)=\left\{\begin{array}{clc}x+2 & \text { if } & x \leq-3 \\ {[-1,2+x]} & \text { if } & -3<x \leq-1 \\ {[x-2,1]} & \text { if } & 1 \leq x<3 \\ x-2 & \text { if } & x \geq 3\end{array}\right.$
- $G^{c}(x)=\left\{\begin{array}{clc}x+2 & \text { if } & x \leq-3 \\ {[-1,2+x]} & \text { if } & -3<x \leq-1 \\ {[-1,1]} & \text { if } & x \in(-1,1) \\ {[\mathrm{x}-2,1]} & \text { if } & 1 \leq x<3 \\ x-2 & \text { if } & x \geq 3\end{array}\right.$

Maximal premonotonicity

- Example 2
- Let $G \in \mathbb{R} \times \mathbb{R}$ be defined by $G(x)=\left\{\begin{array}{ccc}x+2 & \text { if } & x \leq-1 \\ x-2 & \text { if } & x \geq 1\end{array}\right.$
- $\operatorname{dom}(G)=\{x:|x| \geq 1\}$ and
$\sigma_{G}(x)=\left\{\begin{array}{clc}0 & \text { if } & |x| \leq 3 \\ 3-|x| & \text { if } & 1 \leq|x|<3\end{array}\right.$
- $G^{h}(x)=\left\{\begin{array}{clc}x+2 & \text { if } & x \leq-3 \\ {[-1,2+x]} & \text { if } & -3<x \leq-1 \\ {[x-2,1]} & \text { if } & 1 \leq x<3 \\ x-2 & \text { if } & x \geq 3\end{array}\right.$
- $G^{c}(x)=\left\{\begin{array}{clc}x+2 & \text { if } & x \leq-3 \\ {[-1,2+x]} & \text { if } & -3<x \leq-1 \\ {[-1,1]} & \text { if } & x \in(-1,1) \\ {[\mathrm{x}-2,1]} & \text { if } & 1 \leq x<3 \\ x-2 & \text { if } & x \geq 3\end{array}\right.$
- Note that $\operatorname{dom}\left(G^{h}\right)$ is no convex and $\operatorname{dom}\left(G^{c}\right)$ is convex.

Maximal premonotonicity

- Definition

Iusem Alfredo Sosa Wilfredo Universidade Catolica de Brasilia On diametrically maximal sets, maximal premonotone mapping

Maximal premonotonicity

- Definition
- A mapping $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is maximal premonotone if $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex and for $T^{\prime} \supset T$ with $\sigma_{T^{\prime}}=\sigma_{T}$, then $T=T^{\prime}$.

Maximal premonotonicity

- Definition
- A mapping $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is maximal premonotone if $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex and for $T^{\prime} \supset T$ with $\sigma_{T^{\prime}}=\sigma_{T}$, then $T=T^{\prime}$.
- If T is premonotone, then there exists a σ-maximal premonotone mapping T^{\prime}, an extension of T, such that $T \subset T^{\prime}, \sigma$ is a function such that $\sigma(x) \geq \sigma_{T}(x)$ $\forall x \in \operatorname{dom}(T)$ and $\operatorname{int}\left(\operatorname{dom}\left(T^{\prime}\right)\right)$ is nonempty and convex.

Maximal premonotonicity

- Definition
- A mapping $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is maximal premonotone if $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex and for $T^{\prime} \supset T$ with $\sigma_{T^{\prime}}=\sigma_{T}$, then $T=T^{\prime}$.
- If T is premonotone, then there exists a σ-maximal premonotone mapping T^{\prime}, an extension of T, such that $T \subset T^{\prime}, \sigma$ is a function such that $\sigma(x) \geq \sigma_{T}(x)$ $\forall x \in \operatorname{dom}(T)$ and $\operatorname{int}\left(\operatorname{dom}\left(T^{\prime}\right)\right)$ is nonempty and convex.
- For the example $1, F^{h}$ is a σ_{F}-maximal premonotone extension of F. But, taking $\sigma=\sigma_{F^{c}}$, then F^{c} is another σ-maximal premonotone extension of F.

