New Gradient and Hessian Approximation Methods for Derivative-free Optimisation

Chayne Planiden

School of Mathematics and Statistics
University of Wollongong

October 8, 2020

The Moreau envelope and the proximal mapping

The Moreau envelope of a proper, Isc function f is defined:

$$
e_{r} f(x)=\inf _{y \in \mathbb{R}^{n}}\left\{f(y)+\frac{r}{2}\|y-x\|^{2}\right\}
$$

The proximal mapping is the set of points that yield the infimum:

$$
P_{r} f(x)=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{f(y)+\frac{r}{2}\|y-x\|^{2}\right\}
$$

The Moreau envelope and the proximal mapping

Why are the Moreau envelope and proximal mapping useful?

- The Moreau envelope is a smoothing function, and for convex functions it maintains the same minimum value and minimizers.
- For convex functions, the gradient of the Moreau envelope has closed form.
- As the parameter r is increased, the Moreau envelope of f converges to f.
- The proximal mapping is a key component of many Optimization algorithms.

The Moreau envelope and the proximal mapping

The Moreau envelope and the proximal mapping

$$
\begin{aligned}
e_{r} f(x) & =\inf _{y}\left\{|y|+\frac{r}{2}(y-x)^{2}\right\} \\
& =\min \left[\inf _{y<0}\left\{-y+\frac{r}{2}(y-x)^{2}\right\}, \frac{r}{2} x^{2}, \inf _{y>0}\left\{y+\frac{r}{2}(y-x)^{2}\right\}\right] \\
& = \begin{cases}-x-\frac{1}{2 r}, & \text { if } x<-\frac{1}{r}, \\
\frac{r}{2} x^{2}, & \text { if }-\frac{1}{r} \leq x \leq \frac{1}{r}, \\
x-\frac{1}{2 r}, & \text { if } x>\frac{1}{r}\end{cases}
\end{aligned}
$$

The Moreau envelope and the proximal mapping

The Moreau envelope and the proximal mapping

The Moreau envelope and the proximal mapping

The gradient of $e_{r} f$

- For convex functions, the gradient of $e_{r} f$ is defined by:

$$
\nabla e_{r} f(x)=r(x-p)
$$

where p is the proximal point of f at x.

- Since $\min f=\min e_{r} f$, the problem is converted into a smooth one θ.

Application to norm functions

Theorem

Let f be any norm function on a Hilbert space. Then the function

$$
\sqrt{e_{r}\left(f^{2}\right)}
$$

is also a norm function, and it is differentiable everywhere except at the origin.

Application to norm functions

$f(x, y)=\max (|x|,|y|)$

$$
g(x, y)=|x|+|y|
$$

Application to norm functions

The proximal point algorithm

The proximal point algorithm is a minimization algorithm for convex nonsmooth functions developed by Martinet [1970], simple and beautiful:

$$
x_{k+1}=P_{r} f\left(x_{k}\right) .
$$

The proximal point algorithm

The proximal point algorithm

The proximal point algorithm

The proximal point algorithm

The proximal point algorithm

The proximal bundle method

- It can be difficult to find the proximal point.
- A proximal bundle method approximates f with a piecewise-linear function and finds the prox-point of the model function [Kiwiel 1995, Bonnans et al. 1997].
- The bundle is a collection of information recorded at each iteration to improve the model function at the next iteration.

The proximal bundle method

The proximal bundle method

- Proximal bundle methods are used as subroutines in many optimization algorithms.
- Derivative-free (DFO) methods are useful when finding gradients is either impossible or too expensive to do [Conn et al. 2009].
- We created a derivative-free proximal bundle method and used it in the DFO $\mathcal{V U}$-algorithm.

The proximal bundle method

The proximal bundle method

The VU-algorithm

Our purpose in creating the DFO proximal bundle algorithm is to develop a DFO $\mathcal{V U}$-algorithm.

- Prox-point algorithms are slow, but necessary for optimizing nonsmooth functions.
- The $\mathcal{V U}$-algorithm speeds up the process by requiring a proximal step parallel to a subspace of \mathbb{R}^{n}, and then a quasi-Newton step parallel to the remaining subspace.

The VU-algorithm

- The idea is to take advantage of the structure of the function, the fact that the nonsmoothness is due to a subspace only.
- We decompose the space into a \mathcal{V}-space where the nonsmooth structure is, and the orthogonal \mathcal{U}-space where the function behaves smoothly.

