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Definitions

Let X be a Hilbert spaces and let f : X ! R [ {+1} be a proper lsc convex function.

The subdi↵erential of f at x : @f (x) =
n
all subgradients of f at x

o
, where a vector u is called

a subgradient of f at x if

8y 2 X , f (y) � f (x) + hu, y � xi .

The indicator function of a set ⌦ ⇢ X is ◆⌦(x) :=

(
0, if x 2 ⌦,

+1, otherwise.

The subdi↵erential of ◆⌦ is the normal cone operator of ⌦

@(◆⌦)(x) = N⌦(x) =
n
u 2 X , hu, z � xi  0, 8z 2 ⌦

o
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Fermat’s Stationary

Let f , g : X ! R [ {+1} be proper lsc convex functions. The Fermat’s stationary condition:

x solves min
x2X

f (x) () 0 = rf (x) (f is di↵erentiable)

x solves min
x2X

f (x) () 0 2 @f (x) (f is not di↵erentiable)

x solves min f (x) + g(x) (= 0 2 @f (x) + @g(x)

x solves min
x2⌦

f (x) () x solves min f (x) + ◆⌦(x) (= 0 2 @f (x) + N⌦(x)

x 2 ⌦1 \ ⌦2 () x solves min
x2X

◆⌦1(x) + ◆⌦2(x) (= 0 2 N⌦1(x) + N⌦2(x)

So we may consider the inclusion problem: find an x such that

0 2 Ax + Bx where A,B : X ◆ X are set-valued operators.
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Resolvent and Relaxed Resolvent

Let A : X ◆ X be an operator.

The resolvent of A is defined by JA := (Id+A)�1

The reflected resolvent of A is defined by RA := J2
A
= 2JA � Id

Let � > 0, the �-relaxed resolvent of A is defined by J�
A
:= (1� �) Id+�JA

y 2 JAx () y = (Id+A)�1x () x 2 y + Ay

x
y

z

2 Ay

The resolvent of the normal cone operator is the projection:

JN⌦(x) = P⌦(x) =
n
y 2 ⌦ , kx � yk = min

z2⌦
kx � zk

o
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The Douglas–Rachford (DR) Algorithm

xk+1 = Txk where T =
1

2
(Id+RBRA).

Illustration:

y = JAxk , z = RAx , w = JBz , t = RBz , xk+1 =
1

2
(xk + t).

xk

y

z

w

xk+1

t

2 Ay

2 Bw

I If xk+1 = xk , then y = w and 0 2 Ay + Bw . i.e., y is a solution.
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Sum of Finitely Many Operators

Consider the problem of finding an x such that

0 2 A1x + A2x + · · ·+ Amx .

Let x := (x1, . . . , xm). Define

A := A1 ⇥ · · ·⇥ Am : x 7! A1x1 ⇥ · · ·⇥ Amxm

and B(x) := N�(x) where � :=
n
(x , . . . , x) 2 Xm

o
.

Then
0 2 A1x + A2x + · · ·+ Amx () 0 2 A(x) + B(x).

The resolvents

JA(x) = JA1x1 ⇥ · · ·⇥ JAm
xm,

JB(x) = (x , . . . , x) where x =
1

m
(x1 + · · ·+ xm).
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An Application [Koch, Ph ’19]

A common problem in civil engineering design is the grading of a parking lot or a building pad.
Within a given area, the engineer has to define grading slopes such that

I the grading site fits with existing structures.

I the drainage requirements on the surface are met.

I safety and comfort are taken into account.

I the engineer would like to change the existing surface as little as possible, in order to save
on earthwork costs.

The grading site is usually represented as a Triangulated Irregular Network (TIN). The engineer
is interested in adjusting the heights of the vertices in the triangulated grid, so that the newly
obtained mesh-grid satisfies the above requirements.
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2D View of a Construction Site

# of vertices ⇡ 5, 000

# of triangles: ⇡ 7, 000
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3D View of a Construction Site

The Triangular Mesh:

V = {pj = (pj1, pj2, zj) 2 R3}, |V | = n,

E ⇢
n
pipj

��� pi , pj 2 V
o
,

T ⇢
n
pipjpk

��� pipj , pjpk , pkpi 2 E
o
.

