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The Moreau envelope and the proximal mapping

The Moreau envelope of a proper, lsc function f is defined:

er f (x) = inf
y∈Rn

{
f (y) +

r
2
‖y − x‖2

}
.

The proximal mapping is the set of points that yield the
infimum:

Pr f (x) = argmin
y∈Rn

{
f (y) +

r
2
‖y − x‖2

}
.
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The Moreau envelope and the proximal mapping

Why are the Moreau envelope and proximal mapping
useful?

The Moreau envelope is a smoothing function, and for
convex functions it maintains the same minimum value and
minimizers.
For convex functions, the gradient of the Moreau envelope
has closed form.
As the parameter r is increased, the Moreau envelope of f
converges to f .
The proximal mapping is a key component of many
Optimization algorithms.
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The Moreau envelope and the proximal mapping

er f (x) = inf
y

{
|y |+ r

2
(y − x)2

}
= min

[
inf
y<0

{
−y +

r
2

(y − x)2
}
,

r
2

x2, inf
y>0

{
y +

r
2

(y − x)2
}]

=


−x − 1

2r , if x < −1
r ,

r
2x2, if − 1

r ≤ x ≤ 1
r ,

x − 1
2r , if x > 1

r
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The Moreau envelope and the proximal mapping

r = 1
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The Moreau envelope and the proximal mapping

r = 2
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The Moreau envelope and the proximal mapping

r = 5
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The gradient of er f

For convex functions, the gradient of er f is defined by:

∇er f (x) = r(x − p),

where p is the proximal point of f at x .

Since min f = min er f , the problem is converted into a
smooth one .
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Application to norm functions

Theorem
Let f be any norm function on a Hilbert space. Then the
function √

er (f 2)

is also a norm function, and it is differentiable everywhere
except at the origin.
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The proximal point algorithm

The proximal point algorithm is a minimization algorithm for
convex nonsmooth functions developed by Martinet [1970],
simple and beautiful:

xk+1 = Pr f (xk ).
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The proximal bundle method

It can be difficult to find the proximal point.
A proximal bundle method approximates f with a
piecewise-linear function and finds the prox-point of the
model function [Kiwiel 1995, Bonnans et al. 1997].
The bundle is a collection of information recorded at each
iteration to improve the model function at the next iteration.
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The proximal bundle method

Proximal bundle methods are used as subroutines in many
optimization algorithms.
Derivative-free (DFO) methods are useful when finding
gradients is either impossible or too expensive to do [Conn
et al. 2009].
We created a derivative-free proximal bundle method and
used it in the DFO VU-algorithm.
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The VU-algorithm

Our purpose in creating the DFO proximal bundle algorithm is
to develop a DFO VU-algorithm.

Prox-point algorithms are slow, but necessary for
optimizing nonsmooth functions.
The VU-algorithm speeds up the process by requiring a
proximal step parallel to a subspace of Rn, and then a
quasi-Newton step parallel to the remaining subspace.
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The VU-algorithm

The idea is to take advantage of the structure of the
function, the fact that the nonsmoothness is due to a
subspace only.
We decompose the space into a V-space where the
nonsmooth structure is, and the orthogonal U-space where
the function behaves smoothly.
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The VU-algorithm

Algorithm:
(0) Initialize.
(1) Decompose: Compute the VU-decomposition of the space

at the current point.
(2) V-step: Run the proximal point method parallel to the
V-space.

(3) Stop check: If subgradient norm ‖sk‖ is small, then stop.
(4) U-step: Find the U-gradient ∇L and U-Hessian ∇2L. Take

a quasi-Newton step parallel to the U-space by solving

∇2L∆u = −∇L

for ∆u and setting xk+1 = xk + ∆u. Go to (1).
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A derivative-free VU-algorithm

The V-step requires a proximal point, which can be
approximated by our proximal bundle method.
The U-step requires the gradient and Hessian of f in the
U-space. In the DFO version, these are approximated via
the simplex gradient and the minimum Frobenius norm,
respectively.
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The approximate U-gradient

The simplex gradient (SG) of f at x is the gradient of the linear
interpolation function of f over a set of n + 1 points close to x
on Rn.
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The approximate U-gradient
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The approximate U-gradient

Definition

Let X = [x0, x1, . . . , xn] be affinely independent on Rn. Then X
forms a simplex, and the simplex gradient of f over X is given
by

∇sf (X ) = S−1δf (X ),

where

S = [x0 − x1 · · · x0 − xn]> and δf (X ) =

 f (x0)− f (x1)
...

f (x0)− f (xn)

 .
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The approximate U-gradient

For example, the matrix

X = [x0 x0 + ∆e1 x0 + ∆e2 · · · x0 + ∆en]

forms a simplex. The condition number of X is given by ‖Ŝ−1‖,
where

Ŝ =
1
∆

[x0 − x1 · · · x0 − xn]> and ∆ = max
i
‖x0 − x i‖.

