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Ad (i): Introduction

We want to solve an inclusion
0 ∈ F (x),

where F : Rn ⇒ Rn is a closed-graph multifunction.
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Introduction: Josephy-Newton method

Consider the generalized equation (GE)

0 ∈ F (x) = f (x) + Ψ(x),

where f : Rn → Rn is single-valued and smooth and Ψ : Rn ⇒ Rn is a
set-valued mapping (multifunction).
Josephy-Newton method: Given x (k), the next iterate x (k+1) solves the
auxiliary problem

0 ∈ f (x (k)) +∇f (x (k))(x − x (k)) + Ψ(x) (1)

(only f is linearized).

Drawback: Problems (1) may be difficult to solve.

Remark
There are various modern developments of this method in which one admits
Lipschitzian f and Ψ is approximated via its graphical derivative.

H. Gfrerer, M. Mandlmayr, J.V. Outrata, J. Valdman The semismooth* Newton method for Coulomb friction problems 3 / 38



Ad (ii) Variational geometry

Definition
Given a closed set A ⊂ Rn and x̄ ∈ A, we define

(i) the tangent (Bouligand, contingent) cone to A at x̄ by

TA(x̄) := {u ∈ Rn|∃uk → u, tk ↘ 0 : x̄ + tk uk ∈ A∀k};

(ii) the regular (Fréchet) normal cone to A at x̄ by

N̂A(x̄) := (TA(x̄))◦;

(iii) the limiting (Mordukhovich) normal cone to A at x̄ by

NA(x̄) := {u∗ ∈ Rn|∃xk
A→ x̄ ,u∗k → u∗ : u∗k ∈ N̂A(xk )∀k}.
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Example
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NA(x̄;h)

For h ∈ {0} × R+

For h ∈ R+ × {0}

x̄

A

0

0 0

0

0

TA(x̄)

N̂A(x̄) NA(x̄)
NA(x̄;h)
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Generalized derivatives

Definition
Consider a multifunction F : Rn ⇒ Rm and a point
(x̄ , ȳ) ∈ gph F := {(x , y) | y ∈ F (x)}. Then

(i) the multifunction DF (x̄ , ȳ) : Rn ⇒ Rm, defined by

DF (x̄ , ȳ)(u) := {v ∈ Rm|(u, v) ∈ Tgph F (ū, v̄)},h ∈ Rn,

is called the graphical derivative of F at (x̄ , ȳ);
(ii) the multifunction D∗F (x̄ , ȳ) : Rm ⇒ Rn, defined by

D∗F (x̄ , ȳ)(v∗) := {u∗ ∈ Rn|(u∗,−v∗) ∈ Ngph F (x̄ , ȳ)}, v∗ ∈ Rm,

is called the limiting (Mordukhovich) coderivative of F at (x̄ , ȳ).
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Definition
(i) A set-valued mapping F : Rn ⇒ Rm is called metrically regular around a

point (x̄ , ȳ) ∈ gph F with modulus κ if there is a constant κ ≥ 0 along with
neighborhoods U of x̄ and V of ȳ such that

d(x ,F−1(y) ≤ κd(y ,F (x)) ∀(x , y) ∈ U × V .

(ii) A set-valued mapping F : Rn ⇒ Rm is called strongly metrically regular
around a point (x̄ , ȳ) ∈ gph F with modulus κ ≥ 0 if it is metrically regular
around (x̄ , ȳ) and its inverse F−1 has a localization around (ȳ , x̄) that is
nowhere multi-valued.

Theorem (Mordukhovich criterion)

F is metrically regular around a point (x̄ , ȳ) iff

Ker D∗F (x̄ , ȳ) := {y∗|0 ∈ D∗F (x̄ , ȳ)(y∗)} = {0}.
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Definition
A subset Γ ⊂ Rn is subanalytic if each a ∈ Γ has a neighborhood V such that
Γ ∩ V is a projection of a relatively compact semianalytic set.

Recall that every closed semianalytic subset X of Rn is a finite union of sets
having the form

{x ∈ Rn| fi (x) ≥ 0, i = 1,2, ..., k},
where the functions fi are analytic on X .
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Ad (iii): Semismoothness∗ of sets and multifunctions

Definition ([2])

Let x̃ ∈ A ⊂ Rn. We say that A is semismooth∗ at x̃ provided that for every
ε > 0 there is some δ > 0 such that the inequality

|〈x∗, x − x̃〉| ≤ ε‖x − x̃‖ ‖x∗‖ (2)

is valid for all x ∈ Bδ(x̃) and for all x∗ ∈ NA(x).