The variables are the elevations of the ver-
tices, written as a vector

z = (z1, z2, . . . , zn) 2 Rn
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Constraints and Costs

I Interpolation constraints, e.g., several values zi ’s are predetermined.

Cinterpolation :=
n
z 2 Rn , zj = yj for some vertex j

o
.

I Edge-slope constraints, e.g., slopes of several edges must be within a range.

Cedge-slope :=
n
z 2 Rn , ↵  slope(e)  � for some edge e

o
.

I Edge-alignment constraints, e.g., slopes of several edges must equal.

Cedge-alignment :=
n
z 2 Rn , slope(e1) = slope(e2) for some edges e1, e2

o
.

I Low-point constraints, e.g., minimum slope at drainage points.

Clow-point :=
n
z 2 Rn , slope(e) � ↵ for all e connected to a low-point

o
.
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Constraints and Costs

I Surface-alignment constraints, e.g., slopes of several triangles must equal.

Csurface-alignment :=
n
z 2 Rn , slope(�1) = slope(�2) for some triangles �1,�2

o
.

I Surface orientation constraints

Csurface-orientation :=
n
z 2 Rn , slope(�) = \(~n�, ~q)  ↵ for some triangle �

o
.

Special case: surface maximum slope: \(~n�,~e3)  ↵, ~e3 = (0, 0, 1) 2 R3.

Special case: surface minimum slope: \(~n�, ~d)  ↵, ~d = (d1, d2, 0) 2 R3.

The cost function F can be a linear combination of

I Earth work total volume (i.e., cut and fill).

I Earth work net volume (dirt from cutting can be used for filling).

I Curvatures between adjacent triangles.
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The Optimization Problem

min
X

i

↵iFi (z) subject to z 2 C :=
\

i

Ci .

By replacing Ci ’s with the indicator functions, this is equivalent to

min
z

mX

j=1

fj(z) where fj 2 {↵iFi , ◆Ci
}.

Given zk = (zk,i ) 2 Xm, the DR iteration (in product space) is defined by

xk :=
1

m

X

i

xk,i ,

8i = 1, . . . ,m : yk,i := J�@fi (2xk,i � xk,i ) = prox�fi (2xk,i � xk,i ),

8i = 1, . . . ,m : xk+1,i := xk,i � xk + yk,i ,

(new iteration) zk+1 := (xk+1,i )i2m.

Then the (xk)k2N converges to a solution.
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Monotonicity and Firm Nonexpansiveness

An operator A is monotone if 8(a, u), (b, v) 2 grA, ha� b, u � vi � 0.

A is maximally monotone if there is no monotone operator Â such that grA ( gr Â.

An operator T is firmly expansive (on its domain) if for all x , y 2 domT ,

kTx � Tyk2  kx � yk2 � k(Id�T )x � (Id�T )yk2

a

u

b

v

a� b

u� v

Tx

x

Ty

y

Tx� Ty

(x� Tx)� (y � Ty)x� y

A is monotone () T = (Id+A)�1 is firmly nonexpansive

A is maximally monotone () dom(Id+A)�1 = X
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Convergence Analysis

Theorem ([Lions-Mercier 1979])

Let A,B : X ◆ X be two maximally monotone operators such that zer(A+ B) 6= ?. Let (xk)
be a sequence generated by the Douglas–Rachford algorithm

xk+1 = Txk , T =
1

2
(Id+RBRA).

Then xk converges weakly to a fixed point x 2 FixT = FixRBRA and JAx 2 zer(A+ B).

Theorem ([Svaiter ’11])

The sequence JAxk converges weakly to JAx .