Maximal premonotonicity

- Definition
- A mapping $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is maximal premonotone if $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex and for $T^{\prime} \supset T$ with $\sigma_{T^{\prime}}=\sigma_{T}$, then $T=T^{\prime}$.
- If T is premonotone, then there exists a σ-maximal premonotone mapping T^{\prime}, an extension of T, such that $T \subset T^{\prime}, \sigma$ is a function such that $\sigma(x) \geq \sigma_{T}(x)$ $\forall x \in \operatorname{dom}(T)$ and $\operatorname{int}\left(\operatorname{dom}\left(T^{\prime}\right)\right)$ is nonempty and convex.
- For the example $1, F^{h}$ is a σ_{F}-maximal premonotone extension of F. But, taking $\sigma=\sigma_{F^{c}}$, then F^{c} is another σ-maximal premonotone extension of F.
- For the example 2, G^{h} is not a maximal premonotone extension of G (is only a premonotone extension of G), and G^{c} is a σ_{G}-maximal premonotone extension of G.

Properties of T^{h} and T^{c}

- Proposition 8

Iusem Alfredo Sosa Wilfredo Universidade Catolica de Brasilia On diametrically maximal sets, maximal premonotone mapping

Properties of T^{h} and T^{c}

- Proposition 8
- Assume that $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone. Then,

Properties of T^{h} and T^{c}

- Proposition 8
- Assume that $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone. Then, i) $T \subset T^{h} \subset T^{c}$.

Properties of T^{h} and T^{c}

- Proposition 8
- Assume that $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone. Then,
i) $T \subset T^{h} \subset T^{c}$.
ii) $(z, w) \in T^{h}$ if and only if $\sigma_{T^{\prime}}=\sigma_{T}$, with $T^{\prime}=T \cup\{(z, w)\}$

Properties of T^{h} and T^{c}

- Proposition 8
- Assume that $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone. Then,
i) $T \subset T^{h} \subset T^{c}$.
ii) $(z, w) \in T^{h}$ if and only if $\sigma_{T^{\prime}}=\sigma_{T}$, with $T^{\prime}=T \cup\{(z, w)\}$
iii) T is maximal premonotone if and only if $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex and $T=T^{h}$.

Properties of T^{h} and T^{c}

- Proposition 8
- Assume that $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone. Then,
i) $T \subset T^{h} \subset T^{c}$.
ii) $(z, w) \in T^{h}$ if and only if $\sigma_{T^{\prime}}=\sigma_{T}$, with $T^{\prime}=T \cup\{(z, w)\}$
iii) T is maximal premonotone if and only if $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex and $T=T^{h}$.
iv) If $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex, then T^{h} is a σ_{T}-maximal premonotone extensions of T.

Properties of T^{h} and T^{c}

- Proposition 8
- Assume that $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone. Then,
i) $T \subset T^{h} \subset T^{c}$.
ii) $(z, w) \in T^{h}$ if and only if $\sigma_{T^{\prime}}=\sigma_{T}$, with $T^{\prime}=T \cup\{(z, w)\}$
iii) T is maximal premonotone if and only if $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex and $T=T^{h}$.
iv) If $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex, then T^{h} is a σ_{T}-maximal premonotone extensions of T.
v) $T^{h}(x)$ is closed and convex for all $x \in \operatorname{dom}(T)$.

Properties of T^{h} and T^{c}

- Proposition 8
- Assume that $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone. Then,
i) $T \subset T^{h} \subset T^{c}$.
ii) $(z, w) \in T^{h}$ if and only if $\sigma_{T^{\prime}}=\sigma_{T}$, with $T^{\prime}=T \cup\{(z, w)\}$
iii) T is maximal premonotone if and only if $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex and $T=T^{h}$.
iv) If $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex, then T^{h} is a σ_{T}-maximal premonotone extensions of T.
v) $T^{h}(x)$ is closed and convex for all $x \in \operatorname{dom}(T)$.
vi) $T^{c}(x)$ is closed and convex for all $x \in \overline{\operatorname{co}(\operatorname{dom}(T))}$.

