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We study the subgradient projection algorithm

for minimization of convex and nonsmooth func-

tions, under the presence of computational er-

rors. We show that our algorithms generate

a good approximate solution, if computational

errors are bounded from above by a small pos-

itive constant. Moreover, for a known com-

putational error, we find out what an approxi-

mate solution can be obtained and how many

iterates one needs for this.
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We study the subgradient projection algorithm

for minimization of convex and nonsmooth func-

tions and for computing the saddle points of

convex-concave functions, under the presence

of computational errors. The problem is de-

scribed by an objective function and a set of

feasible points. For this algorithm each iter-

ation consists of two steps. The first step is

a calculation of a subgradient of the objective

function while in the second one we calculate a

projection on the feasible set. In each of these

two steps there is a computational error.
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In general, these two computational errors are

different. In our recent research (see . J. Za-

slavski, Numerical optimization with compu-

tational errors, Springer, 2016 and A. J. Za-

slavski, Convex optimization with computational

errors, Springer, 2020) we showed that our al-

gorithm generates a good approximate solu-

tion, if all the computational errors are bounded

from above by a small positive constant. More-

over, if we know computational errors for the

two steps of our algorithm, we find out what

an approximate solution can be obtained and

how many iterates one needs for this. In this

talk we discuss a generalization of these re-

sults for an extension of the projected sub-

gradient method, when instead of the projec-

tion on the feasible set it is used a quasi-

nonexpansive retraction on this set. This gen-

eralization is studied in A. J. Zaslavski, The

projected subgradient algorithm in convex op-

timization, SpringerBriefs in Optimization, 2020.
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We study the subgradient algorithm for con-

strained minimization problems in Hilbert spaces

equipped with an inner product denoted by ⟨·, ·⟩
which induces a complete norm ∥ · ∥ and use

the following notation.

For every z ∈ R1 denote by ⌊z⌋ the largest

integer which does not exceed z:

⌊z⌋ = max{i ∈ R1 : i is an integer and i ≤ z}.

For every nonempty set D, every function f :

D → R1 and every nonempty set C ⊂ D we set

inf(f, C) = inf{f(x) : x ∈ C}.

Let X be a Hilbert space equipped with an

inner product denoted by ⟨·, ·⟩ which induces a

complete norm ∥ · ∥.
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For each x ∈ X and each r > 0 set

BX(x, r) = {y ∈ X : ∥x− y∥ ≤ r}

and for each x ∈ X and each nonempty set

E ⊂ X set

d(x,E) = inf{∥x− y∥ : y ∈ E}.

For each nonempty open convex set U ⊂ X

and each convex function f : U → R1, for every

x ∈ U set

∂f(x) = {l ∈ X : f(y)− f(x)

≥ ⟨l, y − x⟩ for all y ∈ U}

which is called the subdifferential of the func-

tion f at the point x.

Let C be a nonempty closed convex subset of

X and let f : X → R1 be a convex function.
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Suppose that there exist L > 0, M0 > 0 such

that

C ⊂ BX(0,M0),

|f(x)−f(y)| ≤ L∥x−y∥ for all x, y ∈ BX(0,M0+2).

It is not difficult to see that for each x ∈
BX(0,M0 +1),

∅ ̸= ∂f(x) ⊂ BX(0, L).

It is well-know that for every nonempty closed

convex set D ⊂ X and every x ∈ X there is a

unique point PD(x) ∈ D satisfying

∥x− PD(x)∥ = inf{∥x− y∥ : y ∈ D}.

We consider the minimization problem

f(z) → min, z ∈ C.
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Suppose that {αk}∞k=0 ⊂ (0,∞). Let us de-

scribe our algorithm.

Subgradient projection algorithm

Initialization: select an arbitrary

x0 ∈ BX(0,M0 +1).

Iterative step: given a current iteration vec-

tor xt ∈ U calculate ξt ∈ ∂f(xt) and the next

iteration vector xt+1 = PC(xt − αtξt).

In [1] we study this algorithm under the pres-

ence of computational errors. Namely, in [1]

we suppose that δ ∈ (0,1] is a computational

error produced by our computer system, and

study the following algorithm.
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Subgradient projection algorithm with com-

putational errors

Initialization: select an arbitrary

x0 ∈ BX(0,M0 +1).

Iterative step: given a current iteration vec-
tor xt ∈ BX(0,M0 + 1) calculate ξt ∈ ∂f(xt) +
BX(0, δ) and the next iteration vector xt+1 ∈ U

such that ∥xt+1 − PC(xt − atξt)∥ ≤ δ.