Theorem ([Bauschke ’13])

The sequence JAxk converges weakly to JAx . (The proof is based on Demiclosedness Principle).
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The Adaptive DR Algorithm (aDR)

xk+1 = Txk , T = (1� ) Id+R2R1,

where J1 := J�A, J2 := J�B

R1 := (1� �) Id+�J1, R2 := (1� µ) Id+µJ2,

� > 0, � > 0, (�� 1)(µ� 1) = 1, � = �(�� 1),  2 ]0, 1[.

Illustration:

y = J1xk , z = R1xk , w = J2z , t = R2z ,

xk+1 = (1� )xk + t.

If xk+1 = xk 2 FixT , then

y = w and 0 2 Ay + Bw ,

i.e., y is a solution.

xk
y

z

w

xk+1

t

2 �A
y

2 �Bw

I If � = µ = 2, � = � > 0, then the adaptive DR becomes the classical DR.
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Generalized Monotonicity and Comonotonicity

Let A : X ◆ X and ↵ 2 R. We say that A is

↵-monotone if 8(x , u), (y , v) 2 grA, hx � y , u � vi � ↵kx � yk2,
↵-comonotone if 8(x , u), (y , v) 2 grA, hx � y , u � vi � ↵ku � vk2,

and maximally ↵-monotone/comonotone if there is no ↵-monotone/comonotone operator
whose graph strictly contains grA.

I ↵ = 0: monotone.

I ↵ > 0: strongly monotone / strongly comonotone (= cocoercive).

I ↵ < 0: weakly monotone/ weakly comonotone.

Apply the aDR to the problem: find x such that 0 2 Ax + Bx where

I A and B are maximally ↵- and �- monotone with ↵+ � � 0.

I A and B are maximally ↵- and �- comonotone with ↵+ � � 0.
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Weak and Strong Monotonicity

Note that:
A is ↵1-monotone () A+ ↵2 Id is (↵1 + ↵2)-monotone.

So, if A is ↵-monotone and B is �-monotone with ↵+ � � 0, then

A+ B =
⇣
A� ↵� �

2
Id
⌘
+
⇣
B +

↵� �

2
Id
⌘
=: eA+ eB .

Here, eA and eB are both
�↵+�

2

�
-monotone, in particular, monotone.

So, one can simply solve the problem

0 2 eAx + eBx

using available tools for monotone operators, e.g., the classical DR algorithm.

22



Convergence of the Adaptive DR Algorithm

Theorem [Dao-Ph ’19]: Let X be a Euclidean space. Assume A,B : X ◆ X are respectively
maximally ↵-monotone and maximally �-monotone with zer(A+ B) 6= ?. Let
� > 0, � > 0,� > 1, µ > 1,  2 ]0, 1[, and suppose further that

↵+ � � 0, 1 + 2�↵ > 0,

2� 2��  µ  2 + 2�↵,

(�� 1)(µ� 1) = 1, � = (�� 1)�.

Let (xk)k2N be a sequence generated by the adaptive DR algorithm. Then (xk) converges
weakly to a point x 2 FixT with J1x 2 zer(A+ B).

Theorem [Dao-Ph ’19]: Let � = µ = 2 and � = � > 0. Suppose that

↵+ � > 0 , 1 + �
↵�

↵+ �
>  > 0.

Let (xk)k2N be generated by the classical DR algorithm. Then (xk) converges weakly to a point
x 2 FixT with J1x 2 zer(A+ B).

23



Sketch of the Proof

Under the assumptions, we derive

kTx � Tyk2  kx � yk2 � 1� 


k(Id�T )x � (Id�T )yk2

� µ
�
2 + 2�↵� µ

�
kJ1x � J1yk2

� µ
�
µ� (2� 2��)

�
kJ2R1x � J2R1yk2.