Properties of T^{h} and T^{c}

- Proposition 8
- Assume that $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone. Then,
i) $T \subset T^{h} \subset T^{c}$.
ii) $(z, w) \in T^{h}$ if and only if $\sigma_{T^{\prime}}=\sigma_{T}$, with $T^{\prime}=T \cup\{(z, w)\}$
iii) T is maximal premonotone if and only if $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex and $T=T^{h}$.
iv) If $\operatorname{int}(\operatorname{dom}(T))$ is nonempty and convex, then T^{h} is a σ_{T}-maximal premonotone extensions of T.
v) $T^{h}(x)$ is closed and convex for all $x \in \operatorname{dom}(T)$.
vi) $T^{c}(x)$ is closed and convex for all $x \in \overline{\operatorname{co}(\operatorname{dom}(T))}$.
vi) If T, U are premonotone and $T \subset U$ then $\sigma_{T}(x) \leq \sigma_{U}(x)$ for all $x \in \mathbb{R}^{n}$.

Properties of T^{h} and T^{c}

- Proposition 9

Iusem Alfredo Sosa Wilfredo Universidade Catolica de Brasilia On diametrically maximal sets, maximal premonotone mapping

Properties of T^{h} and T^{c}

- Proposition 9
- If $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone, then $\left(T^{c}(x)\right)^{\infty}=N_{D(T)}(x)$ for all $x \in c l(D(T))$, with $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}((T)))$. And $\left(T^{h}(x)\right)^{\infty}=\left(T^{c}(x)\right)^{\infty} \forall x \in \operatorname{dom}(T)$.

Properties of T^{h} and T^{c}

- Proposition 9
- If $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone, then $\left(T^{c}(x)\right)^{\infty}=N_{D(T)}(x)$ for all $x \in c l(D(T))$, with $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}((T)))$. And $\left(T^{h}(x)\right)^{\infty}=\left(T^{c}(x)\right)^{\infty} \forall x \in \operatorname{dom}(T)$.
- Proposition 10

Properties of T^{h} and T^{c}

- Proposition 9
- If $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone, then $\left(T^{c}(x)\right)^{\infty}=N_{D(T)}(x)$ for all $x \in c l(D(T))$, with $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}((T)))$. And $\left(T^{h}(x)\right)^{\infty}=\left(T^{c}(x)\right)^{\infty} \forall x \in \operatorname{dom}(T)$.
- Proposition 10
- Consider a premonotone $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ and $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}((T)))$. Then, for all $\bar{x} \in D(T)$ there exists a compact set K and a neighborhood V of \bar{x} such that $\emptyset \neq T^{c}(x) \subset K$ for all $x \in V$.

Properties of T^{h} and T^{c}

- Proposition 9
- If $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is premonotone, then $\left(T^{c}(x)\right)^{\infty}=N_{D(T)}(x)$ for all $x \in c l(D(T))$, with $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}((T)))$. And $\left(T^{h}(x)\right)^{\infty}=\left(T^{c}(x)\right)^{\infty} \forall x \in \operatorname{dom}(T)$.
- Proposition 10
- Consider a premonotone $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ and $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}((T)))$. Then, for all $\bar{x} \in D(T)$ there exists a compact set K and a neighborhood V of \bar{x} such that $\emptyset \neq T^{c}(x) \subset K$ for all $x \in V$.
- Consider a premonotone $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ and $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}((T)))$. Then, for all $\bar{x} \in D(T) \cap \operatorname{dom}(T)$ there exists a compact set K and a neighborhood V of \bar{x} such that $\emptyset \neq T^{h}(x) \subset K$ for all $x \in V \cap \operatorname{dom}(T)$.

Maximal premonotone mappings

- Proposition 11

Maximal premonotone mappings

- Proposition 11
- Let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous and strongly monotone with constant $\gamma, C: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ inner Lipschitz semicontinuous with constant β, and assume that $C(x)$ is compact for all $x \in \mathbb{R}^{n}$ and that $\gamma \geq \beta$. Define $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ as $T(x)=U(x)+C(x)$ for all $x \in \mathbb{R}^{n}$. Then $\sigma_{T}(y)=\operatorname{diam}(C(y))$ for all $y \in \mathbb{R}^{n}$.

