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Gradient descent method

Consider the unconstrained optimization problem:

min (x), (1)

where f : R” — R is a convex function.

Gradient descent (GD) algorithm: Starting an initial point xo € R”,
GD iterates the following update:

X1 = Xk — ok VF(Xk).
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Convergence

e |f fis L—smooth (i.e., Vfis L—Lipschitz for L > 0), and if step
size is small enough («, < 2/L), then the sequence {xx}
converges to a stationary point (if it exists) of f. As f is convex, it
converges to the global minimizer x* of f.

e Convergence rate: O(1/k), i.e., for some ¢ > 0,
f(xk) — f(x*) < c/k.

¢ |f f is not differentiable, Vf(xx) is replaced by a sub-gradient
Xi € Of(Xk).
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A little history

Gradient descent is generally attributed to Baron Augustin-Louis
Cauchy (1789-1857), who first suggested it in 1847, but its
convergence properties for non-linear optimization problems were
first studied by Haskell Curry in 1944.

References.

e A. Cauchy. Méthode générale pour la résolution des systemes
d’équations simultanées. C.R. Acad. Sci. Paris, 25: 536-538,
1847.

¢ H.B. Curry. The method of steepest descent for non-linear
minimization problems. Quart. Appl. Math. 2(3): 258-261, 1944.

¢ C. Lemaréchal. Cauchy and the Gradient Method. Doc. Math.
Extra., 251-254, 2012.

Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order o(1/ k2) Huynh Van Ngai



An overview- gradient descent and proximal point methods
[e]e]e] Yololele}

Gradient projection (GP) method

Consider the constrained optimization problem:

min f(x)
xc CCR" (2)

where C C R" is a closed convex subset, and f is continuously
differentiable.
In the constrained optimality theorem, if X € C is a local minimum of
(2), then

(VIf(x),x —x) >0, V¥xeC. (3)
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The (GP) method consists of the iteration:
Xk41 = PC[Xk — Oéka(Xk)]. (4)

Pc(2) : the (unique) projection of z € R" on C.

The (GP) algorithm has been proposed by Goldstein in 1964. The
same method was independently proposed by Levitin and Polyak one
year later. This method is nowadays referred as
Goldstein-Levitin-Polyak gradient projection method.

Refs.

¢ A. Goldstein. Convex programming in Hilbert space. Bull. Amer.
Math. Soc., 70(5), 709-710, 1964.

e E. S. Levitin and B. T. Polyak. Constrained minimization
problems. USSR Comput. Math. Math. Phys. 6, 1-50,1966
(English transl. of paper in Zh. Vychisl. Mat. i Mat. Fiz., 6,
787-823, 1965).
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Proximal point algorithm (PPA)

Consider the optimization problem (1), where f : R” — RU {+oc} is a
proper convex function.
The proximal point algorithm is the following iteration:

1
Xk+1 = Argmin {f(X) + E”X —x|?: xe R”} := prox,, /(Xk)-
K

(PPA) is related closely to the celebrated Tikhonov Regularization.
Historical References
¢ B. Martinet. Régularisation d’inéquations variationelles par
approximations successives. Revue Francais d’Informatque et
Recherche Opérationelle, 1970.
¢ T. R. Rockafellar. Monotone operators and the proximal point
algorithm, SIAM Journal on Control and Optimization, 14(5),
877-898, 1976.
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Composite convex optimization Models

min F(x) := f(x) + &(x) (5)

XER"

e f: convex and smooth

® ¢ : convex (may be not differentiable)
Examples

® /i—regularization optimization

in f(x X
min £(x) + |Ix]l1

* Nuclear norm regularization optimization

min f(X) + | X[l
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Proximal Gradient Algorithm (PGA)

Xk1 = prOXakqg,(Xk — Oszf(Xk)), k= 07 1 s eeey
where prox,, 4 (X) is the proximal operator:

1
prox,, ) = Argmin {#(y) + |y - x(*+ y <R
k

¢ alternating between gradient updates on f and proximal
minimization on ¢

¢ useful when prox, is inexpensive

Refs.

¢ P. Lions and B. Mercier, Splitting algorithms for the sum of two
nonlinear operators, SIAM J. on Numerical Analysis, 16,
964-979, 1979.

¢ S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004.
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Nesterov’s accelerated gradient algorithm (NAGA)

Consider the unconstrained convex optimization problem: mgl f(x) (f
xeR"

is convex and L—smooth).
(NAGA) which was proposed by Nesterov in 1983, iterates the
following update scheme:

]
® Xii1 =Yk — sz(Yk)

® Vit = (1 — Yket1) Xk + Yk Xk

o« _ 1N
Tk Mot
14+, /1+4)2_
° )\k:—“

2
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(NAGA) has convergence rate O(1/k?)

