Variational Analysis and Optimisation Webinar Series

Adaptive Splitting Algorithms

Hung Phan
Mathematical Sciences
University of Massachusetts Lowell

May 11 or 12， 2021

Introduction

The Douglas-Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas-Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

Introduction

The Douglas-Rachford Algorithm (DR)
An Application
Convergence Analysis of the DR Algorithm
An Adaptive Douglas-Rachford Algorithm (aDR)
An Adaptive Alternating Directions Method of Multipliers (aADMM)

Definitions

Let X be a Hilbert spaces and let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper Isc convex function.
The subdifferential of f at $x: \partial f(x)=\{$ all subgradients of f at $x\}$, where a vector u is called a subgradient of f at x if

$$
\forall y \in X, \quad f(y) \geq f(x)+\langle u, y-x\rangle
$$

The indicator function of a set $\Omega \subset X$ is $\quad \iota_{\Omega}(x):= \begin{cases}0, & \text { if } x \in \Omega, \\ +\infty, & \text { otherwise. }\end{cases}$
The subdifferential of ι_{Ω} is the normal cone operator of Ω

$$
\partial\left(\iota_{\Omega}\right)(x)=N_{\Omega}(x)=\{u \in X,\langle u, z-x\rangle \leq 0, \forall z \in \Omega\}
$$

Let $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper Isc convex functions. The Fermat's stationary condition:

$$
\begin{aligned}
& \bar{x} \text { solves } \min _{x \in X} f(x) \quad \Longleftrightarrow 0=\nabla f(\bar{x}) \quad(f \text { is differentiable }) \\
& \bar{x} \text { solves } \min _{x \in X} f(x) \quad \Longleftrightarrow 0 \in \partial f(\bar{x}) \quad \text { (} f \text { is not differentiable) }
\end{aligned}
$$

\bar{x} solves $\min f(x)+g(x) \Longleftarrow 0 \in \partial f(\bar{x})+\partial g(\bar{x})$

$$
\begin{aligned}
\bar{x} \text { solves } \min _{x \in \Omega} f(x) & \Longleftrightarrow \bar{x} \text { solves } \min f(x)+\iota_{\Omega}(x) \Longleftarrow 0 \in \partial f(\bar{x})+N_{\Omega}(\bar{x}) \\
\bar{x} \in \Omega_{1} \cap \Omega_{2} & \Longleftrightarrow \bar{x} \text { solves } \min _{x \in X} \iota_{\Omega_{1}}(x)+\iota_{\Omega_{2}}(x) \Longleftarrow 0 \in N_{\Omega_{1}}(\bar{x})+N_{\Omega_{2}}(\bar{x})
\end{aligned}
$$

So we may consider the inclusion problem: find an x such that

$$
0 \in A x+B x \quad \text { where } A, B: X \rightrightarrows X \text { are set-valued operators. }
$$

Introduction

The Douglas-Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas-Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

Resolvent and Relaxed Resolvent

Let $A: X \rightrightarrows X$ be an operator.
The resolvent of A is defined by

$$
J_{A}:=(\operatorname{ld}+A)^{-1}
$$

The reflected resolvent of A is defined by

$$
R_{A}:=J_{A}^{2}=2 J_{A}-\mathrm{Id}
$$

Let $\lambda>0$, the λ-relaxed resolvent of A is defined by $J_{A}^{\lambda}:=(1-\lambda) \operatorname{ld}+\lambda J_{A}$

$$
y \in J_{A} x \Longleftrightarrow y=(\mathrm{Id}+A)^{-1} x \Longleftrightarrow x \in y+A y
$$

$$
z
$$

The resolvent of the normal cone operator is the projection:

$$
J_{N_{\Omega}}(x)=P_{\Omega}(x)=\left\{y \in \Omega,\|x-y\|=\min _{z \in \Omega}\|x-z\|\right\}
$$

$$
x_{k+1}=T x_{k} \quad \text { where } \quad T=\frac{1}{2}\left(\mathrm{Id}+R_{B} R_{A}\right)
$$

Illustration:

$$
y=J_{A} x_{k}, \quad z=R_{A} x, \quad w=J_{B} z, \quad t=R_{B} z, \quad x_{k+1}=\frac{1}{2}\left(x_{k}+t\right) .
$$

- If $x_{k+1}=x_{k}$, then $y=w$ and $0 \in A y+B w$. i.e., y is a solution.

