Circumcentering projection type methods

Roger Behling

joint work with

Yunier Bello Cruz (NIU, USA) and Luiz Rafael dos Santos (UFSC, Brazil)

April 2021, Australia (Online)

Content

Roger Behling, José Yunier Bello Cruz, Luiz-Rafael dos Santos. *Circumcentering the Douglas-Rachford method, 2018*

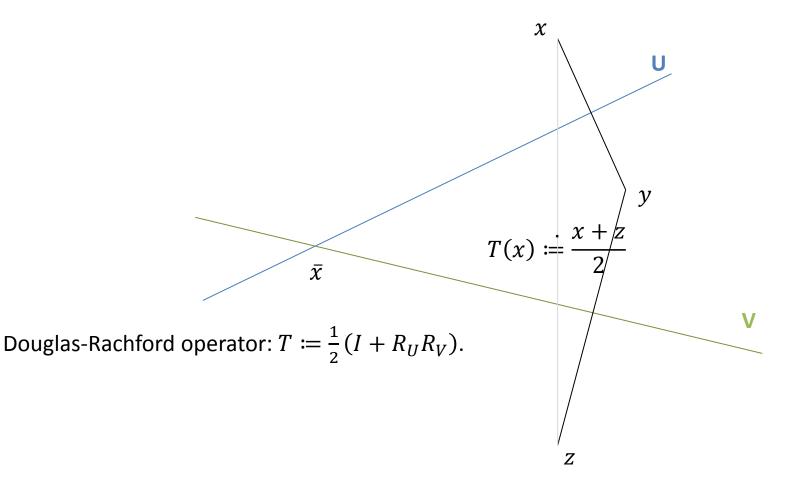
Roger Behling, José Yunier Bello Cruz, Luiz-Rafael Santos. On the linear convergence of the circumcentered-reflection Method, 2018

Roger Behling, José Yunier Bello Cruz, Luiz-Rafael Santos. *The Block-wise Circumcentered-Reflection Method*, 2019

Roger Behling, José Yunier Bello Cruz, Luiz-Rafael Santos. On the Circumcentered-Reflection Method for the Convex Feasibility Problem, 2020

DRM - Douglas-Rachford Method

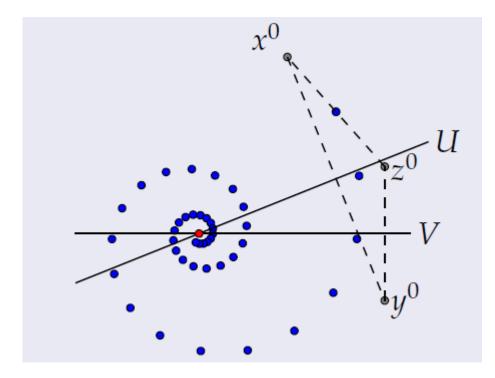
Best approximation problem: Given $x \in \mathbb{R}^n$, find $P_S(x)$, where $S \coloneqq U \cap V$, and U, V are affine subspaces with nonempty intersection.



Roger Behling

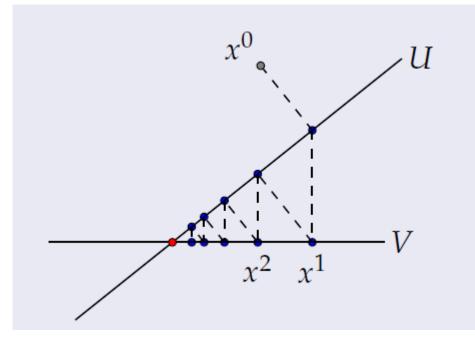
Remark: T(x) is also the Cimmino iteration calculated at y