Theorem

If f is convex and L—smooth, and it exists a minimizer x* of f, then

the sequence {f(xx)} produced by (NAGA) converges to the
minimum value f(x*) with rate O(1/k?), namely,

2Lxo — x*|?

Fxi) = f(x7) < P

Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order o(1/ kz)

Huynh Van Ngai



Nesterov’s accelerated gradient descent and some extensions
00@000

Fast iterative shrinkage-thresholding algorithm
(FISTA)-Beck & Teboulle(2009)

Consider again the composite convex optimization (5):

;2}1& F(x) = f(x) + 2(x),

where f is L—smooth on R", and & is |.s.c convex, possibly
non-differentiable.
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(FISTA) Algorithm

® Xir1 = ProxX,—1g(yk — L'V (yk)).
® Vit = (1 — Yk1) Xkt + Y6 Xk,

o 17N
Yk VTR

14+, /1+4)2_
°)\k:—k1-

2

Convergence result:

F(xx) — F(x*)=0 (k12> .
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Forward-Backward Algorithm- Attouch & Peypouquet
(2016)

B k—1
Yk = Xk + m(xk — Xk—1), (6)
X1 = ProxX, g (Y — VF(¥k)),

where a >3 and xk < L.

Convergence: (Attouch& Peypouquet-(SIOPT 2016)) If f is L—smooth
on the whole space then

* F(x) — F(x*) = o(1/k);

* the whole sequence (xx) converges (weakly, when the space

under consideration is a Hilbert space of infinite dimension) to a
minimizer x*.
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References
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Problem

Consider again the composition convex optimization problem of the
form
min{F(x) := f(x) + ®(x): x € R"}. (7)

In what follows we make use of the following assumptions:

(A1) The optimal solution set of problem (7) is nonempty.

(A2) The function @ : R” — R U {+00} is proper lower semicontinuous
convex; the function f : R" — R is a differentiable convex function
such that its gradient V£ is L—Lipschitz (for some L > 0) on
dom .
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Lower support functions

Definition

For a convex function @ : R” — R U {+o00} and a point z € R". A
convex function ¥, := V¥, 4 : R” — RU {+o0c} is called a lower
support function to @ at z if ¥V, < & and V,(z) = &(2).

Obviously, the usual two lower support functions of a convex function
@, at a point z : the first is itself @, and the second is the linear
function

V,(x):=d(2)+ (z*,x — z), x € R",

where z* € 9&(z), when & is subdifferentiable at z.
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uniformly convex functions

A function ¢ : R” — R U {+cc} is called p—uniformly convex with
parameter u, for some p > 0, p > 2, or called (u, p)—uniformly
convex if for all x,y € R", A € [0,1] one has

POX (1= 20y) < Xp(x) +(1 = Nely) = LM =N x =y P,
When p = 2, the function ¢ is called strongly convex (with parameter
u.) Note that if ¢ is (i, p)—uniformly convex, then for all x, y € R”, all

x* € dp(x), one has

X",y = X) < p(y) — p(x) - guy—xup. (8)
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Generalized accelerated proximal gradient algorithm
(GAPGA)

Parameters.

e Given a p—strongly convex function h: R” — R (p > 0) which
attains minimum at yp € R" :

hly) = h(yo) + 5 lly = oll®, vy € " ©)

e parameters C,u > 0,0 < k <1/L,
® a sequence of positive reals {ax}; sequences of nonnegative
reals {8}, and {x} as in Section 2. Set

K K
Ac=> ok Bc=Y_ B,
i=0 i=0

and also assume that A, > B, for all k € N, and denote
A_1=B_;=0.

Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order o(1/ k2) Huynh Van Ngai



Algorithm 1(GAPGA1)

Initialization: Initial data: y° asin (9). Set k = 0.
Repeat: Fork=0,1,...,
1. Find

. 1
e = argmin {0(y) + (V.Y =) + 5 ly = Wl s y <R}

= prox,.¢ (Yk — £V F(¥k)) -
(10)

2. Find

z = argmin,pn{Ch(x —|—Za,[fy, (V) X — ¥i) 4+ V(X)

amnllx — yil? |+ i) + (V7040 e

$0(3) + ol — eI}
(1)

Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order o(1/ kz) Huynh Van Ngai



Generalized accelerat
00000®0000000

Algorithm 1-continued

3. Set V,, is a support function to ¢ at z, such that

mm{Ch —i—Za,[f(y, (VI(yi), x — yi)

i=0
+W5(x) + EM%‘HX — yill"]
’
+ou[f(yk) + <Vf(}’k) X — Yk) + P(x) + §Mk||x — Y1}

= min{Ch(x +Za,[fy, (VEY), X — ¥

XERN

]
+W,,(x) + Emllx — yill*]}

4. Set

Qk+1
Tk ‘= B’ Vi1 =7'ka—|-(1 —Tk)Xk.