Sum of Finitely Many Operators

Consider the problem of finding an x such that

$$
0 \in A_{1} x+A_{2} x+\cdots+A_{m} x
$$

Let $\mathrm{x}:=\left(x_{1}, \ldots, x_{m}\right)$. Define

$$
\begin{aligned}
& \boldsymbol{A}:=A_{1} \times \cdots \times A_{m}: \times \mapsto A_{1} x_{1} \times \cdots \times A_{m} x_{m} \\
& \text { and } \quad \boldsymbol{B}(x):=N_{\Delta}(x) \text { where } \Delta:=\left\{(x, \ldots, x) \in X^{m}\right\} \text {. }
\end{aligned}
$$

Then

$$
0 \in A_{1} x+A_{2} x+\cdots+A_{m} x \quad \Longleftrightarrow \quad 0 \in \boldsymbol{A}(x)+\boldsymbol{B}(x)
$$

The resolvents

$$
\begin{aligned}
& J_{\boldsymbol{A}}(\mathrm{x})=J_{A_{1} x_{1}} \times \cdots \times J_{A_{m}} x_{m}, \\
& J_{\boldsymbol{B}}(\mathrm{x})=(x, \ldots, x) \quad \text { where } \quad x=\frac{1}{m}\left(x_{1}+\cdots+x_{m}\right) .
\end{aligned}
$$

An Application [Koch, Ph '19]

A common problem in civil engineering design is the grading of a parking lot or a building pad. Within a given area, the engineer has to define grading slopes such that

- the grading site fits with existing structures.
- the drainage requirements on the surface are met.
- safety and comfort are taken into account.
- the engineer would like to change the existing surface as little as possible, in order to save on earthwork costs.
The grading site is usually represented as a Triangulated Irregular Network (TIN). The engineer is interested in adjusting the heights of the vertices in the triangulated grid, so that the newly obtained mesh-grid satisfies the above requirements.

2D View of a Construction Site

$\#$ of vertices $\approx 5,000$

\# of triangles: $\approx 7,000$

3D View of a Construction Site

The Triangular Mesh:

$$
\begin{aligned}
& V=\left\{p_{j}=\left(p_{j 1}, p_{j 2}, z_{j}\right) \in \mathbb{R}^{3}\right\},|V|=n, \\
& E \subset\left\{p_{i} p_{j} \mid p_{i}, p_{j} \in V\right\}, \\
& T \subset\left\{p_{i} p_{j} p_{k} \mid p_{i} p_{j}, p_{j} p_{k}, p_{k} p_{i} \in E\right\} .
\end{aligned}
$$

The variables are the elevations of the vertices, written as a vector

$$
z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{R}^{n}
$$

Constraints and Costs

- Interpolation constraints, e.g., several values z_{i} 's are predetermined.

$$
C_{\text {interpolation }}:=\left\{z \in \mathbb{R}^{n}, z_{j}=y_{j} \text { for some vertex } j\right\}
$$

- Edge-slope constraints, e.g., slopes of several edges must be within a range.

$$
C_{\text {edge-slope }}:=\left\{z \in \mathbb{R}^{n}, \alpha \leq \operatorname{slope}(e) \leq \beta \text { for some edge } e\right\} .
$$

- Edge-alignment constraints, e.g., slopes of several edges must equal.

$$
C_{\text {edge-alignment }}:=\left\{z \in \mathbb{R}^{n}, \text { slope }\left(e_{1}\right)=\operatorname{slope}\left(e_{2}\right) \text { for some edges } e_{1}, e_{2}\right\}
$$

- Low-point constraints, e.g., minimum slope at drainage points.

$$
C_{\text {low-point }}:=\left\{z \in \mathbb{R}^{n}, \text { slope }(e) \geq \alpha \text { for all e connected to a low-point }\right\} .
$$

Constraints and Costs

- Surface-alignment constraints, e.g., slopes of several triangles must equal.

$$
C_{\text {surface-alignment }}:=\left\{z \in \mathbb{R}^{n}, \text { slope }\left(\Delta_{1}\right)=\operatorname{slope}\left(\Delta_{2}\right) \text { for some triangles } \Delta_{1}, \Delta_{2}\right\}
$$

