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Motivation

Fixed-point iterations are widely used in applied and computational
mathematics.

Convergence of fixed-point iterations is usually established analytically
with inequalities. Such proofs are often unintuitive.

We introduce an alternate geometric approach based on elementary 2D
geometry. These proofs are visual and intuitive.

Talk based on 1.

1Ryu, Hannah, Yin, Scaled Relative Graph: Nonexpansive Operators via 2D
Euclidean Geometry, under revision, 2019.
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A sample result

Fact
Assume f is µ-strongly convex and L-smooth. Then

xk+1 = xk − α∇f(xk)

converge exponentially to the minimizer x⋆ with rate

∥xk − x⋆∥ ≤ (max{|1− αµ|, |1− αL|})k ∥x0 − x⋆∥.

Lµ

{∇f | f ∈ Fµ,L}

−→
1− αL 1− αµ

{I − α∇f | f ∈ Fµ,L}

We make this illustration a rigorous proof.
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Fixed-point terations

Using a fixed-point iteration:

1. Find an operator T : H → H such that if x⋆ = T (x⋆) then x⋆ is a
solution to the problem at hand.

2. Perform the fixed-point iteration

xk+1 = T (xk).
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Convergence via operator properties: nonexpansive

T : H → H is nonexpansive if

∥T (x)− T (y)∥ ≤ ∥x− y∥ ∀x, y ∈ H.

Fixed-point iterations with nonexpansive operators need not converge.
(E.g. T (x) = −x.)
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Convergence via operator properties: contractive

T : H → H is contractive if

∥T (x)− T (y)∥ ≤ L∥x− y∥ ∀x, y ∈ H

with L < 1.

If T is contractive, xk → x⋆ strongly with rate ∥xk −x⋆∥ ≤ Lk∥x0−x⋆∥.

(Banach contraction principle)
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Convergence via operator properties: averaged

T : H → H is averaged if T = (1− θ)I + θR for some nonexpansive
operator R and θ ∈ (0, 1).

If T is averaged and has a fixed point, then xk → x⋆ weakly for some
fixed point x⋆.

(Krasnosel’skĭı–Mann theorem)
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Convergence via operator properties

1L

Contractive

⊂
θ

Averaged

⊂
1

Nonexpansive

General rubric for proving convergence of a fixed-point iteration:

1. Prove T is contractive or averaged.

2. Apply convergence argument of Banach or Krasnosel’skĭı–Mann.

Step 2 is routine. We present a geometric approach for step 1.
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SRG of a nonlinear operator A

Pick x ̸= y, u ∈ Ax, and v ∈ Ay. Consider the complex conjugate pair

z =
∥u− v∥
∥x− y∥

exp [±i∠(u− v, x− y)] .

Re z and Im z respectively represent the components of u− v aligned
with and perpendicular to x− y, i.e.,

Re z = sgn(⟨u− v, x− y⟩)
∥Pspan{x−y}(u− v)∥

∥x− y∥

Im z = ±
∥P{x−y}⊥(u− v)∥

∥x− y∥

Define the scaled relative graph (SRG) of A : H ⇒ H with

G(A) = {z |x ̸= y, u ∈ Ax, v ∈ Ay}
(
∪ {∞} if A is multi-valued

)
Interpretation: SRG to (nonlinear) operator ∼= eigenvalues to matrix.



Examples of G

PL = projection onto a line in R2:

G(PL) =

1

A(x1, x2, x3) =

1 0 0
0 2 0
0 0 3

x1

x2

x3

: G(A) =
1 2 3

∂∥ · ∥ in Rn, n ≥ 2:
G(∂∥ · ∥) =

∪{∞}
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Eigenvalues ⊆ SRG

For matrices, the SRG generalizes eigenvalues.

1/2 + i

1/2− i

2

Theorem
If A ∈ Rn×n and n = 1 or n ≥ 3,2 then
Λ(A) ⊆ G(A).

The figure shows SRG of 1/2 2 0
−1/2 1/2 0
0 0 2

 .