Ax+1 — By
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Remarks

* In Nesterov’s original accelerated schemes, 7 :=

. which is

a particular case of Algorithm 1 with 8, := 0, k € N.

® In Step 3 of Algorithm 1, we can take ¥, = &. If we set ¥, = &,
for all k € N, Algorithm 1 gives a generalized variant of
Nesterov’s accelerated dual averaging algorithm.

® An another way to choose WV, is as follows. As in Step 2, zx is a
minimizer of the convex function in the right hand of (11), then
there is z; € 0&(zx) such that

k—1
0€ Coh(zk)+ > ail V() + 0V (2)]
- K (13)
+a[VH(yi) + ZE + 1Y ez — vi).
i=0

Then the support function
Vo, (X) = (z, x — zk) + P(2k), x €R", (14)
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Remarks-continued

e When h(x) := %Hx — yll?, and for all k € N, the support function
Vv, is defined by (14) for all k € N, then

1
Zkiq4 = Prox__ o W ;
ka1 =P Zrerd [C+Mak+17k+1 k+1]
Wii1 := (C + pouy) 2 — poucyk Y + k1 ks 1 Yt — et V(i)
(15)
¢ In particular, when p = 0, the sequence {z} is defined
recurrently by
[0}
Z41 = ProXews [Zk - %Vf(}/kﬂ)} : (16)
This is exactly the accelerated scheme of the proximal gradient

methods.
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Convergence analysis

Define the estimate function:

Fi(x) = +Za,[f(y, (VH). X~ i)+ V200 + uullx — yil?)

Fanlf(n) + <w(yk),x—yk>+¢(x>+;mknx—ykuzl, xR
(17)
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The following theorem gives an estimate for function values
f(xx) + ¢(xx), and it is crucial to derive the subsequent convergence
rates.

Theorem

Let {xx} and {yx} be sequences generated by Algorithm 1. Suppose
that k < 1/L and the sequences {«}, {Bx} and {~x} satisfy the
condition

k—1
<Cp + uZa,-*y,-) (Ax — Bx_1) > a2 /k, forallk e N. (18)
i=0

Then one has for all k € N,

k

> Bilf(x) + P(3)] + (Ax — Bi)[F(Xk) + B(xi)]

: 1 k (19)
+5(1/5 = L)Y (A = Biy) X = yill* < min Fi(x).

. XERN
i=0
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Theorem-continued

Moreover, if f is u—strong convex, then (19) holds if v« =1, k € N,
and the sequences {«}, {8k} verifying the condition

k—1
(Cp + uZa;) (Ax — Bk_1) > a4(x~" — ), forallk € N. (20)
i=0
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Convergence 1

Theorem

In Algorithm 1, pick ax = k; Bx = k/2; 1 =0, and C, x > 0 such that
Cp > k' > L. Then condition (18) is satisfied, and therefore for a
minimizer x* of problem (7), one has

LTI 1 K2[F(x) + D(x;) — f(x*) = o(x*)] =0,  (21)

where [k/2] stands for the integer part of k /2. Therefore if
{f(xx) + ®(xx)} is a decreasing sequence, then

Jim K2[F(x) + @(xi) — f(x*) = &(x")] = 0. (22)
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Convergence 2- Uniformly convex case

Let f is (1, p)—uniformly convex withp > 2, > 0. Let0 < x < L1,
and C, p, m > 0 such that

2,%28_”22 if2<p<8,
muk > Sép_ ) (23)
— if p>6;
(p—2)? P=
c k! if 2<p<86,
> _
p= psz,u if p>6. (24)
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Convergence 2-continued

In Algorithm 1, set ax = kb2, B = 0, and ~o = 0, nx = mk~2 for
k > 1. Then for x* being a minimizer of f + @, one has for all k € N,

() + ®(xc) — F(x ) P(x*)

2p
< 5225 (onoey + 5er27°

mo2e (In k + 1)) ke (2D

Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order o(1/ kz) Huynh Van Ngai



Generalized accelerat
0000000000000

Convergence 3: strongly convex case

Theorem

Let f is p—strongly convex for some u > 0, and let q, C such as (??).
Then for the sequence {xx} generated by Algorithm 1 with sequences
ok :=q¥, Bk =0, and v« = 1, k € N, and a minimizer x* of problem
(7), one has

(q - 1)Ch(x*)

f(Xc) + 2(xx) — F(x7) — D(x7) g — 1

IA

, forall k e N. (26)
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Attouch-Peypouquet’s accelerated forward-backward
scheme

Assumption: f: R" — R is L—smooth on the whole space.