- Surface orientation constraints

$$
C_{\text {surface-orientation }}:=\left\{z \in \mathbb{R}^{n}, \text { slope }(\Delta)=\angle\left(\vec{n}_{\Delta}, \vec{q}\right) \leq \alpha \text { for some triangle } \Delta\right\} .
$$

Special case: surface maximum slope: $\angle\left(\vec{n}_{\Delta}, \vec{e}_{3}\right) \leq \alpha, \overrightarrow{\mathrm{e}}_{3}=(0,0,1) \in \mathbb{R}^{3}$.
Special case: surface minimum slope: $\angle\left(\vec{n}_{\Delta}, \vec{d}\right) \leq \alpha, \vec{d}=\left(d_{1}, d_{2}, 0\right) \in \mathbb{R}^{3}$.
The cost function F can be a linear combination of

- Earth work total volume (i.e., cut and fill).
- Earth work net volume (dirt from cutting can be used for filling).
- Curvatures between adjacent triangles.

$$
\min \sum_{i} \alpha_{i} F_{i}(z) \text { subject to } z \in C:=\bigcap_{i} C_{i} .
$$

By replacing C_{i} 's with the indicator functions, this is equivalent to

$$
\min _{z} \sum_{j=1}^{m} f_{j}(z) \quad \text { where } \quad f_{j} \in\left\{\alpha_{i} F_{i}, \iota c_{i}\right\} .
$$

Given $z_{k}=\left(z_{k, i}\right) \in X^{m}$, the DR iteration (in product space) is defined by

$$
\begin{array}{ll}
& \bar{x}_{k}:=\frac{1}{m} \sum_{i} x_{k, i}, \\
\forall i=1, \ldots, m: & y_{k, i}:=J_{\gamma \partial f_{i}}\left(2 \bar{x}_{k, i}-x_{k, i}\right)=\operatorname{prox}_{\gamma f_{i}}\left(2 \bar{x}_{k, i}-x_{k, i}\right), \\
\forall i=1, \ldots, m: & x_{k+1, i}:=x_{k, i}-\bar{x}_{k}+y_{k, i}, \\
\text { (new iteration) } & z_{k+1}:=\left(x_{k+1, i}\right)_{i \in m} .
\end{array}
$$

Then the $\left(\bar{x}_{k}\right)_{k \in \mathbb{N}}$ converges to a solution.

The Douglas－Rachford Algorithm（DR）

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas－Rachford Algorithm（aDR）

An Adaptive Alternating Directions Method of Multipliers（aADMM）

Monotonicity and Firm Nonexpansiveness

An operator A is monotone if $\forall(a, u),(b, v) \in \operatorname{gr} A, \quad\langle a-b, u-v\rangle \geq 0$.
A is maximally monotone if there is no monotone operator \hat{A} such that $\operatorname{gr} A \subsetneq \operatorname{gr} \hat{A}$.
An operator T is firmly expansive (on its domain) if for all $x, y \in \operatorname{dom} T$,

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|(\mathrm{Id}-T) x-(\mathrm{Id}-T) y\|^{2}
$$

A is monotone $\Longleftrightarrow T=(\mathrm{Id}+A)^{-1}$ is firmly nonexpansive A is maximally monotone $\Longleftrightarrow \operatorname{dom}(\mathrm{Id}+A)^{-1}=X$

Theorem ([Lions-Mercier 1979])

Let $A, B: X \rightrightarrows X$ be two maximally monotone operators such that $\operatorname{zer}(A+B) \neq \varnothing$. Let $\left(x_{k}\right)$ be a sequence generated by the Douglas-Rachford algorithm

$$
x_{k+1}=T x_{k} \quad, \quad T=\frac{1}{2}\left(\operatorname{ld}+R_{B} R_{A}\right) .
$$

Then x_{k} converges weakly to a fixed point $\bar{x} \in \operatorname{Fix} T=\operatorname{Fix} R_{B} R_{A}$ and $J_{A} \bar{x} \in \operatorname{zer}(A+B)$.
Theorem ([Svaiter '11])
The sequence $J_{A} x_{k}$ converges weakly to $J_{A} \bar{x}$.
Theorem ([Bauschke '13])
The sequence $J_{A} x_{k}$ converges weakly to $J_{A} \bar{x}$. (The proof is based on Demiclosedness Principle).