The $\mathcal{V U}$-algorithm

$$
f(x, y)=x^{2}+|y|
$$

The $\mathcal{V U}$-algorithm

The $\mathcal{V U}$-algorithm

Algorithm:

(0) Initialize.
(1) Decompose: Compute the $\mathcal{V U}$-decomposition of the space at the current point.
(2) \mathcal{V}-step: Run the proximal point method parallel to the \mathcal{V}-space.
(3) Stop check: If subgradient norm $\left\|s_{k}\right\|$ is small, then stop.
(4) \mathcal{U}-step: Find the \mathcal{U}-gradient ∇L and \mathcal{U}-Hessian $\nabla^{2} L$. Take a quasi-Newton step parallel to the \mathcal{U}-space by solving

$$
\nabla^{2} L \Delta u=-\nabla L
$$

for Δu and setting $x_{k+1}=x_{k}+\Delta u$. Go to (1).

The $\mathcal{V U}$-algorithm

A derivative-free $\mathcal{V U}$-algorithm

- The \mathcal{V}-step requires a proximal point, which can be approximated by our proximal bundle method.
- The \mathcal{U}-step requires the gradient and Hessian of f in the \mathcal{U}-space. In the DFO version, these are approximated via the simplex gradient and the minimum Frobenius norm, respectively.

The approximate \mathcal{U}-gradient

The simplex gradient (SG) of f at x is the gradient of the linear interpolation function of f over a set of $n+1$ points close to x on \mathbb{R}^{n}.

The approximate \mathcal{U}-gradient

The approximate \mathcal{U}-gradient

The approximate \mathcal{U}-gradient

The approximate \mathcal{U}-gradient

Definition

Let $\mathcal{X}=\left[x^{0}, x^{1}, \ldots, x^{n}\right]$ be affinely independent on \mathbb{R}^{n}. Then \mathcal{X} forms a simplex, and the simplex gradient of f over \mathcal{X} is given by

$$
\nabla_{s} f(\mathcal{X})=S^{-1} \delta_{f}(\mathcal{X})
$$

where

$$
S=\left[\begin{array}{lll}
x^{0}-x^{1} & \cdots & x^{0}-x^{n}
\end{array}\right]^{\top} \text { and } \delta_{f}(\mathcal{X})=\left[\begin{array}{c}
f\left(x^{0}\right)-f\left(x^{1}\right) \\
\vdots \\
f\left(x^{0}\right)-f\left(x^{n}\right)
\end{array}\right]
$$

The approximate \mathcal{U}-gradient

For example, the matrix

$$
\mathcal{X}=\left[\begin{array}{llll}
x^{0} & x^{0}+\Delta e_{1} & x^{0}+\Delta e_{2} & \cdots
\end{array} x^{0}+\Delta e_{n}\right]
$$

forms a simplex. The condition number of \mathcal{X} is given by $\left\|\widehat{S}^{-1}\right\|$, where

$$
\widehat{S}=\frac{1}{\Delta}\left[\begin{array}{lll}
x^{0}-x^{1} & \cdots & x^{0}-x^{n}
\end{array}\right]^{\top} \text { and } \Delta=\max _{i}\left\|x^{0}-x^{i}\right\| .
$$

An important feature of the condition number is that it is always possible to keep it from degrading, while making Δ arbitrarily close to zero.

The approximate \mathcal{U}-gradient

There is an error bound for the distance between the simplex gradient and the exact gradient:

Theorem

Let $\mathcal{X}=\left[x^{0}, x^{1}, \ldots, x^{n}\right]$ form a simplex. Then there exists $\mu=\mu\left(x^{0}\right)>0$ such that

$$
\left\|\nabla_{s} f(\mathcal{X})-\nabla f\left(x^{0}\right)\right\| \leq \mu\left\|\widehat{S}^{-1}\right\| \Delta .
$$

So by controlling Δ, we can approximate our \mathcal{U}-gradient as closely as we want.

The approximate \mathcal{U}-Hessian

Now to approximate a Hessian, we solve the minimum Frobenius norm problem.

Definition

The Frobenius norm of a matrix $H \in \mathbb{R}^{p \times q}$ with elements $a_{i j}$ is defined by

$$
\left\|H_{F}\right\|=\sqrt{\sum_{i=1}^{p} \sum_{j=1}^{q} a_{i j}^{2}}
$$

The approximate \mathcal{U}-Hessian

Note: the DFO $\mathcal{V U}$-algorithm is for finite-max objective functions, i.e. they can be expressed as a max of a finite number of convex functions.

The approximate \mathcal{U}-Hessian

Note: the DFO $\mathcal{V U}$-algorithm is for finite-max objective functions, i.e. they can be expressed as a max of a finite number of convex functions.