In [2] we consider more complicated, but more
realistic, version of this algorithm. Clearly, for
the algorithm each iteration consists of two
steps. The first step is a calculation of a sub-
gradient of the objective function f while in
the second one we calculate a projection on
the set C. In each of these two steps there is
a computational error produced by our com-
puter system. In general, these two computa-
tional errors are different.
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This fact is taken into account in the following
projection algorithm studied in Chapter 2 of
[2].

Suppose that {αk}∞k=0 ⊂ (0,∞) and δf , δC ∈
(0,1].

Initialization: select an arbitrary

x0 ∈ BX(0,M0 +1).

Iterative step: given a current iteration vec-
tor xt ∈ BX(0,M0 + 1) calculate ξt ∈ ∂f(xt) +
BX(0, δf) and the next iteration vector xt+1 ∈
U such that ∥xt+1 − PC(xt − αtξt)∥ ≤ δC.

Note that in practice for some problems the
set C is simple but the function f is compli-
cated. In this case δC is essentially smaller than
δf . On the other hand, there are cases when
f is simple but the set C is complicated and
therefore δf is much smaller than δC.
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In our analysis of the behaviour of the algo-

rithm in [1,2] properties of the projection oper-

ator PC play an important role. In [3] we obtain

generalizations of the results obtained in [1,2]

for the subgradient methods in the case when

the set C is not necessarily convex and the pro-

jection operator PC is replaced by a mapping

P : X → C which satisfies

Px = x for all x ∈ C, (1.1)

∥Px− z∥ ≤ ∥x− z∥ for all z ∈ C and all x ∈ X.

(1.2)

In other words, P is a quasi-nonexpansive re-

traction on C. Note that there are many map-

pings P : X → C satisfying (1.1) and (1.2).

10



Indeed, in S. Reich and A. J. Zaslavski, Gener-
icity in nonlinear analysis, Developments in Math-
ematics, Springer, 2014 we consider a space
of mappings P : X → X satisfying (1.1) and
(1.2), which is equipped with a natural com-
plete metric, and show that for a generic (typ-
ical) mapping from the space its powers con-
verge to a mapping which also satisfies (1.1)
and (1.2) and such that its image is C.

Note that the generalizations considered in this
book have, besides their obvious mathematical
interest, also a significant practical meaning.
Usually, the projection operator PC : X → C

can be calculated when C is a simple set like a
linear subspace, a half-space or a simplex. In
practice, C is an intersection of simple sets Ci,
i = 1, . . . , q, where q is a large natural num-
ber. The calculation of PC is not possible in
principle. Instead of it it is possible to cal-
culate the product PCq · · ·PC1

and its powers
(PCq · · ·PC1

)m, m = 1,2, . . . .
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It is well-known (see, for example, A. J. Za-

slavski, Approximate solutions of common fixed

point problems, Springer Optimization and Its

Applications, Springer, Cham, 2016) that un-

der certain regularity conditions on Ci, i =

1, . . . , q the powers (PCq · · ·PC1
)m converges as

m → ∞ to a mapping P : X → C which satis-

fies (1.1) and (1.2). Thus in practice we can-

not calculate the projection operator PC but

only a mapping P : X → C satisfying (1.1)

and (1.2) or, more exactly, its approximations.

This shows that the results of [3] are indeed

important from the point of view of practice.

Optimization problems on bounded sets

Let (X, ⟨·, ·⟩) be a Hilbert space with a inner

product ⟨·, ·⟩ which induces a complete norm

∥ · ∥.
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Let C be a closed nonempty subset of the

space X and U be an open convex subset of

X such that C ⊂ U. Suppose that L,M > 0,

C ⊂ BX(0,M) and that a convex function f :

U → R1 satisfies

|f(u1)− f(u2)| ≤ L∥u1 − u2∥ for all u1, u2 ∈ U.

For each point x ∈ U and each positive number

ϵ let

∂f(x) = {l ∈ X : f(y)− f(x)

≥ ⟨l, y − x⟩ for all y ∈ U}

and let

∂ϵf(x) = {l ∈ X : f(y)− f(x)

≥ ⟨l, y − x⟩ − ϵ for all y ∈ U}.
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Denote by M the set of all mappings P : X →
C such that

Pz = z for all z ∈ C,

∥Px− z∥ ≤ ∥x− z∥ for all x ∈ X and all z ∈ C.

Define

inf(f, C) = inf{f(z) : z ∈ C}.

It is clear that inf(f, C) is finite.

Set

Cmin = {x ∈ C : f(x) = inf(f, C)}.

For all P ∈ M set P0x = x, x ∈ X. We assume

that

Cmin ̸= ∅.