Since 2� 2��  µ  2 + 2�↵, we obtain

kTx � Tyk2  kx � yk2 � 1� 


k(Id�T )x � (Id�T )yk2,

which allows for the convergence of the adaptive DR algorithm via the Krasnosel’skĭı–Mann
Theorem.
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Remark: Under- and Over-Reflecting the Resolvents

Let ↵ > 0 and suppose that A is maximally ↵-monotone (“strong”),
B is maximally (�↵)-monotone (“weak”).

Then
µ = 2 + 2�↵ > 2 and � =

µ

µ� 1
< 2.

I Under-reflect the resolvent of the strongly monotone operator A (use � < 2).

I Over-reflect the resolvent of the weakly monotone operator B (use µ > 2).

xk

y
z

w

xk+1

t

2 �A
y

2 �Bw
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Convergence Analysis via Conical Averagedness

Let ✓ > 0, we say that an operator T : X ! X is conically ✓-averaged if

T = (1� ✓) Id+✓N for some nonexpansive operator N.

✓ = 1 : nonexpansive

✓ = 1
2 : firmly nonexpansive

✓ 2 ]0, 1[ : averaged

Proposition (Compositions of two conically averaged operators) [Bartz-Dao-Ph ’19]

Let T1,T2 : X ! X be conically ✓1-averaged and conically ✓2-averaged. Suppose that either
✓1 = ✓2 = 1 or ✓1✓2 < 1. Let also ! 2 Rr {0}. Then

T :=
⇣ 1

!
T2

⌘�
!T1

�
is conically ✓-averaged with ✓ :=

(
1, ✓1 = ✓2 = 1,
✓1+✓2�2✓1✓2

1�✓1✓2
, ✓1✓2 < 1.
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Adaptive DR (cont.)

Theorem [Bartz-Dao-Ph ’19]:

Assume A,B are maximally ↵-monotone and maximally �-monotone, 1 + 2�↵ > 0, µ > 1, and

↵+ � � 0 and 2 + 2�↵� "  µ  2 + 2�↵+ " with " = 2
p
�(1 + �↵)(↵+ �),

and either three strict inequalities happen simultaneously or none of them happens. Define

� =
µ

µ� 1
, � =

�

µ� 1
, 0 <  < ⇤,

where

⇤ :=

(
1, ↵+ � = 0,
4��(1+�↵)(1+��)�(�+�)2

2��(�+�)(↵+�) , ↵+ � > 0.

Let (xk)k2N be a sequence generated by the aDR algorithm.

Then (xk) converges weakly to a fixed point x and J1x 2 zer(A+ B).

27



Adaptive DR (cont.)

Theorem [Bartz-Dao-Ph ’19]:

Assume A,B are maximally ↵-comonotone and maximally �-comonotone, � + 2↵ > 0, and

↵+ � � 0 and � + 2↵� "  �  � + 2↵+ " with " = 2
p
(� + ↵)(↵+ �),

and either three strict inequalities happen simultaneously or none of them happens. Define

� = 1 +
�

�
, µ = 1 +

�

�
, 0 <  < ⇤,

where

⇤ :=

(
1, ↵+ � = 0,
4(�+↵)(�+�)�(�+�)2

2(�+�)(↵+�) , ↵+ � > 0.

Let (xk)k2N be a sequence generated by the aDR algorithm.

Then (xk) converges weakly to a fixed point x and J1x 2 zer(A+ B).
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Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bauschke ’13] (Demiclosedness principle for firmly nonexpansive operators)

Let T1,T2 : X ! X be firmly nonexpansive operators, let (xn)n2N and (zn)n2N be sequences in
X . Suppose that as n ! +1,

xn * x⇤, zn * z⇤,

T1xn * y⇤, T2zn * y⇤,

(xn � T1xn) + (zn � T2zn) ! (x⇤ � y⇤) + (z⇤ � y⇤),

T1xn � T2zn ! 0.