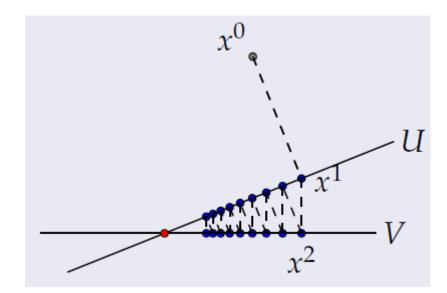
DRM - Douglas-Rachford Method



DRM can be seen as ADMM via duality

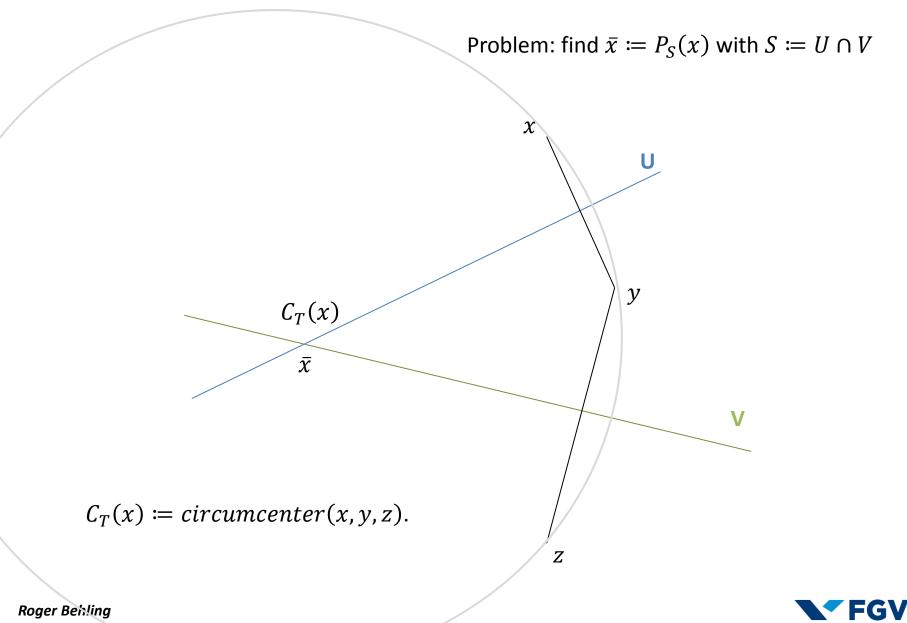
MAP – Method of Alternating Projections



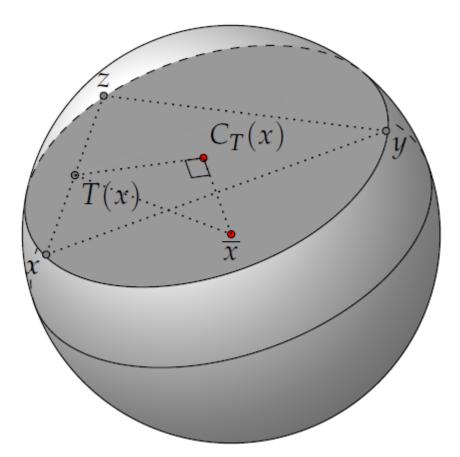


Roger Behling

CRM – Circumcentered-reflection method



Geometric interpretation of T(x) and $C_T(x)$



Definition of $C_T(x)$:

(i) $C_T(x)$ belongs to the affine subspace determined by the points $x, y \coloneqq R_U(x), z \coloneqq R_V R_U(x)$; (ii) $C_T(x)$ is equidistant to the points $x, y \coloneqq R_U(x), z \coloneqq R_V R_U(x)$.

Convergence analysis for CRM

Lemma: Let $x \in \mathbb{R}^n$. Then, the projection $P_{U \cap V}(x)$ onto the affine subspace defined by the points $x, y \coloneqq R_U(x), z \coloneqq R_V R_U(x)$ is given by $C_T(x)$.

Consequence: $||C_T(x) - P_{U \cap V}(x)|| \le ||T(x) - P_{U \cap V}(x)||$ for all $x \in \mathbb{R}^n$.

Theorem: Let $x \in \mathbb{R}^n$. Then, the sequence $\{C_T^k(P_U(x))\}$ converges linearly to $P_{U \cap V}(x)$ and the rate is at least $c_F \in [0,1)$, the cosine of the Friedrichs angle between U and V.