[Attouch & Peypouquet -SIOPT 2016]:

B k—1
Te= Mt g g Ok ) @7)
Xk1 = proxﬁ@(yk - K‘/Vf(yk))a

e Ifa >3 and r < L~ then the sequence of functional value
(F(xx)) converges to the minimum value with rate o(1/k?), and
moreover the whole sequence (xx) converges.
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Consider the operator G, : R” — R", defined by

1
Ge(y) = -y —prox.qo(y — sVHy))], y € R,
and setting
. K+a-1 B k X
K= Ta—1 T

then we can rewrite the scheme (27) as follows.
K+a-—1
Zkyi = Zk — %Gm(yk)v
o a—1 k (28)
e kT a— 1% T kra_1%
Xk1 = ProX,.o(Yk — KVF(¥k)).
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* The sequence {z} in the scheme (28) can be represented
equivalently

k
, 1
Zi1 = AGMIN, 5, {%nxnz £ anlGuln) x>} ,
i=0

i -1 )
where o = I—F#, for i € N.
o —
Regarding this representation, we will propose the generalized

accelerated forward-backward algorithm.

Given a p—strongly convex function h: R” — R (p > 0); parameters
C,un>0,0< k< 1/L, and a sequence of positive reals {a};
sequences of nonnegative reals {5« }, and {~x} as in the preceding
section, and

K K
A=Y ok, Be=Y_ Br
i~0 i=0

with assuming Ax > By forall k € N.
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Generalized accelerated forward-backward scheme
Algorithm 2 (GAFBA) Initialization: Initial data: xo = zp = yo.

Set k =0.
Repeat: Fork=0,1,...,
1. Set
S, S = 1 — 75 ) X
K= A B, Y =TkZk + ( k) Xk
2. Find
Xk1 = ProX,.(Yk — £VF(¥k)). (29)
3. Set

Gl = [k — PIOX, (Y — KVFB)] = - (e — Hes1).

4. Find
k
1 2 n
Zy11 = argmin{ Ch(x) +Za,[ w (Vi) X—yi)+ 2IWIHX YillFl - x € R"}

i=0
(30)
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(GAPGA) has convergence rate o(1/k?)

Let {xx} be the sequences defined by Algorithm (GAPGA). Let x* be
a minimizer of problem (7).
Convergence results.

(i). For u =0, and any two sequences of positive reals {ax} and {fx}
with o > By for k € N and

L . (07 .
0<I|m|nf&§||msup—k<+oo, I|msup&<17
k—oo K k—o0 k k—oo Ok

then we can find Cq > 0 such that for all C > Cqy, one has

m k2  min ) + @) = F(x") = &(x")] = 0.

k—oo  i=[k/2]

.....
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Convergence- continued...

(i) Suppose that f is (u, p)—uniformly convex with i > 0, p > 2.
Then one has

. . Ink
F() + D(xe) — F(x*) = B(x*) = O <k2p/<pz>> :
(iii) If f is u—strongly convex, then with suitable parameters q > 1
C > 0, and the sequences ax = q*, Bx = 0 and v, = 1, for

k € N, one has

f(xe) + () — F(x*) — B(x*) = O (q_k) .
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Special case
In Algorithm 2, set
* h(x) = %Hx —wl? x eR"
* 1 =0, and sequences {ax} and {3k} satisfying the condition
A —Bx_1 =04, keN.
In this special case, Algorithm 2 can be rewritten simply in the

following scheme generalizing (27) by Attouch-Peypouquet:

- k{1 — 1
X1 = Prox,g (Vk — £VI(¥k)).
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Convergence

Consider the scheme (31). Let {ax}, {8« } be sequences of positive
reals such that for some 0 < ¢y,¢ < 1,

Crok < Bk < Cook, Ax— Bio1 =0f, keN.
Then one has

lim K2[F(x) + B0x) — F(X*) —B(x)] = 0;  lim K| Xiss —Xel| = O,
k— o0 k— o0

where x* is a minimizer of problem (7). Moreover, the whole
sequence {xx} converges to a minimizer of problem (7).
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This talk is based on the paper:

¢ Huynh Van Ngai & Ta Anh Son, Generalized Nesterov’s
accelerated proximal gradient algorithms with convergence rate
of order o(1/k?), submitted (2020)

THANKS!
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