Maximal premonotone mappings

- Proposition 11
- Let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous and strongly monotone with constant $\gamma, C: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ inner Lipschitz semicontinuous with constant β, and assume that $C(x)$ is compact for all $x \in \mathbb{R}^{n}$ and that $\gamma \geq \beta$. Define $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ as $T(x)=U(x)+C(x)$ for all $x \in \mathbb{R}^{n}$. Then $\sigma_{T}(y)=\operatorname{diam}(C(y))$ for all $y \in \mathbb{R}^{n}$.
- Proposition 12

Maximal premonotone mappings

- Proposition 11
- Let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous and strongly monotone with constant $\gamma, C: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ inner Lipschitz semicontinuous with constant β, and assume that $C(x)$ is compact for all $x \in \mathbb{R}^{n}$ and that $\gamma \geq \beta$. Define $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ as $T(x)=U(x)+C(x)$ for all $x \in \mathbb{R}^{n}$. Then $\sigma_{T}(y)=\operatorname{diam}(C(y))$ for all $y \in \mathbb{R}^{n}$.
- Proposition 12
- An mapping of the form $T=U+C$ satisfying the assumptions of previous Proposition is maximal premonotone if and only if $C(x)$ is a diamax set for all $x \in \mathbb{R}^{n}$.

Maximal premonotone mappings

- Proposition 11
- Let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous and strongly monotone with constant $\gamma, C: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ inner Lipschitz semicontinuous with constant β, and assume that $C(x)$ is compact for all $x \in \mathbb{R}^{n}$ and that $\gamma \geq \beta$. Define $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ as $T(x)=U(x)+C(x)$ for all $x \in \mathbb{R}^{n}$. Then $\sigma_{T}(y)=\operatorname{diam}(C(y))$ for all $y \in \mathbb{R}^{n}$.
- Proposition 12
- An mapping of the form $T=U+C$ satisfying the assumptions of previous Proposition is maximal premonotone if and only if $C(x)$ is a diamax set for all $x \in \mathbb{R}^{n}$.
- Corollary

Maximal premonotone mappings

- Proposition 11
- Let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous and strongly monotone with constant $\gamma, C: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ inner Lipschitz semicontinuous with constant β, and assume that $C(x)$ is compact for all $x \in \mathbb{R}^{n}$ and that $\gamma \geq \beta$. Define $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ as $T(x)=U(x)+C(x)$ for all $x \in \mathbb{R}^{n}$. Then $\sigma_{T}(y)=\operatorname{diam}(C(y))$ for all $y \in \mathbb{R}^{n}$.
- Proposition 12
- An mapping of the form $T=U+C$ satisfying the assumptions of previous Proposition is maximal premonotone if and only if $C(x)$ is a diamax set for all $x \in \mathbb{R}^{n}$.
- Corollary
- Let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a maximal monotone mapping and a compact set $\widehat{C} \subset \mathbb{R}^{n}$. The mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ defined by $T(x)=U(x)+\widehat{C}$ is premonotone with $\sigma_{T}(x)=\operatorname{diam}(\widehat{C})$ for all $x \in \mathbb{R}^{n}$. T is σ_{T}-maximal premonotone if and only if \widehat{C} is a diamax set.

Remarks

- If $f: \Omega \rightarrow \mathbb{R}$ if a continuous differentiable function and $\epsilon>0$, then the mapping $T: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T(x)=\nabla f(x)+\epsilon S(x)$, where $S(x)_{i}=\sin \left(x_{i}\right)$ is premonotone in Ω

Remarks

- If $f: \Omega \rightarrow \mathbb{R}$ if a continuous differentiable function and $\epsilon>0$, then the mapping $T: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T(x)=\nabla f(x)+\epsilon S(x)$, where $S(x)_{i}=\sin \left(x_{i}\right)$ is premonotone in Ω
- Conjecture

Remarks

- If $f: \Omega \rightarrow \mathbb{R}$ if a continuous differentiable function and $\epsilon>0$, then the mapping $T: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T(x)=\nabla f(x)+\epsilon S(x)$, where $S(x)_{i}=\sin \left(x_{i}\right)$ is premonotone in Ω
- Conjecture
- If $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is premonotone, then T^{c} is the union of maximal monotone mappings.