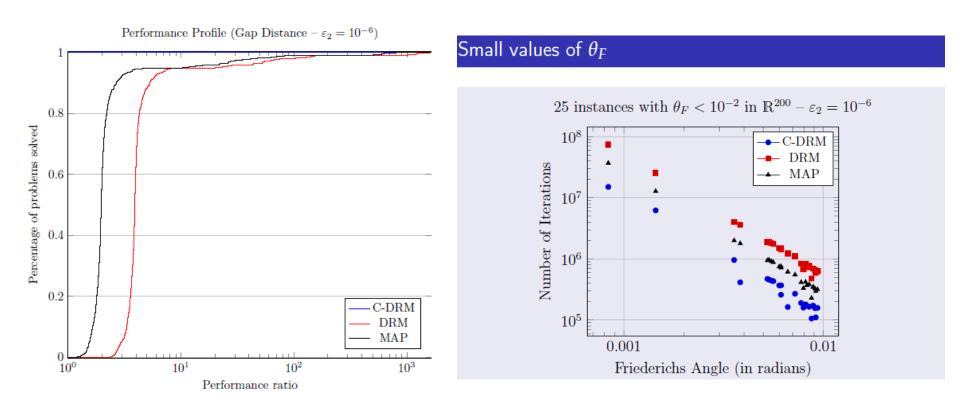
Remarks: Remind that

 $c_F \coloneqq \sup\{u^T v | u \in (\widehat{U} \cap \widehat{V}) \cap \widehat{U}^{\perp}, v \in (\widehat{U} \cap \widehat{V}) \cap \widehat{V}^{\perp}, \|u\| = 1, \|v\| = 1\},\$ where \widehat{U}, \widehat{V} are subspaces and translations of U, V, respectively.

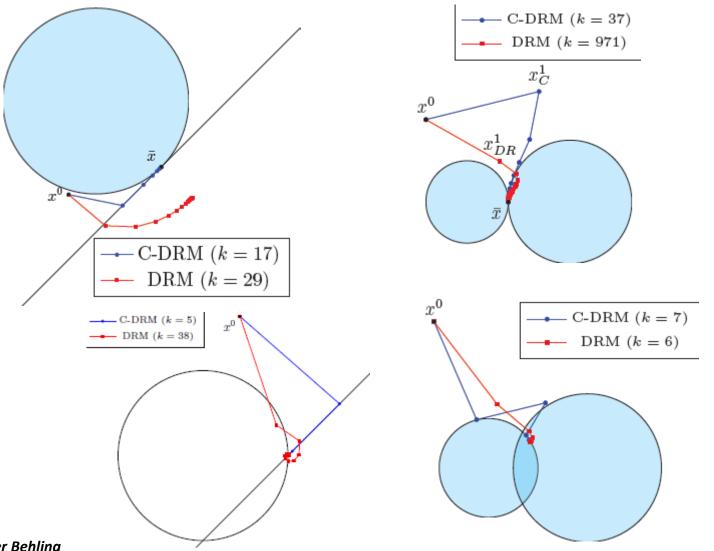
(i) c_F is the sharp rate of the original de Douglas-Rachford method;

(ii) question: does CDRM converge with linear rate strictly better than c_F ?

Numerical experiments



Non-affine examples



FGV

Roger Behling

The many set case (still affine)

Best approximation problem: Given $x \in \mathbb{R}^n$, find $P_S(x)$, where $S \coloneqq U_1 \cap U_2 \cap \cdots \cup U_m$, with U_i 's being affine subspaces and S is nonempty.

"Game rules": we can use projections and/or reflections onto the U_i 's.