Clearly, for each x ∈ U ,

∂f(x) ⊂ BX(0, L).
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Theorem 1 Assume that δf , δC ∈ (0,1], T ≥ 1

is an integer, {αt}T−1
t=0 ⊂ (0,1],

{Pi}T−1
i=0 ⊂ M,

{xi}Ti=0 ⊂ U, {ξi}T−1
i=0 ⊂ X,

∥x0∥ ≤ M +1,

and that for i = 0, . . . , T − 1,

BX(ξi, δf) ∩ ∂f(xi) ̸= ∅,

∥xi+1 − Pi(xi − αiξi)∥ ≤ δC.
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Then

min{f(xt) : t = 0, . . . , T − 1} − inf(f, C),

f((
T−1∑
i=0

αi)
−1

T−1∑
t=0

αtxt)− inf(f, C)

≤ (
T−1∑
j=0

αj)
−1

T−1∑
t=0

αt(f(xt)− inf(f, C))

≤ 2−1(2M +1)2(
T−1∑
t=0

αt)
−1

+2−1L2(
T−1∑
t=0

α2
t )(

T−1∑
t=0

αt)
−1

+TδC(
T−1∑
t=0

αt)
−1(2M+L+3)+δf(2M+L+2).

(1)
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Theorem 2 Assume that r > 0,

BX(z,2r) ⊂ U for all z ∈ C,

∆ > 0, δf , δC ∈ (0,1], δC ≤ r, T ≥ 1 is an

integer, {αt}T−1
t=0 ⊂ (0,1],

{Pi}T−1
i=0 ⊂ M,

{xi}Ti=0 ⊂ U, {ξi}T−1
i=0 ⊂ X,

∥x0∥ ≤ M +1,

BX(x0, r) ⊂ U,

and that for i = 0, . . . , T − 1,

BX(ξi, δf) ∩ ∂∆f(xi) ̸= ∅,

∥xi+1 − Pi(xi − αiξi)∥ ≤ δC.
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Then

min{f(xt) : t = 0, . . . , T − 1} − inf(f, C),

f((
T−1∑
i=0

αi)
−1

T−1∑
t=0

αtxt)− inf(f, C)

≤ (
T−1∑
j=0

αj)
−1

T−1∑
t=0

αt(f(xt)− inf(f, C))

≤ 2−1(2M +1)2(
T−1∑
t=0

αt)
−1 +∆

+2−1(L+∆r−1)2(
T−1∑
t=0

α2
t )(

T−1∑
t=0

αt)
−1

+TδC(
T−1∑
t=0

αt)
−1(2M + L+3+∆r−1)

+δf(2M + L+2+∆r−1). (2)
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Note that (1) is a particular case of (2) with

∆ = 0.

Let T ≥ 1 be an integer and A > 0 be given.

We are interested in an optimal choice of αt,

t = 0, . . . , T − 1 satisfying
∑T−1

t=0 αt = A which

minimizes the right-hand side of (2). It was

shown in [1] that αt = α = T−1A, t = 0, . . . , T−
1. In this case the right-hand side of (2) is

2−1(2M +1)2T−1α−1 +∆

+2−1(L+∆r−1)2α

+δCα
−1(2M + L+3+∆r−1)

+δf(2M + L+2+∆r−1).

19



Now we can make the best choice of the step-

size α > 0. Since T can be arbitrary large we

need to minimize the function

δCα
−1(2M + L+3+∆r−1)

+2−1(L+∆r−1)2α, α > 0

which has a minimizer

α = (L+∆r−1)−1(2δC(2M + L+3

+∆r−1))1/2.

With this choice of α the right-hand side of

(2) is
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2−1(2M +1)2T−1(L+∆r−1)(2δC(2M

+L+3+∆r−1))1/2 +∆

+(L+∆r−1)(2−1δC(2M + L+3+∆r−1))1/2

+δf(2M + L+2+∆r−1)

+2−1(L+∆r−1)(2δC(2M

+L+3+∆r−1))1/2.

Now we should make the best choice of T . It is

clear that T should be at the same order as δ−1
C .

In this case the right-hand side of (2) does not

exceed c1δ
1/2
C + ∆ + δf(2M + L + 2 + ∆r−1),

where c1 > 0 is a constant.
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Optimization on unbounded sets

Let (X, ⟨·, ·⟩) be a Hilbert space with a inner
product ⟨·, ·⟩ which induces a complete norm
∥ · ∥.

Let C be a closed nonempty subset of the
space X, U be an open convex subset of X
such that

C ⊂ U

and f : U → R1 be a convex function which is
Lipschitz on all bounded subsets of U .