Remarks

- If $f: \Omega \rightarrow \mathbb{R}$ if a continuous differentiable function and $\epsilon>0$, then the mapping $T: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T(x)=\nabla f(x)+\epsilon S(x)$, where $S(x)_{i}=\sin \left(x_{i}\right)$ is premonotone in Ω
- Conjecture
- If $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is premonotone, then T^{c} is the union of maximal monotone mappings.
- If the conjecture is true, we have the following result.

Remarks

- If $f: \Omega \rightarrow \mathbb{R}$ if a continuous differentiable function and $\epsilon>0$, then the mapping $T: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T(x)=\nabla f(x)+\epsilon S(x)$, where $S(x)_{i}=\sin \left(x_{i}\right)$ is premonotone in Ω
- Conjecture
- If $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is premonotone, then T^{c} is the union of maximal monotone mappings.
- If the conjecture is true, we have the following result.
- Any premonotone mapping is a perturbation of a maximal monotone mapping restricted to its domain.

Remarks

- If $f: \Omega \rightarrow \mathbb{R}$ if a continuous differentiable function and $\epsilon>0$, then the mapping $T: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T(x)=\nabla f(x)+\epsilon S(x)$, where $S(x)_{i}=\sin \left(x_{i}\right)$ is premonotone in Ω
- Conjecture
- If $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is premonotone, then T^{c} is the union of maximal monotone mappings.
- If the conjecture is true, we have the following result.
- Any premonotone mapping is a perturbation of a maximal monotone mapping restricted to its domain.
- Moreover, when the maximal mapping (in the conjecture) is integrable, then the premonotone mapping is generated by a perturbation of a convex function.

Premonotone bifunctions

- For each nonempty set $K \subset \mathbb{R}^{n}$, consider bifunctions $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying
B1. For each $x \in K: f(x, x)=0$,
B2. For each $x \in K: f(x, \cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function.
B3. There exists $\rho: K \rightarrow[0,+\infty): f(x, y) \leq \rho(y)\|x-y\|$ for all $x, y \in K$.

Premonotone bifunctions

- For each nonempty set $K \subset \mathbb{R}^{n}$, consider bifunctions $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying
B1. For each $x \in K: f(x, x)=0$,
B2. For each $x \in K: f(x, \cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function.
B3. There exists $\rho: K \rightarrow[0,+\infty): f(x, y) \leq \rho(y)\|x-y\|$ for all $x, y \in K$.
- Definition

Premonotone bifunctions

- For each nonempty set $K \subset \mathbb{R}^{n}$, consider bifunctions $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying
B1. For each $x \in K: f(x, x)=0$,
B2. For each $x \in K: f(x, \cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function.
B3. There exists $\rho: K \rightarrow[0,+\infty): f(x, y) \leq \rho(y)\|x-y\|$ for all $x, y \in K$.
- Definition
- Given a function $\sigma: K \rightarrow[0,+\infty)$, a bifunction $f: K \times K \rightarrow \mathbb{R}$ is σ-premonotone if and for each $y \in K$ $\sup _{x \in K \backslash\{y\}}\left\{\frac{f(x, y)+f(y, x)}{\|x-y\|}\right\} \leq \sigma(y)$

Premonotone bifunctions

- For each nonempty set $K \subset \mathbb{R}^{n}$, consider bifunctions $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying
B1. For each $x \in K: f(x, x)=0$,
B2. For each $x \in K: f(x, \cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function.
B3. There exists $\rho: K \rightarrow[0,+\infty): f(x, y) \leq \rho(y)\|x-y\|$ for all $x, y \in K$.
- Definition
- Given a function $\sigma: K \rightarrow[0,+\infty)$, a bifunction $f: K \times K \rightarrow \mathbb{R}$ is σ-premonotone if and for each $y \in K$ $\sup _{x \in K \backslash\{y\}}\left\{\frac{f(x, y)+f(y, x)}{\|x-y\|}\right\} \leq \sigma(y)$
- Proposition 13

Premonotone bifunctions

- For each nonempty set $K \subset \mathbb{R}^{n}$, consider bifunctions $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying
B1. For each $x \in K: f(x, x)=0$,
B2. For each $x \in K: f(x, \cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function.
B3. There exists $\rho: K \rightarrow[0,+\infty): f(x, y) \leq \rho(y)\|x-y\|$ for all $x, y \in K$.
- Definition
- Given a function $\sigma: K \rightarrow[0,+\infty)$, a bifunction $f: K \times K \rightarrow \mathbb{R}$ is σ-premonotone if and for each $y \in K$
$\sup _{x \in K \backslash\{y\}}\left\{\frac{f(x, y)+f(y, x)}{\|x-y\|}\right\} \leq \sigma(y)$
- Proposition 13
- Let $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bifunction satisfying assumptions B1 and B 2 . If f is σ-premonotone bifunction, then f satisfies B 3 .