An important feature of the condition number is that it is always
possible to keep it from degrading, while making ∆ arbitrarily
close to zero.
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The approximate U-gradient

There is an error bound for the distance between the simplex
gradient and the exact gradient:

Theorem

Let X = [x0, x1, . . . , xn] form a simplex. Then there exists
µ = µ(x0) > 0 such that

‖∇sf (X )−∇f (x0)‖ ≤ µ‖Ŝ−1‖∆.

So by controlling ∆, we can approximate our U-gradient as
closely as we want.
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The approximate U-Hessian

Now to approximate a Hessian, we solve the minimum
Frobenius norm problem.

Definition

The Frobenius norm of a matrix H ∈ Rp×q with elements aij is
defined by

‖HF‖ =

√√√√ p∑
i=1

q∑
j=1

a2
ij .
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The approximate U-Hessian

Note: the DFO VU-algorithm is for finite-max objective
functions, i.e. they can be expressed as a max of a finite
number of convex functions.

.
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The approximate U-Hessian

We use the matrix

Z = [x x + ∆e1 x −∆e1 · · · x + ∆en x −∆en].

For each active function fi at the current point x (i.e.
fi(x) = f (x)), and for j = 1, . . . ,2n + 1, we solve

∇2
F fi(Z ) = argmin ‖Hi‖F such that

1
2

Z>j HiZj +B>i Zj +Ci = fi(Zj),

where Zj is column j of Z . With variables Hi ,Bi ,Ci , this is a
quadratic programming problem.
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The approximate U-Hessian

Then, denoting

H =
1

|A(x)|
∑

i∈A(x)

∇2
F fi(Z ),

we define the approximate U-Hessian:

∇2
UL = U>HU,

where U is a basis for the U-space and A(x) is the active set of
functions at x .

Chayne Planiden 31/ 50



The approximate U-Hessian

Theorem
There exists µ = µ(x) such that

‖∇2
UL−∇2L‖ ≤

[
2
√

2
√
|A(x)− 1‖‖V †‖‖H‖(2µ+ µ2∆) + µ

]
∆,

where V is a basis for the V-space.

So once again, by controlling ∆ we get as close an
approximation to the U-Hessian as necessary.
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A derivative-free VU-algorithm

Algorithm:
(0) Initialize.
(1) Decompose: Compute the VU-decomposition of the space

at the current point.
(2) V-step: Run the DFO proximal bundle method to find the

prox-point within εk .
(3) Stop check: If εk and subgradient norm ‖sk‖ are small,

stop.
(4) U-step: Approximate the U-gradient ∇L with the simplex

gradient ∇sL, and the U-Hessian ∇2L with the argmin of
the minimum Frobenius norm ∇2

εk
L. Solve

∇2
εk

L∆u = −∇sL

for ∆u and setting xk+1 = xk + ∆u. Go to (1).
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New Approximations

Now, we want to improve the performance by using better
gradient and Hessian approximations, and to generalise by
relaxing the requirement on the number of points needed.

The generalised simplex gradient (GSG) does not
necessarily use n + 1 points in Rn. It can be more
(overdetermined case) or fewer (underdetermined case).
Using k points, the GSG is defined

∇sf (X ) = (S>)†δf (X ),

where S ∈ Rn×k and S† is the Moore–Penrose
pseudoinverse of S.
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New Approximations

We have shown that

‖∇sf (X )−∇f (x0)‖ ≤
√

k
2

L∇f

∥∥∥∥(Ŝ(X )>
)†∥∥∥∥∆,

where Ŝ = S/∆ and L∇f is the Lipschitz constant of ∇f . We
have also developed calculus rules for ∇s (similar to the CSG
coming up).
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New Approximations

The centred simplex gradient (CSG) uses 2n + 1 points in
Rn rather than n + 1, but it offers an error bound on the
order of ∆2.