Then y⇤ = T1x⇤ = T2z⇤.
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Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bartz-Campoy-Ph ’20] (Demiclosedness principle for cocoercive operators)

Let T1 : X ! X and T2 : X ! X be respectively �1- and �2-cocoercive1, let (xn)n2N and
(zn)n2N be sequences in X , and let ⇢1, ⇢2 2 R++ be such that

⇢1�1 + ⇢2�2
⇢1 + ⇢2

� 1.

Suppose that as n ! +1,

xn * x⇤, zn * z⇤,

T1xn * y⇤, T2zn * y⇤,

⇢1(xn � T1xn) + ⇢2(zn � T2zn) ! ⇢1(x
⇤ � y⇤) + ⇢2(z

⇤ � y⇤),

T1xn � T2zn ! 0.

Then y⇤ = T1x⇤ = T2z⇤.

1Firm nonexpansiveness is equivalent to 1-cocoercivity
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Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bartz-Campoy-Ph ’20] (Demiclosedness principle for averaged operators)

Let T1,T2 : X ! X be respectively ✓1- and ✓2-averaged where ✓1, ✓2 2 ]0, 1[. Let (xn)k2N and
(zn)k2N be sequences in X and let ⇢1, ⇢2 > 0 be such that

✓1 
⇢2

⇢1 + ⇢2
and ✓2 

⇢1
⇢1 + ⇢2

.

Suppose that as n ! +1,

xn * x⇤ and zn * z⇤,

T1(xn) * y⇤ and T2(zn) * y⇤,

⇢1(xn � T1(xn)) + ⇢2(zn � T2(zn)) ! 0,

T1(xn)� T2(zn) ! 0.

Then T1(x⇤) = T2(z⇤) = y⇤.
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Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bartz-Campoy-Ph ’20] (Monotone operators)

Suppose that A and B are maximally ↵-monotone and maximally �-monotone, respectively,
where ↵+� � 0 and zer(A+B) 6= ?. Suppose the parameters �, �,�, µ, > 0 are appropriately
chosen. Let (xk)k2N be generated the aDR. Then

J�A(xk) * J�A(x
⇤) 2 zer(A+ B), where x⇤ is the weak limit of xk .

Theorem [Bartz-Campoy-Ph ’20] (Comonotone operators)

Suppose that A and B are maximally ↵-comonotone and maximally �-comonotone, respectively,
where ↵+� � 0 and zer(A+B) 6= ?. Suppose the parameters �, �,�, µ, > 0 are appropriately
chosen. Let (xk)k2N be generated the aDR. Then

J�A(xk) * J�A(x
⇤) 2 zer(A+ B), where x⇤ is the weak limit of xk .
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An Adaptive Alternating Directions Method of Multipliers (aADMM)

The Alternating Directions Method of Multipliers (ADMM) is a well studied splitting algorithm
for the optimization problem

min f (x) + g(z)

s.t. Mx = z , x 2 Rn , z 2 Rm,

where f : Rn ! R, g : Rm ! R are proper, lsc, convex functions, and M 2 Rm⇥n.

Given an initial point (x0, y0, y0) and a parameter � > 0, the ADMM generates

xk+1 = argmin
x2Rn

L�(x , z
k , yk),

zk+1 = argmin
z2Rm

L�(x
k+1, z , yk),

yk+1 = yk + �(Mxk+1 � zk+1),

where L�(x , z , y) = f (x) + g(z) + hy ,Mx � zi+ �

2
kMx � zk2 is the augmented Lagrangian

associated with (P).
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The aADMM [Bartz-Campoy-Ph ’21]

Let (x0, z0, y0) 2 Rn ⇥ Rm ⇥ Rm be an initial point and let �, � > 0. The aADMM iterates as
follows

xk+1 = argmin
x2Rn

L�(x , z
k , yk) = argmin

x2Rn

⇢
f (x) +

�

2

���Mx � zk +
yk

�

���
2
�
,

zk+1 = argmin
z2Rm

L�(x
k+1, z , yk) = argmin

z2Rm

⇢
g(z) +

�

2

���Mxk+1 � z +
yk

�

���
2
�
,

yk+1 = yk + �(Mxk+1 � zk+1),

where the augmented Lagrangian is

L�(x , z , y) = f (x) + g(z) + hy ,Mx � zi+ �

2
kMx � zk2.
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Weak and Strong Convexity

We say that f is ↵-convex if f � ↵
2 k · k

2 is convex, equivalently, if 8x , y 2 Rn, � 2 [0, 1],

f ((1� �)x + �y)  �f (x) + (1� �)f (y)� ↵

2
�(1� �)kx � yk2.