For each point x ∈ U and each positive number
ϵ let

∂f(x) = {l ∈ X : f(y)− f(x)

≥ ⟨l, y − x⟩ for all y ∈ U}

and let

∂ϵf(x) = {l ∈ X : f(y)− f(x)

≥ ⟨l, y − x⟩ − ϵ for all y ∈ U}.
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Assume that

lim
x∈U,∥x∥→∞

f(x) = ∞.

It means that for each M0 > 0 there exists

M1 > 0 such that if a point x ∈ U satisfies the

inequality ∥x∥ ≥ M1, then f(x) > M0.

Define

inf(f, C) = inf{f(z) : z ∈ C}.

Since the function f is Lipschitz on all bounded

subsets of the space X, we have that inf(f, C)

is finite.

Set

Cmin = {x ∈ C : f(x) = inf(f, C)}.

It is well-known that if the set C is convex,

then the set Cmin is nonempty. Clearly, the set

Cmin ̸= ∅ if the space X is finite-dimensional.
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We assume that

Cmin ̸= ∅.

It is clear that Cmin is a closed subset of C.

Fix

θ0 ∈ C.

Set

U0 = {x ∈ U : f(x) ≤ f(θ0) + 4}.

Clearly, there exists a number K̄ > 1 such that

U0 ⊂ BX(0, K̄).

Since the function f is Lipschitz on all bounded

subsets of U there exists a number L̄ > 1 such

that

|f(z1)− f(z2)| ≤ L̄∥z1 − z2∥

for all z1, z2 ∈ U ∩BX(0, K̄ +4).
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Denote by MC the set of all mappings P : X →
C such that ,

Pz = z for all z ∈ C,

∥Pz − x∥ ≤ ∥z − x∥ for all x ∈ C and all z ∈ X.

Theorem 3 Assume that

K1 ≥ K̄ +4, L1 ≥ L̄,

δf , δC ∈ (0,1],

|f(z1)− f(z2)| ≤ L1∥z1 − z2∥

for all z1, z2 ∈ BX(0,3K1 +2) ∩ U,

α ∈ (0, (1 + L̄)−2)

and that

δf(K̄ +3K1 +2+ L1) ≤ α,

δC(K̄ +3K1 + L1 +3) ≤ α.
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Let T ≥ 2 be an integer

{Pt}T−1
t=0 ⊂ MC,

{xt}Tt=0 ⊂ U, {ξt}T−1
t=0 ⊂ X,

∥x0∥ ≤ K1,

BX(x0, δC) ∩ C ̸= ∅

and that for t = 0, . . . , T − 1,

BX(ξt, δf) ∩ ∂f(xt) ̸= ∅,

∥xt+1 − Pt(xt − αξt)∥ ≤ δC.

Then

∥xt∥ ≤ 2K̄ +K1, t = 0, . . . , T

and
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min{f(xt) : t = 0, . . . , T − 1} − inf(f, C),

f(T−1
T−1∑
i=0

xi)− inf(f, C)

≤ T−1
T−1∑
i=0

f(xi)− inf(f, C)

≤ (2Tα)−1(K1 + K̄)2 + L2
1α

+α−1δC(K̄+3K1+L1+3)+δf(3K1+K̄+L1+2).
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Theorem 4 Assume that

K1 ≥ K̄ +4, L1 ≥ L̄, r0 ∈ (0,1],

BX(z, r0) ⊂ U, z ∈ C,

|f(z1)− f(z2)| ≤ L1∥z1 − z2∥

for all z1, z2 ∈ BX(0,3K1 +1) ∩ U,

∆ ∈ (0, r0], δf , δC ∈ (0,2−1r0],

α ∈ (0, (L̄+3)−2],

and that

δf(3K̄ +K1 +4+ L1) ≤ α,

δC(3K̄ +K1 + L1 +2) ≤ α.

Let T ≥ 2 be an integer

{Pt}T−1
t=0 ⊂ MC,

{xt}Tt=0 ⊂ U, {ξt}T−1
t=0 ⊂ X,
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∥x0∥ ≤ K1,

BX(x0, δC) ∩ C ̸= ∅

and that for i = 1, . . . , T − 1,

BX(ξt, δf) ∩ ∂∆f(xt) ̸= ∅,

∥xt+1 − Pt(xt − αξt)∥ ≤ δC.