The pure DRM may fail for m>2

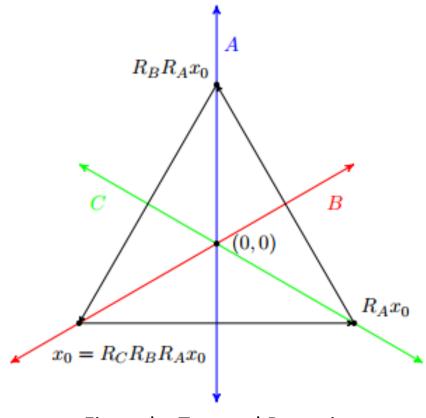
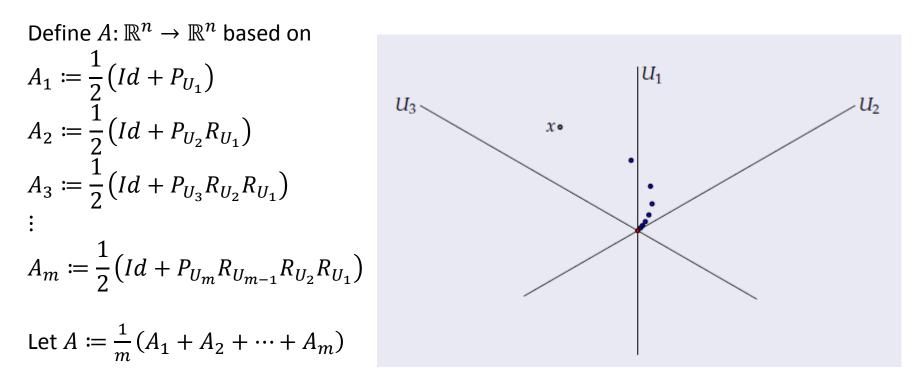


Figure by Tam and Borwein

Our ideia: Auxiliar Operator



Results: A is firmly nonexpansive, $Fix_A = S$ and for any $x \in \mathbb{R}^n$, $\{A^k(x)\}$ converges linearly to $P_S(x)$.

CRM for m affine subspaces

Definition of C(x):

(i) C(x) belongs to the affine subspace W_x defined by the m + 1 vectors $x, R_{U_1}(x), R_{U_2}R_{U_1}(x), R_{U_3}R_{U_2}R_{U_1}(x), \dots, R_{U_m} \dots R_{U_1}(x)$; (ii) C(x) is equidistant to $x, R_{U_1}(x), R_{U_2}R_{U_1}(x), R_{U_3}R_{U_2}R_{U_1}(x), \dots, R_{U_m} \dots R_{U_1}(x)$.

Lemma: Let $x \in \mathbb{R}^n$. Then, the projection $P_S(x)$ onto the affine subspace W_x is given by C(x).

Consequence: $||C(x) - P_S(x)|| \le ||A(x) - P_S(x)||$ for all $x \in \mathbb{R}^n$.

Theorem: Let $x \in \mathbb{R}^n$ and $S \coloneqq U_1 \cap U_2 \cap \cdots \cup U_m$, with all U_i 's being affine subspaces and S non-empty. Then, the sequence $\{C^k(x)\}$ converges linearly to $P_S(x)$.

Computation of a circumcenter

Consider the notation $x^{(i)} = R_{U_i} \dots R_{U_2} R_{U_1}(x)$, for $i = 1, \dots, m$. We want two things:

First (Equidistance):

$$P_{span\{x^{(i)}-x\}}(C(x)-x) = \frac{1}{2}(x^{(i)}-x)$$
 for each $i = 1, ..., m$;

Second (Being in affine $(x, x^{(1)}, x^{(2)}, \dots, x^{(m)})$)

$$C(x) - x = \sum_{j=1}^{m} \alpha_i \left(x^{(j)} - x \right)$$

This yields the solvable $m \times m$ linear system in $\alpha \in \mathbb{R}^m$ whose i - th row reads as

$$\sum_{j=1}^{m} \alpha_j \langle x^{(j)} - x, x^{(i)} - x \rangle = \frac{1}{2} \| x^{(i)} - x \|^2$$

C(x) outcomes univocally from this linear system. Uniqueness in α , however, depends on linear independence of the vectors $x^{(i)} - x$, which is not always the case.