The approximate \mathcal{U}-Hessian

Note: the DFO $\mathcal{V U}$-algorithm is for finite-max objective functions, i.e. they can be expressed as a max of a finite number of convex functions.

The approximate \mathcal{U}-Hessian

We use the matrix

$$
Z=\left[\begin{array}{llll}
x & x+\Delta e_{1} & x-\Delta e_{1} & \cdots
\end{array} x+\Delta e_{n} x-\Delta e_{n}\right] .
$$

For each active function f_{i} at the current point x (i.e. $f_{i}(x)=f(x)$), and for $j=1, \ldots, 2 n+1$, we solve
$\nabla_{F}^{2} f_{i}(Z)=\operatorname{argmin}\left\|H_{i}\right\|_{F}$ such that $\frac{1}{2} Z_{j}^{\top} H_{i} Z_{j}+B_{i}^{\top} Z_{j}+C_{i}=f_{i}\left(Z_{j}\right)$,
where Z_{j} is column j of Z. With variables H_{i}, B_{i}, C_{i}, this is a quadratic programming problem.

The approximate \mathcal{U}-Hessian

Then, denoting

$$
H=\frac{1}{|A(x)|} \sum_{i \in A(x)} \nabla_{F}^{2} f_{i}(Z)
$$

we define the approximate \mathcal{U}-Hessian:

$$
\nabla_{U}^{2} L=U^{\top} H U
$$

where U is a basis for the \mathcal{U}-space and $A(x)$ is the active set of functions at x.

The approximate \mathcal{U}-Hessian

Theorem

There exists $\mu=\mu(x)$ such that
$\left\|\nabla_{U}^{2} L-\nabla^{2} L\right\| \leq\left[2 \sqrt{2} \sqrt{\mid A(x)-1} \mid\left\|V^{\dagger}\right\|\|H\|\left(2 \mu+\mu^{2} \Delta\right)+\mu\right] \Delta$,
where V is a basis for the \mathcal{V}-space.
So once again, by controlling Δ we get as close an approximation to the \mathcal{U}-Hessian as necessary.

A derivative-free $\mathcal{V U}$-algorithm

Algorithm:

(0) Initialize.
(1) Decompose: Compute the $\mathcal{V U}$-decomposition of the space at the current point.
(2) \mathcal{V}-step: Run the DFO proximal bundle method to find the prox-point within ε_{k}.
(3) Stop check: If ε_{k} and subgradient norm $\left\|s_{k}\right\|$ are small, stop.
(4) \mathcal{U}-step: Approximate the \mathcal{U}-gradient ∇L with the simplex gradient $\nabla_{s} L$, and the \mathcal{U}-Hessian $\nabla^{2} L$ with the argmin of the minimum Frobenius norm $\nabla_{\varepsilon_{k}}^{2}$ L. Solve

$$
\nabla_{\varepsilon_{k}}^{2} L \Delta u=-\nabla_{s} L
$$

for Δu and setting $x_{k+1}=x_{k}+\Delta u$. Go to (1).

New Approximations

Now, we want to improve the performance by using better gradient and Hessian approximations, and to generalise by relaxing the requirement on the number of points needed.

New Approximations

Now, we want to improve the performance by using better gradient and Hessian approximations, and to generalise by relaxing the requirement on the number of points needed.

- The generalised simplex gradient (GSG) does not necessarily use $n+1$ points in \mathbb{R}^{n}. It can be more (overdetermined case) or fewer (underdetermined case).

New Approximations

Now, we want to improve the performance by using better gradient and Hessian approximations, and to generalise by relaxing the requirement on the number of points needed.

- The generalised simplex gradient (GSG) does not necessarily use $n+1$ points in \mathbb{R}^{n}. It can be more (overdetermined case) or fewer (underdetermined case).
- Using k points, the GSG is defined

$$
\nabla_{s} f(\mathcal{X})=\left(S^{\top}\right)^{\dagger} \delta_{f}(\mathcal{X})
$$

where $S \in \mathbb{R}^{n \times k}$ and S^{\dagger} is the Moore-Penrose pseudoinverse of S.

New Approximations

We have shown that

$$
\left\|\nabla_{s} f(\mathcal{X})-\nabla f\left(x^{0}\right)\right\| \leq \frac{\sqrt{k}}{2} L_{\nabla f}\left\|\left(\widehat{S}(\mathcal{X})^{\top}\right)^{\dagger}\right\| \Delta
$$

where $\widehat{S}=S / \Delta$ and $L_{\nabla f}$ is the Lipschitz constant of ∇f. We have also developed calculus rules for ∇_{s} (similar to the CSG coming up).