SRG is different from the numerical range
(field of values) or the pseudospectrum.

2The result fails for n = 2 because Sn−1, the sphere in Rn, is not simply
connected for n = 2; the proof constructs a loop in Sn−1 and argues the image of the
loop on the complex plane is nullhomotopic.



SRG of normal matrices

SRG of normal matrices can be characterized with the Poincaré
half-plane model of hyperbolic geometry 3.

λ6

λ2

λ4

λ7

λ3

λ5

λ1 λ1 λ2 λ3 λ4 λ5 λ6

3Huang, Ryu, Yin, Scaled Relative Graph of Normal Matrices, arXiv, 2019



SRG of operator class A

The SRG of an operator class A is defined by

G(A) =
⋃
A∈A

G(A)

We focus on SRGs of operator classes, rather than SRGs of individual
operators, because most theorems are stated with operator classes. E.g.
“I −A is nonexpansive if A is 1/2-cocoercive.”
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SRG of operator class A

∪{∞}

µ

Mµ: µ-strongly monotone
∂Fµ,∞: gradient of µ-strgly-cvx. diff. func.

L

LL: L-Lipschitz

1/β

Cβ : β-cocoercive
∂F0, 1

β
: gradient of 1

β
-Lip.diff.cvx.func.

1θ

Nθ: θ-averaged



Converse: from SRG to operator class

Given an operator class, we can draw the SRG, i.e.,

operator class ⇒ SRG

follows from the definition.

Conversely, can we look at an SRG and say something about the operator
class? In general, no. To perform the reasoning

SRG ⇒ operator class

we need further conditions.
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SRG-full classes

A class A of operators is SRG-full if

A ∈ A ⇔ G(A) ⊆ G(A).

i.e., membership of A is equivalent to containment of the SRG.
An SRG-full class is completely characterized by its SRG.

A ∈ A ⇒ G(A) ⊆ G(A) holds by definition of the SRG.
A ∈ A ⇐ G(A) ⊆ G(A) is the substance of this definition.

Theorem (Informal)
The important operator classes are SRG full.
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Operator tranformation ∼= SRG transformation

Algebraic operations on operators correspond to geometric operations on
the SRG.

Under suitable conditions,

▶ G(A ∩ B) = G(A) ∩ G(B)
▶ G(αA) = αG(A)

▶ G(I +A) = 1 + G(A)

▶ G(A−1) = (G(A))−1

▶ G(A+ B) = G(A) + G(B)
▶ G(AB) = G(A)G(B)

Use these to prove theorems.
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Scaling and translation

Theorem
For α, β ∈ R and α ̸= 0,

G(βI + αA) = β + αG(A).
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Convergence analysis: gradient descent

Fact
Assume f is µ-strongly convex and L-smooth. Then

xk+1 = xk − α∇f(xk)

converge exponentially to the minimizer x⋆ with rate

∥xk − x⋆∥ ≤ (max{|1− αµ|, |1− αL|})k ∥x0 − x⋆∥.

Proof. Theorem is equivalent to

I − α∂Fµ,L ⊆ LR

with R = max{|1− αµ|, |1− αL|}.
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Inclusion of the class is equivalent to inclusion of the SRG

G(I − α∂Fµ,L) ⊆ G(LR).

Lµ

G(∂Fµ,L)

−→
1− αL

1− αµ

R

G(I − α∂Fµ,L) ⊆ G (LR)



Convergence analysis: forward step iteration

Fact
Assume A is µ-strongly monotone and L-Lipschitz. Then

xk+1 = xk − αAxk

converge exponentially to the zero x⋆ with rate

∥xk − x⋆∥ ≤
(
1− 2αµ+ α2L2

)k/2 ∥x0 − x⋆∥.



Proof.

αµ αL

G (αA)

−αµ−αL

G (−αA)

1− αµ1− αL

G (I − αA)

G (LR)

R =
√

1− 2αµ+ α2L2



Inversive geometry

The inversion map is z 7→ z̄−1. In polar form, reiφ 7→ (1/r)eiφ, i.e.,
inversion preserves the angle and inverts the magnitude.