Block-wise CRM for m affine subspaces

Example: Let m = 7, i.e., $S = \bigcap_{1}^{7} U_i$. Take, for instance, the following blocks of affine subspaces $B_1 \coloneqq \{U_1, U_2\}, B_2 \coloneqq \{U_3, U_4, U_5, U_6\}, B_3 \coloneqq \{U_7\}$.

Block-wise CRM:

For a given
$$x^k$$
, we define $x^{k+1} = C_{BW-CRM}(x^k) \coloneqq C_{B_3}\left(C_{B_2}(C_{B_1}(x^k))\right)$

Theorem: Let $x \in \mathbb{R}^n$. Then, the sequence $\{C_{Bw-CRM}^k(x)\}$ converges linearly to $P_S(x)$.

Remarks:

- MAP (method of alternating projections) is a Bw-CRM where all blocks contain exactly one affine subspace.
- Bw-CRM with one full block (original CRM) solves hyperplane intersection problems in one single step.

Experiments on the Block-wise CRM

Bw-CRM applied to CT – Matrix size: 5732 × 2500 – Budget of 10 iterations.

(a) Exact Shepp-Logan

(b) Bw-CRM-1 (MAP)

(c) Bw-CRM-16

(d) Bw-CRM-64

(e) Bw-CRM-256

General convex inclusions

Find
$$x^* \in X \coloneqq \bigcap_{i=1}^m X_i$$

Where X_i is closed and convex for all i = 1, ..., m. We assume also that X is nonempty and that the orthogonal projetions onto each X_i are computable.

Pierra's product space reformulation:

Let $W \coloneqq X_1 \times X_2 \times \cdots \times X_m$ and $D \coloneqq \{(x, x, \dots, x) \in \mathbb{R}^{nm} | x \in \mathbb{R}^n\}$. Then, finding $x^* \in X$ is equivalent to solving the following problem

Find
$$z^* \in W \cap D$$

CRM for product space reformulation

Consider

Find $z^* \in K \cap U$,

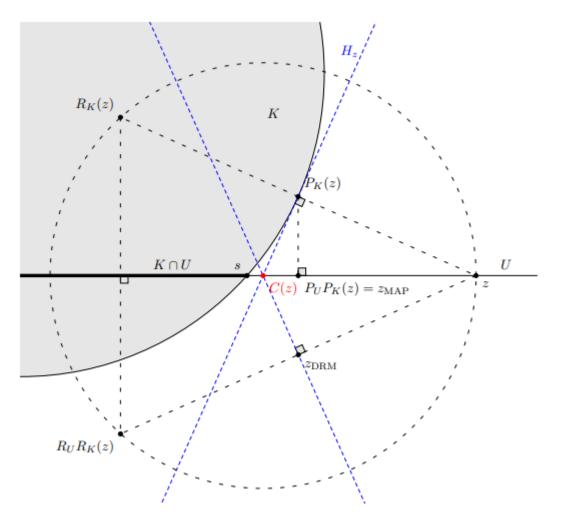
with K closed and convex and U an affine subspace. Assume also that their intersection is nonempty.

Theorem: Let $z^0 \in U$ be given and consider the sequence $\{z^k\}$ generated by

$$z^{k+1} \coloneqq circumcenter\{z^k, R_K(z^k), R_UR_K(z^k)\}.$$

Then, $\{z^k\}$ converges to a point in $K \cap U$. Moreover, each z^{k+1} is closer to $K \cap U$ than the MAP and DR points calculated at z^k .