New Approximations

- The centred simplex gradient (CSG) uses $2 n+1$ points in \mathbb{R}^{n} rather than $n+1$, but it offers an error bound on the order of Δ^{2}.

New Approximations

- The centred simplex gradient (CSG) uses $2 n+1$ points in \mathbb{R}^{n} rather than $n+1$, but it offers an error bound on the order of Δ^{2}.
- Using the simplex
$\mathcal{X}=\left\{x^{0}, x^{1}, \ldots, x^{n}\right\}=\left\{x^{0}, x^{0}+d^{1}, \ldots, x^{0}+d^{n}\right\}$ and the reflection $\mathcal{X}^{-}=\left\{x^{0}, x^{0}-d^{1}, \ldots, x^{0}-d^{n}\right\}$, we define

$$
\delta_{f}^{c}(\mathcal{X})=\left[\begin{array}{c}
f\left(x^{0}+d^{1}\right)-f\left(x^{0}-d^{1}\right) \\
f\left(x^{0}+d^{2}\right)-f\left(x^{0}-d^{2}\right) \\
\vdots \\
f\left(x^{0}+d^{n}\right)-f\left(x^{0}-d^{n}\right)
\end{array}\right]
$$

New Approximations

- The centred simplex gradient (CSG) uses $2 n+1$ points in \mathbb{R}^{n} rather than $n+1$, but it offers an error bound on the order of Δ^{2}.
- Using the simplex
$\mathcal{X}=\left\{x^{0}, x^{1}, \ldots, x^{n}\right\}=\left\{x^{0}, x^{0}+d^{1}, \ldots, x^{0}+d^{n}\right\}$ and the reflection $\mathcal{X}^{-}=\left\{x^{0}, x^{0}-d^{1}, \ldots, x^{0}-d^{n}\right\}$, we define

$$
\delta_{f}^{c}(\mathcal{X})=\left[\begin{array}{c}
f\left(x^{0}+d^{1}\right)-f\left(x^{0}-d^{1}\right) \\
f\left(x^{0}+d^{2}\right)-f\left(x^{0}-d^{2}\right) \\
\vdots \\
f\left(x^{0}+d^{n}\right)-f\left(x^{0}-d^{n}\right)
\end{array}\right]
$$

- Then the CSG is defined

$$
\nabla_{c} f(\mathcal{X})=\left(S^{\top}\right)^{-1} \delta_{f}^{C}(\mathcal{X})
$$

New Approximations

It can be proved that the CSG is the average of two SGs:

$$
\nabla_{c} f(\mathcal{X})=\frac{1}{2}\left(\nabla_{s} f(\mathcal{X})+\nabla_{s} f\left(\mathcal{X}^{-}\right)\right)
$$

New Approximations

It can be proved that the CSG is the average of two SGs:

$$
\nabla_{c} f(\mathcal{X})=\frac{1}{2}\left(\nabla_{s} f(\mathcal{X})+\nabla_{s} f\left(\mathcal{X}^{-}\right)\right) .
$$

Now we generalise to any k points rather than $n+1$ and define the generalised centred simplex gradient (GCSG):

$$
\nabla_{c} f(\mathcal{X})=\left(S(\mathcal{X})^{\top}\right)^{\dagger} \delta_{f}^{c}(\mathcal{X})
$$

New Approximations

New Approximations

New Approximations

New Approximations

New Approximations

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be \mathcal{C}^{2+} on $B_{x^{0}}(\Delta)$ with $\nabla^{2} f$ having Lipschitz constant L. Let $\mathcal{X}=\left[\begin{array}{lll}x^{0} & \cdots & x^{k}\end{array}\right]$ be well-poised. Then

$$
\begin{aligned}
& \left\|\nabla_{c} f(\mathcal{X})-\nabla f\left(x^{0}\right)\right\| \leq \frac{L \sqrt{k}}{6}\left\|\left(\widehat{S}(\mathcal{X})^{\top}\right)^{\dagger}\right\| \Delta^{2}, \quad \text { (overdet.) } \\
& \left\|\nabla_{C} f(\mathcal{X})-\nabla f_{U}\left(x^{0}\right)\right\| \leq \frac{L \sqrt{k}}{6}\left\|\left(\widehat{S}(\mathcal{X})^{\top}\right)^{\dagger}\right\| \Delta^{2}, \quad \text { (underdet.) }
\end{aligned}
$$

where ∇f_{U} is the orthogonal projection of ∇f onto k-dimensional subspace U.