Then

∥xt∥ ≤ 2K̄ +K1, t = 0, . . . , T

and



min{f(xt) : t = 0, . . . , T − 1} − inf(f, C),

f(T−1
T−1∑
i=0

xi)− inf(f, C)

≤ T−1
T−1∑
i=0

f(xi)− inf(f, C)

≤ (2Tα)−1(K1 + K̄)2 + (L1 +2)2α

+α−1δC(3K̄ +K1 + L1 +2)

+∆+ δf(K1 +3K̄ + L1 +4).
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Zero-sum games with two players

Let (X, ⟨·, ·⟩), (Y, ⟨·, ·⟩) be Hilbert spaces equipped

with the complete norms ∥·∥ which are induced

by their inner products. Let C be a nonempty

closed convex subset of X, D be a nonempty

closed convex subset of Y , U be an open con-

vex subset of X and V be an open convex sub-

set of Y such that

C ⊂ U, D ⊂ V

and let a function f : U × V → R1 possess the

following properties:

(i) for each v ∈ V , the function f(·, v) : U → R1

is convex;

(ii) for each u ∈ U , the function f(u, ·) : V →
R1 is concave.
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Assume that a function ϕ : R1 → [0,∞) is
bounded on all bounded sets and that positive
numbers M1,M2, L1, L2 satisfy

C ⊂ BX(0,M1),

D ⊂ BY (0,M2),

|f(u1, v)− f(u2, v)| ≤ L1∥u1 − u2∥

for all v ∈ V and all u1, u2 ∈ U,

|f(u, v1)− f(u, v2)| ≤ L2∥v1 − v2∥

for all u ∈ U and all v1, v2 ∈ V.

Let

x∗ ∈ C and y∗ ∈ D

satisfy

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗)

for each x ∈ C and each y ∈ D.

The following result was obtained in [2].
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Prop 1 Let T be a natural number, δC, δD ∈
(0,1], {at}Tt=0 ⊂ (0,∞) and let {bt,1}Tt=0, {bt,2}Tt=0 ⊂
(0,∞). Assume that {xt}T+1

t=0 ⊂ U , {yt}T+1
t=0 ⊂

V , for each t ∈ {0, . . . , T +1},

BX(xt, δC) ∩ C ̸= ∅,

BY (yt, δD) ∩D ̸= ∅,

for each z ∈ C and each t ∈ {0, . . . , T},

at(f(xt, yt)− f(z, yt))

≤ ϕ(∥z − xt∥)− ϕ(∥z − xt+1∥) + bt,1

and that for each v ∈ D and each t ∈ {0, . . . , T},

at(f(xt, v)− f(xt, yt))

≤ ϕ(∥v − yt∥)− ϕ(∥v − yt+1∥) + bt,2.
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Let

x̂T = (
T∑

i=0

ai)
−1

T∑
t=0

atxt,

ŷT = (
T∑

i=0

ai)
−1

T∑
t=0

atyt.

Then BX(x̂T , δC) ∩ C ̸= ∅,

BY (ŷT , δD) ∩D ̸= ∅,

|(
T∑

t=0

at)
−1

T∑
t=0

atf(xt, yt)− f(x∗, y∗)|

≤ (
T∑

t=0

at)
−1max{

T∑
t=0

bt,1,
T∑

t=0

bt,2}

+max{L1δC, L2δD}

+(
T∑

t=0

at)
−1 sup{ϕ(s) :

s ∈ [0,max{2M1, 2M2}+1]},
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|f(x̂T , ŷT )− (
T∑

t=0

at)
−1

T∑
t=0

atf(xt, yt)|

≤ (
T∑

t=0

at)
−1 sup{ϕ(s) : s ∈ [0,max{2M1, 2M2}+1]}

+(
T∑

t=0

at)
−1max{

T∑
t=0

bt,1,
T∑

t=0

bt,2}

+max{L1δC, L2δD}

and for each z ∈ C and each v ∈ D,

f(z, ŷT ) ≥ f(x̂T , ŷT )

−2(
T∑

t=0

at)
−1 sup{ϕ(s) : s ∈ [0,max{2M1, 2M2}+1]}

−2(
T∑

t=0

at)
−1max{

T∑
t=0

bt,1,
T∑

t=0

bt,2}

−max{L1δC, L2δD},
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f(x̂T , v) ≤ f(x̂T , ŷT )

+2(
T∑

t=0

at)
−1 sup{ϕ(s) : s ∈ [0,max{2M1, 2M2}+1]}

+2(
T∑

t=0

at)
−1max{

T∑
t=0

bt,1,
T∑

t=0

bt,2}

+max{L1δC, L2δD}.
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Zero-sum games on bounded sets

Let (X, ⟨·, ·⟩), (Y, ⟨·, ·⟩) be Hilbert spaces equipped

with the complete norms ∥·∥ which are induced

by their inner products. Let C be a nonempty

closed convex subset of X, D be a nonempty

closed convex subset of Y , U be an open con-

vex subset of X and V be an open convex sub-

set of Y such that

C ⊂ U, D ⊂ V.