Clearly, (2) amounts to the equality 〈x∗, x − x̃〉 = o(‖x − x̃‖ ‖x∗‖).

Definition ([2])

Let (x̃ , ỹ) ∈ gph F . We say that F is semismooth∗ at (x̃ , ỹ) provided that gph F
is semismooth∗ at (x̃ , ỹ), i.e., for every ε > 0 there is some δ > 0 such that the
inequality

|〈x∗, x − x̃〉+ 〈y∗, y − ỹ〉| ≤ ε‖(x , y)− (x̃ , ỹ)‖ ‖(x∗, y∗)‖ (3)

is valid for all (x , y) ∈ Bδ(x̃ , ỹ) and for all (x∗, y∗) ∈ Ngph F (x , y).
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Example
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The set A = gph (x2 sin 1
x ) is not semismooth∗ at (0,0) because, e.g., for the

sequence xk = 1/(2πk) we have (1,−1) ∈ NA(xk ,0) and therefore
(1,−1) ∈ NA((0,0); (1,0)). But 〈(1,−1), (1,0)〉 = 1 6= 0 and therefore A is not
semismooth∗ at (0,0).
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Criteria for semismoothness∗

On the basis of the definition and the above statements we may conclude that:
1) A closed convex set A ⊂ Rs is semismooth∗ at each x̄ ∈ A;

2) Given closed sets Ai ∈ Rs, i = 1,2, . . . ,p, and x̄ ∈ A :=
p⋃

i=1
Ai , then one

has the implication

the sets Ai , i ∈ {j |x̄ ∈ Aj} are semismooth∗ at x̄ ⇒ A is semismooth∗ at x̄ ;

Theorem (Jourani 2007)

Let A be a closed subanalytic set and x̄ ∈ A. Then A is semismooth* at x̄ .
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Relationship to semismoothness

Definition (Qi,Sun 1993)

A mapping F : Rn → Rm is called semismooth at x̄ , provided it is Lipschitz
near x̄ and

lim
A∈conv ∇̄F (x̄+tu′)

t↘0,u′→u

Au′

exists for all u ∈ Rn.

Theorem
Let F : Rn → Rm be Lipschitzian near x̄ .

1 If F is semismooth at x̄ , it is semismooth* at (x̄ ,F (x̄)) as well;
2 Conversely, if F is directionally differentiable at x̄ and semismooth* at

(x̄ ,F (x̄)), it is semismooth.

There are Lipschitz continuous functions F which are semismooth* at
(x̄ ,F (x̄), but not directionally differentiable
Semismoothness* is also defined for non-Lipschitzian mappings.
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Ad (iv): Semismooth∗ Newton method for inclusions -
basic idea
From now on let x̄ be a solution of the inclusion

0 ∈ F (x),

where F : Rn ⇒ Rn has closed graph and assume that F is semismooth∗ at
(x̄ ,0). Consider an iterate x (k) close to x̄ .

Since we are dealing with general set-valued mappings F , we can expect
neither F (x (k)) 6= ∅ nor that 0 is close to F (x (k)). Hence, in the first step
we have to compute an element (x̂ (k), ŷ (k)) ∈ gph F ”close” to (x (k),0)
(approximation step (AS)).
By the definition of semismoothness*, for every
(y∗, x∗) ∈ gph D∗F (x̂ (k), ŷ (k)) there holds

〈x∗, x̂ (k) − x̄〉 = 〈y∗, ŷ (k)〉+ o(‖(x̂ (k), ŷ (k))− (x̄ ,0)‖‖(x∗, y∗)‖).
We thus choose n pairs (y∗i , x

∗
i ) ∈ gph D∗F (x̂ (k), ŷ (k)), i = 1, . . . ,n and

determine x (k+1) as solution of the n linear equations

〈x∗i , x̂ (k) − x〉 = 〈y∗i , ŷ (k)〉, i = 1, . . . ,n,

in variable x (Newton step (NS)).
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Formalism of the basic idea

Given (x , y) ∈ gph F , we denote by AF (x , y) the collection of all pairs of
[n × n] matrices (A,B), such that there are n elements
(y∗i , x

∗
i ) ∈ gph D∗F (x , y), i = 1, . . . ,n, and the i-th row of A and B is x∗i

T

and y∗i
T , respectively.