Inversion is a classical tool in Euclidean geometry, and is known as the
Möbius transformation in complex analysis.

0

z

z−1

0
0
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Inversive geometry

Generalized circles consist of a (finite) circles in C and lines with {∞} in
C. Inversion maps generalized circles to generalized circles.

ba
1

c d

1

f

1

∪{∞}

1

b−1a−1

∪{∞}

c−1d−1

1

f−1

1
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Operator inversion ∼= SRG inversion

Theorem

G(A−1) =
(
G(A)

)−1
.

(To clarify,
(
G(A)

)−1
= {z−1 | z ∈ G(A)}.)
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Convergence analysis: Peaceman–Rachford splitting

Fact
Assume A is µ-strongly monotone and β-cocoercive. Then
zk+1 = (2JαA − I)(2JαB − I)zk converge exponentially to the fixed
point z⋆ with rate

∥zk − z⋆∥ ≤
(
1− 4αµ

1 + 2αµ+ α2µ/β

)k/2

∥z0 − z⋆∥.



Proof.

1+α
β1+αµ

1

G(I+αA)

z̄−1

−→
1

1
1+αµ

1
1+α/β

G((I+αA)−1)

2z−1−→
1

1−αµ
1+αµ

β−α
β+α

G(2(I+αA)−1−I)
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1−1 O

C

β
β+α

B

−αµ
1+αµ

A
R =

√
1− 4αµ

1+2αµ+α2µ/β A

O

G
(
2(I + αA)−1 − I

)

G (LR)

By Stewart’s theorem,

OA
2
=

OC ·AB2
+BO · CA

2 −BO ·OC ·BC

BC

=

β
α+β

(
1− αµ

1+αµ

)2

+ αµ
1+αµ

(
1− β

α+β

)2

− β
α+β

αµ
1+αµ

(
β

α+β + αµ
1+αµ

)
β

α+β + αµ
1+αµ

= 1− 4αµ

1 + 2αµ+ α2µ/β
.
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Composition of operators

Theorem
Let A and B be SRG-full classes. Assume the SRGs do not contain ∞
and are not empty. If A or B satisfies the left or right-arc property

z

z̄
Arc−(z, z̄)

Left arc property

z

z̄
Arc+(z, z̄)

Right arc property

then
G(AB) = G(BA) = G(A)G(B).

(The SRGs commute even though the operators do not.)



Convergence: alternating projections

Fact
The alternating projections method xk+1 = PCPDxk converge in that
xk → x⋆ weakly for some x⋆ ∈ C ∩D.

Follows from the following result.
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Composition of firmly nonexpansive operators

Theorem
Let N1/2 be the class of firmly nonexpansive operators. Then

G(N1/2N1/2) =
1

{
reiφ | 0 ≤ r ≤ cos2(φ/2)

}
and N1/2N1/2 ⊂ N2/3.

(Shape known as cardiod.)
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Proof outline. The SRG is the union with φ1 ∈ [0, 2π].

φ1

Sφ1

C
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Write I for the inversion mapping. In the inverted space we have

∪{∞}

∪{∞}

∪{∞}

I(Sφ1)

C

I(C)

O

A

I(A)

Sφ1



The union of the half-spaces forms a parabola

∪{∞}

∪{∞}

focus

O

vertex

1 2

x = 1− y2

4

(directrix)



Find the largest circle inscribed in the left of the parabola and invert.

−1 1−3

x = 1 − y2

4 and

x =
√

4 − y2 − 1

have matching curvature

∪{∞}∪{∞}

I−→ − 1
3 1
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Conclusion

▶ SRG maps the action of an operator to the 2D plane.

▶ Algebraic operations on operators correspond to geometric
operations on SRGs.

▶ With SRG, we analyze fixed-point iterations with geometric proofs.

▶ SRG has also been used to establish convergence of the deep-learning
based “Plug-and-Play” method for image denoising (ICML 2019).
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