For each concave function g : V → R1, each

x ∈ V and each ϵ > 0, set

∂g(x) = {l ∈ Y : ⟨l, y − x⟩

≥ g(y)− g(x) for all y ∈ V },

∂ϵg(x) = {l ∈ Y : ⟨l, y − x⟩+ ϵ

≥ g(y)− g(x) for all y ∈ V }.
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Suppose that there exist L1, L2,M1,M2 > 0

such that C ⊂ BX(0,M1), D ⊂ BY (0,M2), a

function f : U × V → R1 possesses the follow-

ing properties:

(i) for each v ∈ V , the function f(·, v) : U → R1

is convex;

(ii) for each u ∈ U , the function f(u, ·) : V →
R1 is concave,

for each v ∈ V ,

|f(u1, v)− f(u2, v)| ≤ L1∥u1 − u2∥

for all u1, u2 ∈ U

and that for each u ∈ U ,

|f(u, v1)− f(u, v2)| ≤ L2∥v1 − v2∥

for all v1, v2 ∈ V.
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For each (ξ, η) ∈ U × V and each ϵ > 0, set

∂xf(ξ, η) = {l ∈ X :

f(y, η)− f(ξ, η) ≥ ⟨l, y − ξ⟩

for all y ∈ U},

∂yf(ξ, η) = {l ∈ Y :

⟨l, y − η⟩ ≥ f(ξ, y)− f(ξ, η)

for all y ∈ V },

∂x,ϵf(ξ, η) = {l ∈ X :

f(y, η)− f(ξ, η) + ϵ ≥ ⟨l, y − ξ⟩

for all y ∈ U},

∂y,ϵf(ξ, η) = {l ∈ Y :

⟨l, y − η⟩+ ϵ ≥ f(ξ, y)− f(ξ, η)

for all y ∈ V }.
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In view of properties (i) and (ii), for each ξ ∈ U

and each η ∈ V ,

∅ ̸= ∂xf(ξ, η) ⊂ BX(0, L1),

∅ ̸= ∂yf(ξ, η) ⊂ BY (0, L2).

Let

x∗ ∈ C and y∗ ∈ D

satisfy

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗)

for each x ∈ C and each y ∈ D.

Denote by MU the set of all mappings P : X →
X such that

Px = x, x ∈ C,

∥Px− z∥ ≤ ∥x− z∥ for all x ∈ X and all z ∈ C
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and by MV the set of all mappings P : Y → Y

such that

Py = y, y ∈ D,

∥Py − z∥ ≤ ∥y − z∥ for all y ∈ Y and all z ∈ C.

Let δf,1, δf,2, δC, δD ∈ (0,1] and {αk}∞k=0 ⊂ (0,∞).

Let us describe our algorithm.
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Subgradient projection algorithm for zero-

sum games

Initialization: select arbitrary x0 ∈ U and y0 ∈
V .

Iterative step: given current iteration vectors

xt ∈ U and yt ∈ V calculate

ξt ∈ ∂xf(xt, yt) +BX(0, δf,1),

ηt ∈ ∂yf(xt, yt) +BY (0, δf,2)

and the next pair of iteration vectors xt+1 ∈ U ,

yt+1 ∈ V such that

∥xt+1 − Pt(xt − αtξt)∥ ≤ δC,

∥yt+1 −Qt(yt + αtηt)∥ ≤ δD,

where Pt ∈ MU , Qt ∈ MV .

41



Theorem 5 Let δf,1, δf,2, δC, δD ∈ (0,1], {αk}∞k=0 ⊂
(0,∞),

{Pt}∞t=0 ⊂ MU , Pt(X) = C, t = 0,1, . . . ,

{Qt}∞t=0 ⊂ MV , Qt(Y ) = D, t = 0,1, . . . .

Assume that {xt}∞t=0 ⊂ U , {yt}∞t=0 ⊂ V , {ξt}∞t=0 ⊂
X, {ηt}∞t=0 ⊂ Y ,

BX(x0, δC) ∩ C ̸= ∅, BY (y0, δD) ∩D ̸= ∅

and that for each integer t ≥ 0,

ξt ∈ ∂xf(xt, yt) +BX(0, δf,1),

ηt ∈ ∂yf(xt, yt) +BY (0, δf,2),

∥xt+1 − Pt(xt − αtξt)∥ ≤ δC

and

∥yt+1 −Qt(yt + αtηt)∥ ≤ δD.
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For each integer t ≥ 0 set

bt,1 = α2
t L

2
1+δC(2M1+L1+3)+αtδf,1(2M1+L1+2),

bt,2 = α2
t L

2
2+δD(2M2+L2+3)+αtδf,2(2M2+L2+2).