New Approximations

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be \mathcal{C}^{2+} on $B_{x^{0}}(\Delta)$ with $\nabla^{2} f$ having Lipschitz constant L. Let $\mathcal{X}=\left[\begin{array}{lll}x^{0} & \cdots & x^{k}\end{array}\right]$ be well-poised. Then

$$
\begin{gathered}
\left\|\nabla_{c} f(\mathcal{X})-\nabla f\left(x^{0}\right)\right\| \leq \frac{L \sqrt{k}}{6}\left\|\left(\hat{S}(\mathcal{X})^{\top}\right)^{\dagger}\right\| \Delta^{2}, \quad \text { (overdet.) } \\
\left\|\nabla_{c} f(\mathcal{X})-\nabla f_{U}\left(x^{0}\right)\right\| \leq \frac{L \sqrt{k}}{6}\left\|\left(\widehat{S}(\mathcal{X})^{\top}\right)^{\dagger}\right\| \Delta^{2}, \quad \text { (underdet.) }
\end{gathered}
$$

where ∇f_{U} is the orthogonal projection of ∇f onto k-dimensional subspace U.

We get order Δ^{2} because in the Taylor-expansion proof, the first-order terms of \mathcal{X} and \mathcal{X}^{-}cancel out.

New Approximations

We created calculus rules as follows.

New Approximations

We created calculus rules as follows.
$\nabla(f g)=f \nabla g+g \nabla f$, so define
$\nabla_{c}(f g)(\mathcal{X})=f\left(x^{0}\right) \nabla_{c} g(\mathcal{X})+g\left(x^{0}\right) \nabla_{c} f(\mathcal{X})$.

New Approximations

We created calculus rules as follows.
$\nabla(f g)=f \nabla g+g \nabla f$, so define
$\nabla_{c}(f g)(\mathcal{X})=f\left(x^{0}\right) \nabla_{c} g(\mathcal{X})+g\left(x^{0}\right) \nabla_{c} f(\mathcal{X})$.
Then
$\left\|\nabla_{c}(f g)(\mathcal{X})-\nabla(f g)\left(x^{0}\right)\right\| \leq \frac{\sqrt{k}}{6}\left(L_{g}\left|f\left(x^{0}\right)\right|+L_{f}\left|g\left(x^{0}\right)\right|\right)\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\| \Delta^{2}$
where $|\mathcal{X}|=k+1$ and L_{f}, L_{g} are Lipschitz constants.

New Approximations

$$
\begin{aligned}
\left\|\nabla_{c}(f g)(\mathcal{X})-\nabla(f g)\left(x^{0}\right)\right\| & \leq \frac{\sqrt{k}}{6}\left(L_{g}\left|f\left(x^{0}\right)\right|+L_{f}\left|g\left(x^{0}\right)\right|\right)\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\| \Delta^{2} \\
\left\|\nabla_{c}\left(f^{p}\right)(\mathcal{X})-\nabla\left(f^{p}\right)\left(x^{0}\right)\right\| & \leq \frac{L \sqrt{k}}{6} p\left|f\left(x^{0}\right)\right|^{p-1}\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\| \Delta^{2} \\
\left\|\nabla_{c}\left(\frac{f}{g}\right)(\mathcal{X})-\nabla\left(\frac{f}{g}\right)\left(x^{0}\right)\right\| & \leq \frac{\sqrt{k}}{6}\left(L_{f}\left|\frac{1}{g\left(x^{0}\right)}\right|+L_{g}\left|\frac{f\left(x^{0}\right)}{g^{2}\left(x^{0}\right)}\right|\right)\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\| \Delta^{2} \\
\left\|\nabla_{c}(f \circ g)(\mathcal{X})-\nabla(f \circ g)\left(x^{0}\right)\right\| & \leq \frac{\sqrt{k} p}{6}\left(\sqrt{k} L_{g_{*}} L_{f}\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\|+\left\|\nabla f\left(g\left(x^{0}\right)\right)\right\| L_{g_{*}^{2}}\right)\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\| \Delta_{*}^{2}
\end{aligned}
$$