Premonotone bifunctions

- In order to build bifunctios from mappings, we need to consider the following properties for mappings $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$, here $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}(T))) \neq \emptyset$ and $D_{T}=D(T) \cap \operatorname{dom}(T)$.
A1. T is locally bounded on D_{T}.
A2. $T(x)$ is closed and convex for all $x \in D_{T}$.
A3. There exists $\rho: \mathbb{R}^{n} \rightarrow[0,+\infty)$ such that $\langle u, y-x\rangle \leq \rho(y)\|x-y\|$ for all $x \in D_{T}$ all $u \in T(x)$ and all $y \in \mathbb{R}^{n}$.

Premonotone bifunctions

- In order to build bifunctios from mappings, we need to consider the following properties for mappings $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$, here $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}(T))) \neq \emptyset$ and
$D_{T}=D(T) \cap \operatorname{dom}(T)$.
A1. T is locally bounded on D_{T}.
A2. $T(x)$ is closed and convex for all $x \in D_{T}$.
A3. There exists $\rho: \mathbb{R}^{n} \rightarrow[0,+\infty)$ such that

$$
\langle u, y-x\rangle \leq \rho(y)\|x-y\| \text { for all } x \in D_{T} \text { all } u \in T(x) \text { and all }
$$ $y \in \mathbb{R}^{n}$.

- For each mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ with $D_{T} \neq \emptyset$ and satisfying A 3 , define the bifunction $f_{T}: D_{T} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ as:

Premonotone bifunctions

- In order to build bifunctios from mappings, we need to consider the following properties for mappings $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$, here $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}(T))) \neq \emptyset$ and
$D_{T}=D(T) \cap \operatorname{dom}(T)$.
A1. T is locally bounded on D_{T}.
A2. $T(x)$ is closed and convex for all $x \in D_{T}$.
A3. There exists $\rho: \mathbb{R}^{n} \rightarrow[0,+\infty)$ such that $\langle u, y-x\rangle \leq \rho(y)\|x-y\|$ for all $x \in D_{T}$ all $u \in T(x)$ and all $y \in \mathbb{R}^{n}$.
- For each mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ with $D_{T} \neq \emptyset$ and satisfying A3, define the bifunction $f_{T}: D_{T} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ as:
- $f_{T}(x, y)=\sup _{u \in T(x)}\langle u, y-x\rangle \forall x \in D_{T}$ and $\forall y \in \mathbb{R}^{n}$.

Premonotone bifunctions

- In order to build bifunctios from mappings, we need to consider the following properties for mappings $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$, here $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}(T))) \neq \emptyset$ and
$D_{T}=D(T) \cap \operatorname{dom}(T)$.
A1. T is locally bounded on D_{T}.
A2. $T(x)$ is closed and convex for all $x \in D_{T}$.
A3. There exists $\rho: \mathbb{R}^{n} \rightarrow[0,+\infty)$ such that

$$
\begin{aligned}
& \langle u, y-x\rangle \leq \rho(y)\|x-y\| \text { for all } x \in D_{T} \text { all } u \in T(x) \text { and all } \\
& y \in \mathbb{R}^{n} .
\end{aligned}
$$

- For each mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ with $D_{T} \neq \emptyset$ and satisfying A3, define the bifunction $f_{T}: D_{T} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ as:
- $f_{T}(x, y)=\sup _{u \in T(x)}\langle u, y-x\rangle \forall x \in D_{T}$ and $\forall y \in \mathbb{R}^{n}$.
- For each bifunction f satisfying assumption B2, define the mapping $T_{f}: K \rightrightarrows \mathbb{R}^{n}$ as