Using the simplex
X = {x0, x1, . . . , xn} = {x0, x0 + d1, . . . , x0 + dn} and the
reflection X− = {x0, x0 − d1, . . . , x0 − dn}, we define

δc
f (X ) =


f (x0 + d1)− f (x0 − d1)
f (x0 + d2)− f (x0 − d2)

...
f (x0 + dn)− f (x0 − dn)


Then the CSG is defined

∇c f (X ) = (S>)−1δc
f (X ).
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New Approximations

It can be proved that the CSG is the average of two SGs:

∇c f (X ) =
1
2

(∇sf (X ) +∇sf (X−)).

Now we generalise to any k points rather than n + 1 and define
the generalised centred simplex gradient (GCSG):

∇c f (X ) =
(

S(X )>
)†
δc

f (X ).
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New Approximations

Theorem

Let f : Rn → R be C2+ on Bx0(∆) with ∇2f having Lipschitz
constant L. Let X = [x0 · · · xk ] be well-poised. Then

‖∇c f (X )−∇f (x0)‖ ≤ L
√

k
6

∥∥∥∥(Ŝ(X )>
)†∥∥∥∥∆2, (overdet.)

‖∇c f (X )−∇fU(x0)‖ ≤ L
√

k
6

∥∥∥∥(Ŝ(X )>
)†∥∥∥∥∆2, (underdet.)

where ∇fU is the orthogonal projection of ∇f onto
k-dimensional subspace U.

We get order ∆2 because in the Taylor-expansion proof, the
first-order terms of X and X− cancel out.
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New Approximations

We created calculus rules as follows.

∇(fg) = f∇g + g∇f , so define

∇c(fg)(X ) = f (x0)∇cg(X ) + g(x0)∇c f (X ).

Then

‖∇c(fg)(X )−∇(fg)(x0)‖ ≤
√

k
6

(Lg |f (x0)|+Lf |g(x0)|)
∥∥∥∥(Ŝ>

)†∥∥∥∥∆2

where |X | = k + 1 and Lf ,Lg are Lipschitz constants.
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)†∥∥∥∥∆2

where |X | = k + 1 and Lf ,Lg are Lipschitz constants.

Chayne Planiden 39/ 50



New Approximations

‖∇c (fg)(X )−∇(fg)(x0)‖ ≤
√

k

6
(Lg |f (x0)| + Lf |g(x0)|)

∥∥∥∥(Ŝ>
)†∥∥∥∥∆2

‖∇c (f p)(X )−∇(f p)(x0)‖ ≤
L
√

k

6
p|f (x0)|p−1

∥∥∥∥(Ŝ>
)†∥∥∥∥∆2

∥∥∥∥∥∇c

(
f

g

)
(X )−∇

(
f

g

)
(x0)

∥∥∥∥∥ ≤
√

k

6

(
Lf

∣∣∣∣∣ 1

g(x0)

∣∣∣∣∣ + Lg

∣∣∣∣∣ f (x0)

g2(x0)

∣∣∣∣∣
) ∥∥∥∥(Ŝ>

)†∥∥∥∥∆2

‖∇c (f ◦ g)(X )−∇(f ◦ g)(x0)‖ ≤
√

kp

6

(√
kLg∗Lf ‖(Ŝ>)†‖ + ‖∇f (g(x0))‖Lg2

∗

)
‖(Ŝ>)†‖∆2

∗

So the order ∆2 gives much closer approximations as ∆↘ 0
and will certainly improve algorithm convergence rates.
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New Approximations

In much the same way, we made a new approximation for
the Hessian, called the nested-set Hessian.

For second-order information, we need two sets of
directions rather than one. Both are generalised to any
finite number of points, and can be different numbers.

Let f : Rn → R and define

S = [s1 s2 · · · sm] ∈ Rn×m

T = [t1 t2 · · · tk ] ∈ Rn×k

such that x0, x0 + si , x0 + t j , x0 + si + t j ∈ dom f .
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New Approximations

Define

δf (x0; T ) =


f (x0 + t1)− f (x0)
f (x0 + t2)− f (x0)

...
f (x0 + tk )− f (x0)

 .

Using the notation

∇sf (x0; T ) = (T>)†δf (x0; T )

for the GSG, we define the nested-set Hessian

∇2
s f (x0; S,T ) = (S>)†δ∇s f (x0; S,T ),

where

δ∇s f (x0; S,T ) =


(∇sf (x0 + s1; T )−∇sf (x0; T ))>

(∇sf (x0 + s2; T )−∇sf (x0; T ))>

...
(∇sf (x0 + sm; T )−∇sf (x0; T ))>

 .
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where

δ∇s f (x0; S,T ) =


(∇sf (x0 + s1; T )−∇sf (x0; T ))>

(∇sf (x0 + s2; T )−∇sf (x0; T ))>

...
(∇sf (x0 + sm; T )−∇sf (x0; T ))>

 .
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New Approximations

With careful choices of S and T , we can guarantee at most
(n + 1)(n + 2)/2 function evaluations.