Introduction

The Douglas-Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas-Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

The Adaptive DR Algorithm (aDR)

$$
x_{k+1}=T x_{k} \quad, \quad T=(1-\kappa) \operatorname{ld}+\kappa R_{2} R_{1},
$$

where $J_{1}:=J_{\gamma A}, J_{2}:=J_{\delta B}$

$$
\begin{aligned}
& R_{1}:=(1-\lambda) \operatorname{ld}+\lambda J_{1}, R_{2}:=(1-\mu) \operatorname{Id}+\mu J_{2}, \\
& \gamma>0, \delta>0, \quad(\lambda-1)(\mu-1)=1, \quad \delta=\gamma(\lambda-1), \quad \kappa \in] 0,1[.
\end{aligned}
$$

Illustration:

$$
\begin{aligned}
& y=J_{1} x_{k}, z=R_{1} x_{k}, w=J_{2} z, t=R_{2} z, \\
& x_{k+1}=(1-\kappa) x_{k}+\kappa t .
\end{aligned}
$$

If $x_{k+1}=x_{k} \in \operatorname{Fix} T$, then

$$
y=w \text { and } 0 \in A y+B w,
$$

i.e., y is a solution.

- If $\lambda=\mu=2, \gamma=\delta>0$, then the adaptive DR becomes the classical DR,

Let $A: X \rightrightarrows X$ and $\alpha \in \mathbb{R}$. We say that A is

$$
\begin{aligned}
& \alpha \text {-monotone if } \quad \forall(x, u),(y, v) \in \operatorname{gr} A, \quad\langle x-y, u-v\rangle \geq \alpha\|x-y\|^{2}, \\
& \alpha \text {-comonotone if } \quad \forall(x, u),(y, v) \in \operatorname{gr} A, \quad\langle x-y, u-v\rangle \geq \alpha\|u-v\|^{2},
\end{aligned}
$$

and maximally α-monotone/comonotone if there is no α-monotone/comonotone operator whose graph strictly contains gr A.

- $\alpha=0$: monotone.
- $\alpha>0$: strongly monotone / strongly comonotone (= cocoercive).
- $\alpha<0$: weakly monotone/ weakly comonotone.

Apply the aDR to the problem: find x such that $0 \in A x+B x$ where

- A and B are maximally α - and β - monotone with $\alpha+\beta \geq 0$.
- A and B are maximally α - and β - comonotone with $\alpha+\beta \geq 0$.

Weak and Strong Monotonicity

Note that:

$$
\boldsymbol{A} \text { is } \alpha_{1} \text {-monotone } \Longleftrightarrow A+\alpha_{2} \text { Id is }\left(\alpha_{1}+\alpha_{2}\right) \text {-monotone. }
$$

So, if A is α-monotone and B is β-monotone with $\alpha+\beta \geq 0$, then

$$
A+B=\left(A-\frac{\alpha-\beta}{2} \mathrm{Id}\right)+\left(B+\frac{\alpha-\beta}{2} \mathrm{Id}\right)=: \widetilde{A}+\widetilde{B}
$$

Here, \widetilde{A} and \widetilde{B} are both $\left(\frac{\alpha+\beta}{2}\right)$-monotone, in particular, monotone.
So, one can simply solve the problem

$$
0 \in \widetilde{A} x+\widetilde{B} x
$$

using available tools for monotone operators, e.g., the classical DR algorithm.

Convergence of the Adaptive DR Algorithm

Theorem [Dao-Ph'19]: Let X be a Euclidean space. Assume $A, B: X \rightrightarrows X$ are respectively maximally α-monotone and maximally β-monotone with $\operatorname{zer}(A+B) \neq \varnothing$. Let $\gamma>0, \delta>0, \lambda>1, \mu>1, \kappa \in] 0,1[$, and suppose further that

$$
\begin{aligned}
& \alpha+\beta \geq 0, \quad 1+2 \gamma \alpha>0 \\
& 2-2 \gamma \beta \leq \mu \leq 2+2 \gamma \alpha \\
& (\lambda-1)(\mu-1)=1, \quad \delta=(\lambda-1) \gamma
\end{aligned}
$$

Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be a sequence generated by the adaptive DR algorithm. Then $\left(x_{k}\right)$ converges weakly to a point $\bar{x} \in \operatorname{Fix} T$ with $J_{1} \bar{x} \in \operatorname{zer}(A+B)$.