New Approximations

$$
\begin{aligned}
\left\|\nabla_{c}(f g)(\mathcal{X})-\nabla(f g)\left(x^{0}\right)\right\| & \leq \frac{\sqrt{k}}{6}\left(L_{g}\left|f\left(x^{0}\right)\right|+L_{f}\left|g\left(x^{0}\right)\right|\right)\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\| \Delta^{2} \\
\left\|\nabla_{c}\left(f^{p}\right)(\mathcal{X})-\nabla\left(f^{p}\right)\left(x^{0}\right)\right\| & \leq \frac{L \sqrt{k}}{6} p\left|f\left(x^{0}\right)\right|^{p-1}\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\| \Delta^{2} \\
\left\|\nabla_{c}\left(\frac{f}{g}\right)(\mathcal{X})-\nabla\left(\frac{f}{g}\right)\left(x^{0}\right)\right\| & \leq \frac{\sqrt{k}}{6}\left(L_{f}\left|\frac{1}{g\left(x^{0}\right)}\right|+L_{g}\left|\frac{f\left(x^{0}\right)}{g^{2}\left(x^{0}\right)}\right|\right)\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\| \Delta^{2} \\
\left\|\nabla_{c}(f \circ g)(\mathcal{X})-\nabla(f \circ g)\left(x^{0}\right)\right\| & \leq \frac{\sqrt{k} p}{6}\left(\sqrt{k} L_{g_{*}} L_{f}\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\|+\left\|\nabla f\left(g\left(x^{0}\right)\right)\right\| L_{g_{*}^{2}}\right)\left\|\left(\widehat{S}^{\top}\right)^{\dagger}\right\| \Delta_{*}^{2}
\end{aligned}
$$

So the order Δ^{2} gives much closer approximations as $\Delta \searrow 0$ and will certainly improve algorithm convergence rates.

New Approximations

- In much the same way, we made a new approximation for the Hessian, called the nested-set Hessian.

New Approximations

- In much the same way, we made a new approximation for the Hessian, called the nested-set Hessian.
- For second-order information, we need two sets of directions rather than one. Both are generalised to any finite number of points, and can be different numbers.

New Approximations

- In much the same way, we made a new approximation for the Hessian, called the nested-set Hessian.
- For second-order information, we need two sets of directions rather than one. Both are generalised to any finite number of points, and can be different numbers.
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and define

$$
\begin{aligned}
S & =\left[\begin{array}{llll}
s^{1} & s^{2} & \cdots & s^{m}
\end{array}\right] \in \mathbb{R}^{n \times m} \\
T & =\left[\begin{array}{llll}
t^{1} & t^{2} & \cdots & t^{k}
\end{array}\right] \in \mathbb{R}^{n \times k}
\end{aligned}
$$

such that $x^{0}, x^{0}+s^{i}, x^{0}+t^{j}, x^{0}+s^{i}+t^{j} \in \operatorname{dom} f$.

New Approximations

Define

$$
\delta_{f}\left(x^{0} ; T\right)=\left[\begin{array}{c}
f\left(x^{0}+t^{1}\right)-f\left(x^{0}\right) \\
f\left(x^{0}+t^{2}\right)-f\left(x^{0}\right) \\
\vdots \\
f\left(x^{0}+t^{k}\right)-f\left(x^{0}\right)
\end{array}\right] .
$$

New Approximations

Define

$$
\delta_{f}\left(x^{0} ; T\right)=\left[\begin{array}{c}
f\left(x^{0}+t^{1}\right)-f\left(x^{0}\right) \\
f\left(x^{0}+t^{2}\right)-f\left(x^{0}\right) \\
\vdots \\
f\left(x^{0}+t^{k}\right)-f\left(x^{0}\right)
\end{array}\right]
$$

Using the notation

$$
\nabla_{s} f\left(x^{0} ; T\right)=\left(T^{\top}\right)^{\dagger} \delta_{f}\left(x^{0} ; T\right)
$$

for the GSG, we define the nested-set Hessian

$$
\nabla_{s}^{2} f\left(x^{0} ; S, T\right)=\left(S^{\top}\right)^{\dagger} \delta_{\nabla_{s} f}\left(x^{0} ; S, T\right)
$$

where

$$
\delta_{\nabla_{s} f}\left(x^{0} ; S, T\right)=\left[\begin{array}{c}
\left(\nabla_{s} f\left(x^{0}+s^{1} ; T\right)-\nabla_{s} f\left(x^{0} ; T\right)\right)^{\top} \\
\left(\nabla_{s} f\left(x^{0}+s^{2} ; T\right)-\nabla_{s} f\left(x^{0} ; T\right)\right)^{\top} \\
\vdots \\
\left(\nabla_{s} f\left(x^{0}+s^{m} ; T\right)-\nabla_{s} f\left(x^{0} ; T\right)\right)^{\top}
\end{array}\right]
$$

New Approximations

- With careful choices of S and T, we can guarantee at most $(n+1)(n+2) / 2$ function evaluations.

New Approximations

- With careful choices of S and T, we can guarantee at most $(n+1)(n+2) / 2$ function evaluations.
- The error bound between the nested-set Hessian and the true Hessian is order Δ.