Further we introduce the set

AregF (x , y) := {(A,B) ∈ AF (x , y) | A nonsingular }.

Then, with some (A,B) ∈ AregF (x̂ (k), ŷ (k)), the Newton step can be
written as

x (k+1) = x̂ (k) − A−1Bŷ (k).
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When is AregF (x̂ , ŷ) 6= ∅?

Theorem

Assume that F is strongly metrically regular around (x̂ , ŷ) ∈ gph F with
modulus κ > 0. Then there is an n × n matrix C with ‖C‖ ≤ κ such that
(I,C) ∈ AregF (x̂ , ŷ) 6= ∅, where I denotes the identity matrix.

In this way we arrive at the following conceptual algorithm.

Algorithm (1)

1. Choose a starting point x (0), set the iteration counter k := 0.
2. If 0 ∈ F (x (k)), stop the algorithm.
3. Approximation step: Compute (x̂ (k), ŷ (k)) ∈ gph F close to (x (k),0) such that
AregF (x̂ (k), ŷ (k)) 6= ∅.

4. Newton step: Select (A,B) ∈ AregF (x̂ (k), ŷ (k)) and compute the new iterate
x (k+1) = x̂ (k) − A−1Bŷ (k).

5. Set k := k + 1 and go to 2.
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Convergence

Given two reals L, κ > 0, we assign to each x the set

GL,κ
F ,x̄ (x) := {(x̂ , ŷ ,A,B) | ‖(x̂ − x̄ , ŷ)‖ ≤ L‖x − x̄‖, (x̂ , ŷ) ∈ gph F ,

(A,B) ∈ AregF (x̂ , ŷ), ‖A−1‖‖(A
... B)‖F ≤ κ}.

Theorem

Assume that F is semismooth∗ at (x̄ ,0) ∈ gph F and assume that there are
L, κ > 0 such that for every x 6∈ F−1(0) sufficiently close to x̄ we have
GL,κ

F ,x̄ (x) 6= ∅. Then there exists some δ > 0 such that for every starting point
x (0) ∈ Bδ(x̄) Algorithm 1 either stops after finitely many iterations at x̄ or
produces a sequence x (k) which converges superlinearly to x̄, provided we
choose in every iteration (x̂ (k), ŷ (k),A,B) ∈ GL,κ

F ,x̄ (x (k)).
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Ad approximation step

x
x̄

y

k x

(x̂ , ŷ)

gph F

Figure: Approximation step.
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Convergence
In applications we may often compute matrices A,B such that

R((A
... B)T ) ⊂ gph D∗F (x̂ , ŷ).

Define AlinF (x̂ , ŷ) := {(A,B)|R((A
... B)T ) ⊂ gph D∗F (x̂ , ŷ)} ⊂ AF (x̂ , ŷ),

Alin
regF (x̂ , ŷ) := {(A,B) ∈ AlinF (x̂ , ŷ)|A nonsingular}.

Then it may be shown that the main convergence statement remain valid with
a modified GL,κ

F ,x̄ (x), where the last two conditions are replaced by

(A,B) ∈ Alin
regF (x̂ , ŷ), and ‖A−1B‖ ≤ κ.

Theorem

Assume that the mapping F is both semismooth∗ at (x̄ ,0) and strongly
metrically regular around (x̄ ,0). Then all assumptions of the previous theorem
are fulfilled.

Of course, even in case of strong metric regularity one has to check whether
our concrete suggested AS and NS fulfill the above posed requirements.

H. Gfrerer, M. Mandlmayr, J.V. Outrata, J. Valdman The semismooth* Newton method for Coulomb friction problems 19 / 38



Ad (v): The used model

Figure: The left figure depicts an undeformed elastic prism occupying domain Ω with
the left (blue) face attached (Dirichlet condition) and some boundary tractions applied
to the right and top faces (depicted in green). They press the contact face ΓC against
the (red) rigid plane foundation. Example of the resulting deformed body is depicted in
the right figure. Front faces are not visualized.
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The fundamental results concerning mechanical problems of this type have
been established in [8]. We perform a FEM discretization in such a way that
all nodes, not lying in ΓC , are eliminated (by the Schur complement technique)
and with i-th node from ΓC one associates the pair