Let for each natural number T ,

x̂T = (
T∑

i=0

αt)
−1

T∑
t=0

αtxt,

ŷT = (
T∑

i=0

αt)
−1

T∑
t=0

αtyt.

Then for each natural number T ,

BX(x̂T , δC) ∩ C ̸= ∅, BY (ŷT , δD) ∩D ̸= ∅,
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|(
T∑

t=0

αt)
−1

T∑
t=0

αtf(xt, yt)− f(x∗, y∗)|

≤ (
T∑

t=0

αt)
−1max{

T∑
t=0

bt,1,

T∑
t=0

bt,2}+max{L1δC, L2δD}

+(2
T∑

t=0

αt)
−1max{(2M1, 2M2}+1)2,

44



|f(x̂T , ŷT )− (
T∑

t=0

αt)
−1

T∑
t=0

αtf(xt, yt)|

≤ (2
T∑

t=0

αt)
−1(max{2M1,2M2}+1)2

+max{L1δC, L2δD}

+(
T∑

t=0

αt)
−1max{

T∑
t=0

bt,1,
T∑

t=0

bt,2}
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and for each z ∈ C and each v ∈ D,

f(z, ŷT ) ≥ f(x̂T , ŷT )

−(
T∑

t=0

αt)
−1(max{2M1,2M2}+1)2

−max{L1δC, L2δD}

−2(
T∑

t=0

αt)
−1max{

T∑
t=0

bt,1,
T∑

t=0

bt,2}

f(x̂T , v) ≤ f(x̂T , ŷT )

+(
T∑

t=0

αt)
−1(max{2M1,2M2}+1)2

+max{L1δC, L2δD}

+2(
T∑

t=0

αt)
−1max{

T∑
t=0

bt,1,
T∑

t=0

bt,2}.

46



Theorem 6 Let r1, r2 > 0,

BX(z,2r1) ⊂ U for all z ∈ C,

BY (u,2r2) ⊂ V for all u ∈ D,

∆1,∆2 > 0, δf,1, δf,2, δC, δD ∈ (0,1],

δC ≤ r1, δD ≤ r2,

and {αt}∞k=0 ⊂ (0,1],

{Pt}∞t=0 ⊂ MU , {Qt}∞t=0 ⊂ MV ,

Pt(X) = C, t = 0,1, . . . , Qt(Y ) = D, t = 0,1, . . . .

Assume that {xt}∞t=0 ⊂ U , {yt}∞t=0 ⊂ V , {ξt}∞t=0 ⊂
X, {ηt}∞t=0 ⊂ Y ,

BX(x0, δC) ∩ C ̸= ∅, BY (y0, δD) ∩D ̸= ∅
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and that for each integer t ≥ 0,

BX(ξt, δf,1) ∩ ∂x,∆1
f(xt, yt) ̸= ∅,

BY (ηt, δf,2) ∩ ∂y,∆2
f(xt, yt) ̸= ∅,

∥xt+1 − Pt(xt − atξt)∥ ≤ δC

and

∥yt+1 −Qt(yt + atηt)∥ ≤ δD.
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For each integer t ≥ 0 set

bt,1 = αt∆1 +2−1α2
t (L1 +∆1r

−1
1 )

+δC(2M1 + L1 +3+∆1r
−1
1 )

+αtδf,1(2M1 + L1 +2+∆1r
−1
1 ),

bt,2 = αt∆2 +2−1α2
t (L2 +∆2r

−1
2 )

+δD(2M2 + L2 +3+∆2r
−1
2 )

+αtδf,2(2M2 + L2 +2+∆2r
−1
2 ).