New Approximations

- With careful choices of S and T, we can guarantee at most $(n+1)(n+2) / 2$ function evaluations.
- The error bound between the nested-set Hessian and the true Hessian is order Δ.

$$
\left\|\nabla_{s}^{2} f\left(x^{0} ; S, T\right)-\nabla^{2} f\left(x^{0}\right)\right\| \leq \frac{m \sqrt{k}}{3} L_{\nabla^{2} f}\left(2 \frac{\Delta_{u}}{\Delta_{l}}+3\right)\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\|\left\|\hat{T}^{\dagger}\right\| \Delta_{u}
$$

New Approximations

- With careful choices of S and T, we can guarantee at most $(n+1)(n+2) / 2$ function evaluations.
- The error bound between the nested-set Hessian and the true Hessian is order Δ.

$$
\left\|\nabla_{s}^{2} f\left(x^{0} ; S, T\right)-\nabla^{2} f\left(x^{0}\right)\right\| \leq \frac{m \sqrt{k}}{3} L_{\nabla^{2} f}\left(2 \frac{\Delta_{u}}{\Delta_{l}}+3\right)\left\|\left(\hat{S}^{\top}\right)^{\dagger}\right\|\left\|\hat{T}^{\dagger}\right\| \Delta_{u}
$$

- With further care (for instance $m=k=n$ and unit canonical directions), the bound can be further improved (for instance $\frac{11}{2} n^{2} L_{\nabla^{2} f}$).

New Approximations

Calculus rules:

$$
\nabla^{2}(f g)=\left(\nabla^{2} f\right) g+\nabla f(\nabla g)^{\top}+\nabla g(\nabla f)^{\top}+\left(\nabla^{2} g\right) f,
$$

so we define

$$
\nabla_{s}^{2}(f g)=\left(\nabla_{s}^{2} f\right) g+\nabla_{s} f\left(\nabla_{s} g\right)^{\top}+\nabla_{s} g\left(\nabla_{s} f\right)^{\top}+\left(\nabla_{s}^{2} g\right) f .
$$

New Approximations

Then

$\left\|\nabla_{s}^{2}(f g)\left(x^{0} ; S, T\right)-\nabla^{2}(f g)\left(x^{0}\right)\right\| \leq\left(E_{\nabla^{2} s t}\left|g\left(x^{0}\right)\right|+E_{\nabla_{s}^{2} g}\left|f\left(x^{0}\right)\right|+2 M_{i g}^{s}\right) \Delta_{u}$,
where

$$
M_{f g}^{s}=\min \left\{\begin{array}{l}
E_{\nabla_{s} f} E_{\nabla_{s} g} \Delta_{u}+E_{\nabla_{s} g}\left\|\nabla f\left(x^{0}\right)\right\|+E_{\nabla_{s}}\left\|\nabla g\left(x^{0}\right)\right\|, \\
E_{\nabla_{s}}\left\|\nabla_{s} g\left(x^{0} ; T\right)\right\|+E_{\nabla_{s} g}\left\|\nabla f\left(x^{0}\right)\right\|, \\
E_{\nabla_{s} g}\left\|\nabla_{s} f\left(x^{0} ; T\right)\right\|+E_{\nabla_{s} f}\left\|\nabla g\left(x^{0}\right)\right\|
\end{array}\right\} .
$$

New Approximations

Then

$\left\|\nabla_{s}^{2}(f g)\left(x^{0} ; S, T\right)-\nabla^{2}(f g)\left(x^{0}\right)\right\| \leq\left(E_{\nabla^{2} s t}\left|g\left(x^{0}\right)\right|+E_{\nabla_{s}^{2} g}\left|f\left(x^{0}\right)\right|+2 M_{I g}^{s}\right) \Delta_{u}$,
where
$M_{f g}^{s}=\min \left\{\begin{array}{l}E_{\nabla_{s} t} E_{\nabla_{s} g} \Delta_{u}+E_{\nabla_{s} g}\left\|\nabla f\left(x^{0}\right)\right\|+E_{\nabla_{s}}\left\|\nabla g\left(x^{0}\right)\right\|, \\ E_{\nabla_{s}} f \nabla_{s} g\left(x^{0} ; T\right)\left\|+E_{\nabla_{s} g}\right\| \nabla f\left(x^{0}\right) \|, \\ E_{\nabla_{s} g}\left\|\nabla_{s} f\left(x^{0} ; T\right)\right\|+E_{\nabla_{s} f}\left\|\nabla g\left(x^{0}\right)\right\|\end{array}\right\}$.
Similar for quotient rule and power rule.

New Approximations

Summary.

- The generalised centred simplex gradient $\nabla_{s} f$ provides an improvement from $\mathcal{O}(\Delta)$ to $\mathcal{O}\left(\Delta^{2}\right)$ on the error bound with ∇f.