(ui
t ,u

i
n) ∈ R2 × R,

denoting its tangential and normal displacements, respectively.
Let p be the number of nodes on ΓC ,

u = (u1,u2, . . . ,up) with ui = (ui
t ,u

i
n) ∈ R3

and let us simplify the notation via

ui
12 = (ui

1,u
i
2) = ui

t , ui
3 = ui

n

for all i .
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In this way we arrive at the GE

0 ∈ Pu − f + Q̃(u), (4)

where the [3p × 3p] matrix P is computed from the original stiffness matrix K
via elimination of the nodes, not belonging to ΓC , f = (f 1, r2, . . . , f p) ∈ (R3)p

reflects the action of boundary tractions and the multifunction

Q̃ : R3p ⇒ R3p

is given by

Q̃(u) =

p

X
i=1

Q(ui ) with Q(ui ) =

{[
−φλ∂‖ui

12‖
λ

]
|λ ∈ NR+ (ui

3)

}
. (5)

In (5), φ > 0 is the friction coefficient. Note that Q : R3 ⇒ R3 is a composite
multifunction, having the structure Q = S2 ◦ S1 where, for some x ∈ R3,

S1 : (x12, x3) 7→
[
x12
λ

]
∈
[

x12
NR+ (x3)

]
and S2 : (x12, λ) 7→

[
h12
h3

]
∈
[
−φλ∂‖x12‖

λ

]
.
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Thanks to the separable structure of Q̃ we observe that for
g = (g1,g2, . . . ,gp) ∈ Q̃(u) and a = (a1,a2, . . . ,ap) ∈ (R3)p one has

D∗Q̃(u,g)(a) =
p

X
i=1

D∗Q(ui ,g i )(ai ),

and D∗Q(ui ,g i )(·) can be computed via the standard coderivative chain and
product rule. Further note that the “intermediate” variable λ, taken with the
opposite sign, amounts to the i-th component of the Lagrange multiplier,
associated with the non-penetrability constraint ui

3 ≥ 0 for all i . So, model (4)
is just a light modification of a corresponding model in [1], used there in a
shape optimization context.
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That is why one can describe gph Q as follows:

gph Q = {(u,g) ∈ R3 × R3|g ∈ Q(u)} = L ∪M1 ∪M+
3 ∪M2 ∪M−3 ∪M4, (6)

where all sets on the right-hand side of (6) are disjoint and defined by the
following table:

no contact weak contact strong contact
u3 > 0,g3 = 0 u3 = 0,g3 = 0 u3 = 0,g3 < 0

sliding u12 6= 0
L

M2 M1
weak sticking M4 M−3u12 = 0, ‖g12‖ = −φg3

strong sticking − − M+
3u12 = 0, ‖g12‖ < −φg3

Table: 1

Note that in Table 1 the impossible combinations of variables are crossed out.
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Important facts

(1) The GE
y ∈ Pu − f + Q̃(u)

Is strongly metrically regular at any pair (u, y) whenever φ is sufficiently
small (cf. [1, Theorem 3.13]).

(2) The sets L,M1 and M+
3 exhibit a stable behavior in the sense that, for a

sufficiently small % > 0,

(ū, ḡ) ∈ L(or M1 or M+
3 )

(u,g) ∈ B%(ū, ḡ) ∩ gph Q

}
⇒ (u,g) ∈ L(or M1 or M+

3 ).

(3) Let (ū, ḡ) ∈ gph Q. Then gph Q ∩ B1(v̄ , h̄) is subanalytic, because it is a
canonical projection of a semianalytic set (intersection of finitely many
polynomial equalities and inequalities).
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On the basis of property (5) and the appropriate rules of generalized
differential calculus we compute that
(1) for (v̄ , h̄) ∈ L

D∗Q(v̄ , h̄)(h∗) = {0} for any h∗ ∈ R3, (7)

(2) for (v̄ , h̄) ∈ M1 and h∗ ∈ R∗ one has

D∗Q(v̄ , h̄)(h∗) = {v∗|v∗12 = −φh̄3H(v̄12)T h∗12, v
∗
3 = 〈v∗12,

v̄12

‖v̄12‖
〉}, (8)

where H(v12) = ∇( v12
‖v12‖ );

(3) for (v̄ , h̄) ∈ M−3

D∗Q(v̄ , h̄)(h∗) =

{
R3 provided h∗ = 0
∅ otherwise . (9)