The error bound between the nested-set Hessian and the
true Hessian is order ∆.

‖∇2
s f (x0; S,T )−∇2f (x0)‖ ≤ m

√
k

3
L∇2f

(
2

∆u

∆l
+ 3
)∥∥∥∥(Ŝ>

)†∥∥∥∥∥∥∥T̂ †
∥∥∥∆u

With further care (for instance m = k = n and unit canonical
directions), the bound can be further improved (for instance
11
2 n2L∇2f ).
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)†∥∥∥∥∥∥∥T̂ †
∥∥∥∆u

With further care (for instance m = k = n and unit canonical
directions), the bound can be further improved (for instance
11
2 n2L∇2f ).

Chayne Planiden 43/ 50



New Approximations

With careful choices of S and T , we can guarantee at most
(n + 1)(n + 2)/2 function evaluations.
The error bound between the nested-set Hessian and the
true Hessian is order ∆.

‖∇2
s f (x0; S,T )−∇2f (x0)‖ ≤ m

√
k

3
L∇2f

(
2

∆u

∆l
+ 3
)∥∥∥∥(Ŝ>
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New Approximations

Calculus rules:

∇2(fg) = (∇2f )g +∇f (∇g)> +∇g(∇f )> + (∇2g)f ,

so we define

∇2
s(fg) = (∇2

s f )g +∇sf (∇sg)> +∇sg(∇sf )> + (∇2
sg)f .
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New Approximations

Then

‖∇2
s(fg)(x0; S,T )−∇2(fg)(x0)‖ ≤ (E∇2sf |g(x0)|+E∇2

sg |f (x0)|+2Ms
fg)∆u,

where

Ms
fg = min


E∇s f E∇sg∆u + E∇sg‖∇f (x0)‖+ E∇s f‖∇g(x0)‖,
E∇s f‖∇sg(x0; T )‖+ E∇sg‖∇f (x0)‖,
E∇sg‖∇sf (x0; T )‖+ E∇s f‖∇g(x0)‖

 .

Similar for quotient rule and power rule.
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New Approximations

Summary.
The generalised centred simplex gradient ∇sf provides an
improvement from O(∆) to O(∆2) on the error bound with
∇f .

It also provides greater flexibility on the number of points
needed in the "simplex".
The nested-set Hessian ∇2

s f provides O(∆) error bound
with ∇2f , as does the minimum Frobenius norm.
However, Frobenius works for finite-max functions and the
nested-set Hessian is not restricted to any particular class
of functions.

Chayne Planiden 46/ 50



New Approximations

Summary.
The generalised centred simplex gradient ∇sf provides an
improvement from O(∆) to O(∆2) on the error bound with
∇f .
It also provides greater flexibility on the number of points
needed in the "simplex".

The nested-set Hessian ∇2
s f provides O(∆) error bound

with ∇2f , as does the minimum Frobenius norm.
However, Frobenius works for finite-max functions and the
nested-set Hessian is not restricted to any particular class
of functions.

Chayne Planiden 46/ 50



New Approximations

Summary.
The generalised centred simplex gradient ∇sf provides an
improvement from O(∆) to O(∆2) on the error bound with
∇f .
It also provides greater flexibility on the number of points
needed in the "simplex".
The nested-set Hessian ∇2

s f provides O(∆) error bound
with ∇2f , as does the minimum Frobenius norm.

However, Frobenius works for finite-max functions and the
nested-set Hessian is not restricted to any particular class
of functions.

Chayne Planiden 46/ 50



New Approximations

Summary.
The generalised centred simplex gradient ∇sf provides an
improvement from O(∆) to O(∆2) on the error bound with
∇f .
It also provides greater flexibility on the number of points
needed in the "simplex".
The nested-set Hessian ∇2

s f provides O(∆) error bound
with ∇2f , as does the minimum Frobenius norm.
However, Frobenius works for finite-max functions and the
nested-set Hessian is not restricted to any particular class
of functions.

Chayne Planiden 46/ 50



New Approximations

Numerical experiments are forthcoming...
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New Approximations
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Thank you!
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