Let for each natural number T ,

x̂T = (
T∑

i=0

αt)
−1

T∑
t=0

αtxt,

ŷT = (
T∑

i=0

αt)
−1

T∑
t=0

αtyt.
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Then for each natural number T ,

BX(x̂T , δC) ∩ C ̸= ∅, BY (ŷT , δD) ∩D ̸= ∅,

|(
T∑

t=0

αt)
−1

T∑
t=0

αtf(xt, yt)− f(x∗, y∗)|

≤ (
T∑

t=0

αt)
−1max{

T∑
t=0

bt,1,

T∑
t=0

bt,2}+max{L1δC, L2δD}

+(2
T∑

t=0

αt)
−1max{(2M1, 2M2}+1)2,
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|f(x̂T , ŷT )− (
T∑

t=0

αt)
−1

T∑
t=0

αtf(xt, yt)|

≤ (2
T∑

t=0

αt)
−1(max{2M1,2M2}+1)2

+max{L1δC, L2δD}

+(
T∑

t=0

αt)
−1max{

T∑
t=0

bt,1,
T∑

t=0

bt,2}

and for each z ∈ C and each v ∈ D,

f(z, ŷT ) ≥ f(x̂T , ŷT )

−(
T∑

t=0

αt)
−1(max{2M1,2M2}+1)2

−max{L1δC, L2δD}

−2(
T∑

t=0

αt)
−1max{

T∑
t=0

bt,1,
T∑

t=0

bt,2},
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f(x̂T , v) ≤ f(x̂T , ŷT )

+(
T∑

t=0

αt)
−1(max{2M1,2M2}+1)2

+max{L1δC, L2δD}

+2(
T∑

t=0

αt)
−1max{

T∑
t=0

bt,1,
T∑

t=0

bt,2}.

We are interested in the optimal choice of αt,

t = 0,1, . . . , T . Let T be a natural number

and AT =
∑T

t=0αt be given. In order to make

the best choice of αt, t = 0, . . . , T , we need to

minimize the function
∑T

t=0α
2
t on the set

{α = (α0, . . . , αT ) ∈ RT+1 : αi ≥ 0,

i = 0, . . . , T,
T∑

i=0

αi = AT}.
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This function has a unique minimizer

αi = (T +1)−1AT , i = 0, . . . , T.

Let T be a natural number and αt = α for all

t = 0, . . . , T . Now we will find the best α > 0.

In order to meet this goal we need to choose

a which is a minimizer of the function

((T +1)α)−1(max{2M1,2M2}+1)2

+2α−1(T +1)−1max{
T∑

t=0

bt,1,
T∑

t=0

bt,2}
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= ((T +1)α)−1(max{2M1,2M2}+1)2

+2α−1(T +1)−1max{(T +1)(α∆1

+δC(2M1 +3+ L1 +∆1r
−1
1 ))

+2−1α2(L1 +∆1r
−1
1 )

+αδf,1(2M1 +2+ L1 +∆1r
−1
1 ),

(T +1)(α∆2 + δD(2M2 +3+ L2 +∆2r
−1
2 ))

+2−1α2(L2+∆2r
−1
2 )+αδf,2(2M2+2+L2+∆2r

−1
2 )}

= ((T +1)α)−1(max{2M1,2M2}+1)2

+2max{∆1 + α−1δC(2M1 +3+ L1 +∆1r
−1
1 )

+2−1α(L1+∆1r
−1
1 )+δf,1(2M1+2+L1+∆1r

−1
1 ),

∆2 + α−1δD(2M2 +3+ L2 +∆2r
−1
2 )

+2−1α(L2+∆2r
−1
2 )+δf,2(2M2+2+L2+∆2r

−1
2 )}
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≤ ((T +1)α)−1(max{2M1,2M2}+1)2

+2max{∆1,∆2}

+2max{δf,1(2M1 +2+ L1 +∆1r
−1
1 ),

δf,2(2M2 +2+ L2 +∆2r
−1
2 )}

+2α−1max{δC(2M1 +3+ L1 +∆1r
−1
1 ),

δD(2M2 +3+ L2 +∆2r
−1
2 )}

+αmax{L1 +∆1r
−1
1 , L2 +∆2r

−1
2 }.

55



Since T can be arbitrary large, we need to find

a minimizer of the function

ϕ(α) := 2α−1max{δC(2M1+3+L1+∆1r
−1
1 ),

δD(2M2 +3+ L2 +∆2r
−1
2 )}

+αmax{L1 +∆1r
−1
1 , L2 +∆2r

−1
2 }, α > 0.

This function has a minimizer

α∗ = 21/2max{δC(2M1 +3+ L1 +∆1r
−1
1 ),

δD(2M2 +3+ L2 +∆2r
−1
2 )}1/2

×max{L1 +∆1r
−1
1 , L2 +∆2r

−1
2 }−1/2
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and

ϕ(α∗) = 23/2max{δC(2M1 +3+ L1 +∆1r
−1
1 ),

δD(2M2 +3+ L2 +∆2r
−1
2 )}1/2

×max{L1 +∆1r
−1
1 , L2 +∆2r

−1
2 }1/2.

The appropriate choice of T , it should be at

the same order as max{δC, δD}−1.
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