Thanks to property (2) and the definition of limiting coderivative formulas (7),
(8) and (9) yield nonempty subsets of the coderivatives also in case when

(v̄ , h̄) ∈ M2 or M4, (v̄ , h̄) ∈ M2 or M−3 or M4 and (v̄ , h̄) ∈ M−3 or M4,

respectively.
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Ad (vi) Implementation

In order to facilitate the AS we will solve, instead of GE (4) the enhanced
system

0 ∈ F(u,d) :=

[
Pu − f + Q̃(d)
u − d

]
(10)

in variables (u,d) ∈ R3p × R3p. Clearly, ū is the solution of (4) iff (ū, ū) solves
(10).
The separable structure of Q̃, fact (3) and the theorem by Jourani, shown in
(iii), imply the next statement.

Proposition

The mapping F : R3p × R3p ⇒ R6p is semismooth∗ at any point (u,d , y) from
gphF .
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Approximation step
1 Given the k -th iterate uk = ( uk 1, uk 2, . . . , uk p), we compute for all i the

(unique) solutions ẑ i
3, ẑ

i
12 of the strictly convex optimization problems

minimize
z i

3∈R

1
2

(z i
3)2 + c i

3( uk )z i
3 + δR+ ( uk i

3 + z i
3), (11)

minimize
z i

12∈R2

1
2
‖z i

12‖2 + 〈c i
12( uk ), z i

12〉+ φ(ẑ i
3 + c i

3( uk ))‖ uk i
12 + z i

12‖, (12)

respectively. In these auxiliary problems c( uk ) = P( uk )− f stands for the
single-valued part of GE (4) for u = uk . Note that the solution z i

3 of (11)
arises in (12) as a parameter.

2 Compute the outcome of the AS via

û = uk , d̂ = uk + ẑ, ŷ = (−ẑ,−ẑ),

where ẑ = (ẑ1, ẑ2, . . . , ẑp) ∈ (R3)p with ẑ i = (z i
12, z

i
3), i = 1,2, ...,p,. One

can verify that ŷ ∈ F(û, d̂) and there exists L ≥ 0 such that

‖((û − ū, d̂ − ū), ŷ)‖ ≤ L‖( uk − ū, dk − ū)‖
holds for all ( uk , dk ) close to (ū, ū).
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Newton step
To compute matrices A,B needed in the NS one has to find suitable linear
subspaces of the limiting normal cone to gph Q at the respective points. To
grasp this problem in a more general setting, assume that a multifunction

Λ : Rn ⇒ Rn has closed graph and gph Λ =
s⋃

i=1
clAi , where each Ai ⊂ Rn × Rn

belongs to one of the following two groups:
(1) dim(affAi ) ≤ n;
(2) there exist a [2n × 2n] matrix C, an open set O ⊂ Rn and a C1 mapping

Ψ : O → Rn such that

Ai =

{
(v ,h) ∈ Rn × Rn

∣∣∣∣C [ v
h

]
∈ gph Ψ

}
.
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Newton step

Proposition

(i) Let Ai belong to the group (1), (v̄ , h̄) ∈ Ai , and let the [n × n] matrices
Gi ,H i fulfill the condition

R
[

Gi

H i

]
= affAi .

Then N [(Gi )T ... (H i )T ] ⊂ Ngph Λ(v̄ , h̄). (13)

(ii) Let Ai belong to the group (2), (v̄ , h̄) ∈ Ai , let C be non-singular and[
w̄
z̄

]
= C

[
v̄
h̄

]
. Then incl. (13) holds true with

Gi = (C−1)T , H i = ∇Ψ(w̄)T (C−1)T .

Remark

Alternatively, a suitable linear subspace of Ngph Λ(v̄ , h̄) can be constructed as
the range space of a linear mapping.
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Newton step
Given the output x̂ , d̂ , ŷ = (ŷ1, ŷ2) of the AS, we compute

b̂ = (b̂1, b̂2, . . . , b̂p) = ŷ − c(x̂) ∈ Q̃(d̂),

implying that b̂i ∈ Q(d̂ i ) for all i . By virtue of the above results we can now
proceed as follows:

For (b̂i , d̂ i ) ∈ L ∪M2 ∪M4 set (Gi )T = I, (H i )T = 0;
For (b̂i , d̂ i ) ∈ M+

3 ∪M−3 set (Gi )T = 0, (H i )T = I;
For (b̂i , d̂ i ) ∈ M1 set

(Gi )T =

1 0 0
0 1 0
0 0 0

 , (H i )T =

 W 0
0

−φω1 −φω2 1

 ,
where the [2× 2] matrix W is given by

W = − φb̂i
3

‖d̂ i
12‖

 ω2
2 −ω1ω2

−ω1ω2 ω2
1

 , ωj = −
d̂ i

j

‖d̂ j
12‖

, j = 1,2.