↵ > 0: We also say that f is strongly convex.
↵ < 0: We also say that f is weakly convex (or hypoconvex).

The function f is coercive if
lim

kxk!1
f (x) = +1

and supercoercive if

lim
kxk!1

f (x)

kxk = +1.

It is known that

strong convexity =) supercoercivity =) coercivity.
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More Definitions

The Fréchet subdi↵erential of f at x is the set

b@f (x) :=

8
<

:u 2 Rn : lim inf
y!x

y 6=x

f (y)� f (x)� hu, y � xi
ky � xk � 0

9
=

; .

The recession function of f is defined by

rec f : Rn ! ]�1,+1] : y 7! sup
x2dom f

{f (x + y)� f (x)},

The Fenchel conjugate of f is defined by

f ⇤ : Rn ! ]�1,+1] : u 7! sup
x2Rn

{hu, xi � f (x)}.
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Convergence of the aADMM [Bartz-Campoy-Ph ’21]

Let M 2 Rm⇥n be a nonzero matrix, let f : Rn ! ]�1,+1] be proper, lsc and ↵-convex, and let
g : Rm ! ]�1,+1] be proper, lsc and �-convex with

↵ � 0 and ↵+ �kMk2 � 0.

Suppose that one of the following conditions holds:

(A.1) the Lagrangian L0 has a critical point,

(A.2) the Lagrangian L0 has a saddle point,

(A.3) problem (P) has an optimal solution and 0 2 ri(dom g �M(dom f ));

and that one of the following conditions holds:

(B.1) 0 2 ri(dom f ⇤ � ranMT ),

(B.2) ri(ran @f ) \ ranMT 6= ?,

(B.3) (rec f )(x) > 0 for all x 2 kerM \ {x 2 Rn : �(rec f )(�x) = (rec f )(x) = 0},
(B.4) f is coercive (in particular, supercoercive),

(B.5) ↵ > 0 (i.e., f is strongly convex),

(B.6) MTM is invertible.
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Convergence of the aADMM (cont.)

Let � > max{0,�2�} and set

� = � + 2�, if ↵+ �kMk2 = 0,

� 2 ]max{0, � + 2� ���}, � + 2� +��[ , if ↵+ �kMk2 > 0;

where

�� :=
1

kMk

q
2 (↵+ �kMk2) (� + 2�).

Set (x0, z0, y0) 2 Rn ⇥ Rm ⇥ Rm and let (xk , zk , yk)k2N be generated by the aADMM. Then

Mxk ! Mx?, zk ! z? and yk ! y?

where (x?, z?, y?) is a critical point of L0(x , z , y). Consequently, (x?, z?) is a solution of (P). If,
in particular, (B.5) or (B.6) holds, then xk ! x?.
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Convergence of the aADMM: Sketch of the Proof

Define

Q : Rm ◆ Rm : y 7!
n
�Mx : �MT y 2 @f (x)

o
= (�M) � (@f )�1 � (�MT )(y),

S : Rm ◆ Rm : y 7!
n
z : y 2 b@g(z)

o
= (b@g)�1(y),

Then the sequence wk := yk + �zk is generated by the aDR algorithm with parameters �, �
applied to S and Q.

Under the assumptions made:

I zer(Q + S) 6= ?.

I Q is maximally ↵
kMk2 -comonotone, S is maximally �-comonotone, and ↵

kMk2 + � � 0.

Finally, apply the convergence result of the aDR for two comonotone operators.
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