Premonotone bifunctions

- In order to build bifunctios from mappings, we need to consider the following properties for mappings $T \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$, here $D(T)=\operatorname{int}(\operatorname{co}(\operatorname{dom}(T))) \neq \emptyset$ and
$D_{T}=D(T) \cap \operatorname{dom}(T)$.
A1. T is locally bounded on D_{T}.
A2. $T(x)$ is closed and convex for all $x \in D_{T}$.
A3. There exists $\rho: \mathbb{R}^{n} \rightarrow[0,+\infty)$ such that
$\langle u, y-x\rangle \leq \rho(y)\|x-y\|$ for all $x \in D_{T}$ all $u \in T(x)$ and all $y \in \mathbb{R}^{n}$.
- For each mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ with $D_{T} \neq \emptyset$ and satisfying A 3 , define the bifunction $f_{T}: D_{T} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ as:
- $f_{T}(x, y)=\sup _{u \in T(x)}\langle u, y-x\rangle \forall x \in D_{T}$ and $\forall y \in \mathbb{R}^{n}$.
- For each bifunction f satisfying assumption B2, define the mapping $T_{f}: K \rightrightarrows \mathbb{R}^{n}$ as
- $T_{f}(x)=(\partial f(x, \cdot))(x) \forall x \in K$

Canonical relation

- Proposition 14

Iusem Alfredo Sosa Wilfredo Universidade Catolica de Brasilia On diametrically maximal sets, maximal premonotone mapping

Canonical relation

- Proposition 14
- For all mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ with $\operatorname{int}(\operatorname{co}(\operatorname{dom}(T)) \neq \emptyset$ and satisfying A3, and all bifunction $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying B 2 , the bifunction f_{T} and the mapping T_{f} are well defined. Moreover f_{T} satisfies B1-B3, and if f, in addition, satisfies B3 then T_{f} satisfies A1-A3.

Canonical relation

- Proposition 14
- For all mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ with $\operatorname{int}(\operatorname{co}(\operatorname{dom}(T)) \neq \emptyset$ and satisfying A 3 , and all bifunction $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying B 2 , the bifunction f_{T} and the mapping T_{f} are well defined. Moreover f_{T} satisfies B1-B3, and if f, in addition, satisfies B3 then T_{f} satisfies A1-A3.
- Corollary

Canonical relation

- Proposition 14
- For all mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ with $\operatorname{int}(\operatorname{co}(\operatorname{dom}(T)) \neq \emptyset$ and satisfying A3, and all bifunction $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying B 2 , the bifunction f_{T} and the mapping T_{f} are well defined. Moreover f_{T} satisfies B1-B3, and if f, in addition, satisfies B3 then T_{f} satisfies A1-A3.
- Corollary
- Consider $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ and $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.
i) If T is monotone, then f_{T} is monotone and satisfies B1-B3.
ii) If T is σ-premonotone, then f_{T} is σ-premonotone and satisfies B1-B3.
iii) If f is monotone and satisfies B 2 , then T_{f} is monotone and satisfies A1-A3.
iv) If f is σ-premonotone and satisfies B 2 , then T_{f} is σ-premonotone and satisfies A1-A3.

Canonical relation

- Now, consider the map F acting on those T which satisfy A3 defined as $F(T)=f_{T}$, and the mapping G acting on the set of bifunctions which satisfy $B 2$, defined as $G(f)=T_{f}$.

Canonical relation

- Now, consider the map F acting on those T which satisfy A3 defined as $F(T)=f_{T}$, and the mapping G acting on the set of bifunctions which satisfy B2, defined as $G(f)=T_{f}$.
- We will denote by Γ the set of mappings $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ which satisfy A1-A3, and Θ the set of bifunctions $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ which satisfy $B 1$ - $B 3$, for some $K \subset \mathbb{R}^{n}$.