H. Gfrerer, M. Mandlmayr, J.V. Outrata, J. Valdman The semismooth* Newton method for Coulomb friction problems 31 / 38



NS attains now the form stated in Algorithm 1 with A = I and

B =

[
I 0
0 G

]
D−1,

where

D =

[
P −H
I G

]
, G =

 G1

. . .
Gp

 , H =

 H1

. . .
Hp

 .
The strong metric regularity of GE (4) around (ū,0) implies the (strong) metric
regularity of F around (ū, ū,0). From this it follows by the Mordukhovich
criterion that D is non-singular whenever (û, d̂ , ŷ) is sufficiently close to
(ū, ū,0).
NS amounts thus to the solution of a (dense) linear system with 6p equations.
Thanks to its structure it can be reduced to merely 3p equations. This
reduction can be, however, achieved also by a different choice of matrices
G,H.
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Stopping rule

Due to the strong metric regularity of (10) around (ū, ū,0) there is a Lipschitz
constant l > 0 such that,

‖(û, d̂)− (ū, ū)‖ ≤ l‖ŷ‖,

whenever the output of the AS lies in a sufficiently small neighborhood of
(ū, ū,0). It follows that the condition

‖ẑ‖ ≤ ε,

with ẑ composed from the solutions of the optimization problems in the
approximation step, may serve as a simple yet efficient stopping rule.
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Ad (vii) Numerical tests

Figure: The left figure depicts a deformed contact boundary and the right figure shows
the corresponding deformed elastic prism, both pictures together with the (red) rigid
plane foundation. The right picture is obtained by (a linear elasticity) post-processing
of non-contact boundary nodes.
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Running times

mesh nodes assembly Cholesky nodes semismooth∗ solv.
level of Ω of K + Schur of ΓC time iters

3 637 0.13 sec 0.02 sec 84 0.03 sec 6
4 1377 0.19 sec 0.09 sec 144 0.07 sec 6
5 2541 0.28 sec 0.24 sec 220 0.27 sec 9
6 4225 0.61 sec 0.69 sec 312 0.51 sec 9
7 6525 1.11 sec 1.76 sec 420 0.93 sec 9
8 9537 1.61 sec 3.73 sec 544 1.60 sec 9
9 13357 2.48 sec 7.20 sec 684 3.05 sec 10

10 18081 3.30 sec 13.44 sec 840 4.69 sec 9
11 23805 4.38 sec 23.07 sec 1012 8.17 sec 10
12 30625 5.73 sec 40.71 sec 1200 12.48 sec 10
13 38637 7.33 sec 107.63 sec 1404 17.55 sec 9
14 47937 9.16 sec 293.50 sec 1624 30.24 sec 11
15 58621 11.92 sec 684.17 sec 1860 43.00 sec 11
16 70785 13.78 sec 1217.38 sec 2112 57.80 sec 11

Table: 2
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Practical convergence

Computational data:
Mesh level 6 -
312 nodes, 936 unknowns
Stopping rule: ε=1e-12
Number of iterations: 9

1 2 3 4 5 6 7 8 9 10

Iterations

10-10

10-5

100
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Ad (viii) Conclusion

The respective code is in fact slightly more advanced when compared
with its description in the previous section. It contains, among other things, an
adaptive scaling of the AS accelerating the convergence and a heuristic
globalization strategy for the case when we do not dispose with a suitable
starting point.

When φ is not "sufficiently" small, then, as shown in [4, 7], GE (4) may
loose its metric regularity at the solution. Consequently, in the vicinity of the
solution the linear system in the NS becomes unsolvable. The GE (4) may,
however, also have multiple isolated solutions, around which it is strongly
metrically regular. In such a case, expectantly, the semismooth* Newton
method works well.

As already mentioned, strong metric regularity around the solution is not
necessary for the convergence. The method has potential to converge also in
case of non-isolated solutions, which opens further application areas.

The authors appreciate the help of P. Beremlijski, J. Haslinger, J.
Jarušek and T. Ligurský.
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