Geometry of CRM



Numerical experiments

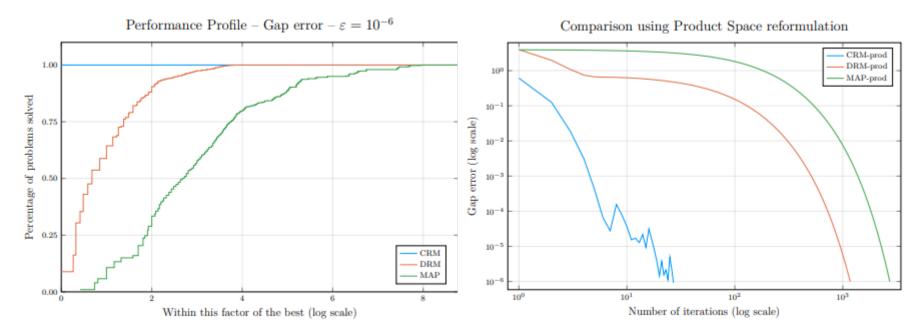


Fig. 2: Experiments with affine subspaces and the second order cone.

	mean	min	median	max
CRM	4.727	3	5.0	6
DRM	11.602	4	8.0	83
MAP	83.981	4	32.0	1063

Fig. 3: Polyhedral feasibility using the product space reformulation.

	mean	min	median	max
CRM DRM	41.5 1441.15	19.0 1036.0	38.0 1470.5	89.0 1586.0
MAP	2768.3	2534.0	2787.0	2952.0

New work and ideas in progress

- The circumcentered-reflection method achieves better rates than alternating projections. R. Arefidamghani, R. Behling, Y. Bello-Cruz, A. Iusem, LR Santos (accepted in COAP 2021)
- *Circumcentering outer-approximate reflections* G. Araújo, R. Arefidamghani, R. Behling, Y. Bello-Cruz, A. Iusem, LR Santos (to be submitted soon)

Future research

- Investigation on the suitability of generalized circumcenters for *basis pursuit, sparse affine feasibility problems, superlinear convergence of CRM and* [content hidden].

References

- H.H. Bauschke, J.Y. Bello Cruz, T.T. Nghia, H.M. Phan, X. Wang: The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. J. Approx. Theory 2014.
- J. Douglas, H.H. Rachford: On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc. 1956.
- R. Hesse, D.R. Luke, P. Neumann: Alternating projections and Douglas-Rachford for sparse affine feasibility, IEEE {Trans. Signal Process.} 2014.
- J.M. Borwein, M.K. Tam: A Cyclic Douglas-Rachford Iteration Scheme. J. Optim. Theory. Appl. 2014.
- P.L. Lions, B. Mercier: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979.
- B.F. Svaiter: On weak convergence of the Douglas-Rachford method, SIAM J. Control Optim., 2011.
- Heinz H. Bauschke, Hui Ouyang, Xianfu Wang. On circumcenters in hilbert spaces, 2018.
- Hui Ouyang. Circumcenter Operators in Hilbert Spaces. Master thesis, THE UNIVERSITY OF BRITISH COLUMBIA, 2018.
- SB Lindstrom, B Sims. Survey: Sixty Years of Douglas-Rachford, 2018.
- HH Bauschke, H Ouyang, X Wang. On circumcenters of finite sets in Hilbert spaces, 2018.
- D. Rubén Campoy García. Contributions to the Theory and Applications of Projection Algorithms, 2018.
- FJA Artacho, R Campoy, MK Tam. The Douglas-Rachford Algorithm for Convex and Nonconvex Feasibility Problems, 2019.
- HH Bauschke, H Ouyang, X Wang. On circumcenter mappings induced by nonexpansive operators
- HH Bauschke, H Ouyang, X Wang. Circumcentered methods induced by isometries. 2019
- N Dizon, JHogan, SB Lindstrom. Circumcentering Reflection Methods for Nonconvex Feasibility Problems.
- SB Lindstrom. Computable Centering Methods for Spiraling Algorithms and their Duals, with Motivations from the theory of Lyapunov Functions.
- Bauschke, Heinz H.; Ouyang, Hui; Wang, Xianfu. On the linear convergence of circumcentered isometry methods.
- Hui Ouyang, Xianfu Wang; Bregman circumcenters: basic theory

Roger Behling

THANK YOU VERY MUCH FOR YOUR ATTENTION