Canonical relation

- Now, consider the map F acting on those T which satisfy A3 defined as $F(T)=f_{T}$, and the mapping G acting on the set of bifunctions which satisfy B 2 , defined as $G(f)=T_{f}$.
- We will denote by Γ the set of mappings $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ which satisfy A1-A3, and Θ the set of bifunctions $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ which satisfy $\mathrm{B} 1-\mathrm{B} 3$, for some $K \subset \mathbb{R}^{n}$.
- Lemma 2

Canonical relation

- Now, consider the map F acting on those T which satisfy A3 defined as $F(T)=f_{T}$, and the mapping G acting on the set of bifunctions which satisfy B 2 , defined as $G(f)=T_{f}$.
- We will denote by Γ the set of mappings $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ which satisfy A1-A3, and Θ the set of bifunctions $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ which satisfy B 1 - B 3 , for some $K \subset \mathbb{R}^{n}$.
- Lemma 2
- For each mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ satisfying $\mathrm{A} 3, G(F(T))$ belongs to Γ. Moreover, $\operatorname{cl}(\operatorname{co}(T(x)))=G(F(T))(x)$ for all $x \in \operatorname{int}(\operatorname{dom}(T))$.

Canonical relation

- Now, consider the map F acting on those T which satisfy A3 defined as $F(T)=f_{T}$, and the mapping G acting on the set of bifunctions which satisfy B2, defined as $G(f)=T_{f}$.
- We will denote by Γ the set of mappings $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ which satisfy A1-A3, and Θ the set of bifunctions $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ which satisfy B 1 - B 3 , for some $K \subset \mathbb{R}^{n}$.
- Lemma 2
- For each mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ satisfying $\mathrm{A} 3, G(F(T))$ belongs to Γ. Moreover, $\mathrm{cl}(\operatorname{co}(T(x)))=G(F(T))(x)$ for all $x \in \operatorname{int}(\operatorname{dom}(T))$.
- Proposition 15

Canonical relation

- Now, consider the map F acting on those T which satisfy A3 defined as $F(T)=f_{T}$, and the mapping G acting on the set of bifunctions which satisfy B 2 , defined as $G(f)=T_{f}$.
- We will denote by Γ the set of mappings $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ which satisfy A1-A3, and Θ the set of bifunctions $f: K \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ which satisfy $B 1$ - B 3 , for some $K \subset \mathbb{R}^{n}$.
- Lemma 2
- For each mapping $T: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ satisfying $\mathrm{A} 3, G(F(T))$ belongs to Γ. Moreover, $\mathrm{cl}(\operatorname{co}(T(x)))=G(F(T))(x)$ for all $x \in \operatorname{int}(\operatorname{dom}(T))$.
- Proposition 15
- The restriction of the mapping F to Γ and the restriction of the mapping G to $F(\Gamma)$ are bijections and mutual inverses, meaning that $(F \circ G)(f)=f$ for all $f \in F(\Gamma)$ and $(G \circ F)(T)=T$ for all $T \in \Gamma$.

References

- Meissner E.
- Über Punktmengen konstanter Breite.
- Vierteljahresschr. naturforsch. Ges. Zürich 56 (1911) 42-50.

References

- Meissner E.
- Über Punktmengen konstanter Breite.
- Vierteljahresschr. naturforsch. Ges. Zürich 56 (1911) 42-50.
- Eggleston H. G.
- Sets of constant width in finite dimensional Banach spaces.
- Israel J. Math. 3 (1965) 163-172.

References

- Meissner E.
- Über Punktmengen konstanter Breite.
- Vierteljahresschr. naturforsch. Ges. Zürich 56 (1911) 42-50.
- Eggleston H. G.
- Sets of constant width in finite dimensional Banach spaces.
- Israel J. Math. 3 (1965) 163-172.
- Kassay, G., lusem, N. A., Sosa, W.
- An existence result for equilibrium problems with some surjectivity consequences.
- Journal of Convex Analysis bf 16 (2009) 807-8026.

References

- Meissner E.
- Über Punktmengen konstanter Breite.
- Vierteljahresschr. naturforsch. Ges. Zürich 56 (1911) 42-50.
- Eggleston H. G.
- Sets of constant width in finite dimensional Banach spaces.
- Israel J. Math. 3 (1965) 163-172.
- Kassay, G., lusem, N. A., Sosa, W.
- An existence result for equilibrium problems with some surjectivity consequences.
- Journal of Convex Analysis bf 16 (2009) 807-8026.
- Iusem, N. A., Sosa, W.
- On diametrically maximal sets, maximal premonotone mappings and premonotone bifunctions
- J. Nonlinear Var. Anal. 4 (2020) 253-271.

Dedicated to Prof. Juan Enrique Martinez Legaz for his 70th anniversary