New Approximations

Summary.

- The generalised centred simplex gradient $\nabla_{s} f$ provides an improvement from $\mathcal{O}(\Delta)$ to $\mathcal{O}\left(\Delta^{2}\right)$ on the error bound with ∇f.
- It also provides greater flexibility on the number of points needed in the "simplex".

New Approximations

Summary.

- The generalised centred simplex gradient $\nabla_{s} f$ provides an improvement from $\mathcal{O}(\Delta)$ to $\mathcal{O}\left(\Delta^{2}\right)$ on the error bound with ∇f.
- It also provides greater flexibility on the number of points needed in the "simplex".
- The nested-set Hessian $\nabla_{s}^{2} f$ provides $\mathcal{O}(\Delta)$ error bound with $\nabla^{2} f$, as does the minimum Frobenius norm.

New Approximations

Summary.

- The generalised centred simplex gradient $\nabla_{s} f$ provides an improvement from $\mathcal{O}(\Delta)$ to $\mathcal{O}\left(\Delta^{2}\right)$ on the error bound with ∇f.
- It also provides greater flexibility on the number of points needed in the "simplex".
- The nested-set Hessian $\nabla_{s}^{2} f$ provides $\mathcal{O}(\Delta)$ error bound with $\nabla^{2} f$, as does the minimum Frobenius norm.
- However, Frobenius works for finite-max functions and the nested-set Hessian is not restricted to any particular class of functions.

New Approximations

Numerical experiments are forthcoming...

New Approximations

PhD Scholarship
 Convergence Speed of Optimisation Algorithms

An exciting PhD seholarstip is available in the School of Mathematies and Applied Statistics (SMAS) at the University of Wollongong, South Western Sydney carmpus, im the area of Optimisation. The tille of the project is Determining the Convergence Specd of Derivative ree Optimisation Algorithms. The UOW sclolarship is $\$ 28,092$ AUD tax-free per year for hree years full-time Tustion fees (for up to 4 years) will be waived. The successful applicant extrn finding may be avnilhtle for conference travel. nference travel.

Applications are invited from domestic and intemntional stredents who are able to commence PhD strulies at the University of Wollongong in 2021. Applicants should hold, or be close to completing, an Honours 1 midergraduate degree or an Master s degree in Applied
Mathematics, Computational Mathematics or a closely related field. The ideal randidate will Masve sin interest in optimisation algorithms and be happy to work with derivative-free methods. Excellent mathematical and programming skills and an interest in using them to farther current research are essentinl. Self-motivation, a strong research potentinl and good ornl and written commaniention skills are indispensable qualities the winning candidate will have.
The successfol applicant will learn about Nonsmooth Optimisation techniques that do not use gradient information. Instead, they use approximations of gradients and are termed Derivative-fire methods. In particular, the recently developed Derivative-fiee VU-alg gorithin (DFOVU) is of interest. The candidate will investigate, posit sad prove the convergence speed and properties of the DFOVU method comparing to the classical VU-algorithm and to
other derivative-free methods. Extensive numerical resting and valifation of comvergence other derivative-free methods. Extensive mumerical testing and validation of convergence
rates agninst similar methods is part of the research project.

If you are interested in applying for this scholarship, please contact Dr Chayne Planiden via If you are interested in applying for this scholarship, please contact Dr Chayne Planiden vis
email: chayuc@uow.du.au. Applications must include CV detailing previous edacation emarl: chayycadaow.cduau. Applications must melude CV detaingy previous education availible to commence this scholarship by 31 October 2021.
Applientions close 30 November, 2020.

Thank you!

(9) Planiden and Wang, Strongly convex functions, Moreau envelopes and the generic nature of functions with strong minimizers, SIAM Journal on Optimization 26(2), 2016.
(2) Planiden and Wang, Epiconvergence, the Moreau envelope and generalized linear-quadratic functions, Journal of Optimization Theory and Applications, minor revisions 2017.
(3) Hare and Planiden, Computing proximal points of convex functions with inexact subgradients, Set-valued and Variational Analysis, accepted 2016.
4. Hare and Planiden and Sagastizábal, A derivative-free $\mathcal{V} \mathcal{U}$-algorithm for convex finite-max problems, Mathematical Programming, submitted 2017.
(5) Hare and Jarry-Bolduc and Planiden, Error bounds for overdetermined and underdetermined generalized centred simplex gradients, IMA Journal of Numerical Analysis, to appear.
6) Hare and Jarry-Bolduc and Planiden, Hessian Approximations, ArXiV preprint.