Theorem [Dao-Ph '19]: Let $\lambda=\mu=2$ and $\gamma=\delta>0$. Suppose that

$$
\alpha+\beta>0 \quad, \quad 1+\gamma \frac{\alpha \beta}{\alpha+\beta}>\kappa>0
$$

Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be generated by the classical DR algorithm. Then $\left(x_{k}\right)$ converges weakly to a point $\bar{x} \in \operatorname{Fix} T$ with $J_{1} \bar{x} \in \operatorname{zer}(A+B)$.

Under the assumptions, we derive

$$
\begin{aligned}
\|T x-T y\|^{2} \leq\|x-y\|^{2} & -\frac{1-\kappa}{\kappa}\|(\mathrm{Id}-T) x-(\mathrm{Id}-T) y\|^{2} \\
& -\kappa \mu(2+2 \gamma \alpha-\mu)\left\|J_{1} x-J_{1} y\right\|^{2} \\
& -\kappa \mu(\mu-(2-2 \gamma \beta))\left\|J_{2} R_{1} x-J_{2} R_{1} y\right\|^{2}
\end{aligned}
$$

Since $2-2 \gamma \beta \leq \mu \leq 2+2 \gamma \alpha$, we obtain

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\frac{1-\kappa}{\kappa}\|(\mathrm{Id}-T) x-(\mathrm{Id}-T) y\|^{2}
$$

which allows for the convergence of the adaptive DR algorithm via the Krasnosel'skiĭ-Mann Theorem.

Remark: Under- and Over-Reflecting the Resolvents

Let $\alpha>0$ and suppose that A is maximally α-monotone ("strong"), B is maximally $(-\alpha)$-monotone ("weak").
Then

$$
\mu=2+2 \gamma \alpha>2 \quad \text { and } \quad \lambda=\frac{\mu}{\mu-1}<2
$$

- Under-reflect the resolvent of the strongly monotone operator A (use $\lambda<2$).
- Over-reflect the resolvent of the weakly monotone operator B (use $\mu>2$).

Convergence Analysis via Conical Averagedness

Let $\theta>0$, we say that an operator $T: X \rightarrow X$ is conically θ-averaged if

$$
\begin{array}{rll}
T=(1-\theta) \mathrm{Id}+\theta N & & \text { for some nonexpansive operator } N . \\
& & \\
\theta=1 & : & \text { nonexpansive } \\
\theta=\frac{1}{2} & : & \text { firmly nonexpansive } \\
\theta \in] 0,1[& & \text { averaged }
\end{array}
$$

Proposition (Compositions of two conically averaged operators) [Bartz-Dao-Ph '19]

Let $T_{1}, T_{2}: X \rightarrow X$ be conically θ_{1}-averaged and conically θ_{2}-averaged. Suppose that either $\theta_{1}=\theta_{2}=1$ or $\theta_{1} \theta_{2}<1$. Let also $\omega \in \mathbb{R} \backslash\{0\}$. Then

$$
T:=\left(\frac{1}{\omega} T_{2}\right)\left(\omega T_{1}\right) \quad \text { is conically } \theta \text {-averaged with } \quad \theta:= \begin{cases}1, & \theta_{1}=\theta_{2}=1 \\ \frac{\theta_{1}+\theta_{2}-2 \theta_{1} \theta_{2}}{1-\theta_{1} \theta_{2}}, & \theta_{1} \theta_{2}<1\end{cases}
$$

Adaptive DR (cont.)

Theorem [Bartz-Dao-Ph '19]:

Assume A, B are maximally α-monotone and maximally β-monotone, $1+2 \gamma \alpha>0, \mu>1$, and

$$
\alpha+\beta \geq 0 \quad \text { and } \quad 2+2 \gamma \alpha-\varepsilon \leq \mu \leq 2+2 \gamma \alpha+\varepsilon \quad \text { with } \quad \varepsilon=2 \sqrt{\gamma(1+\gamma \alpha)(\alpha+\beta)}
$$

and either three strict inequalities happen simultaneously or none of them happens. Define

$$
\lambda=\frac{\mu}{\mu-1} \quad, \quad \delta=\frac{\gamma}{\mu-1} \quad, \quad 0<\kappa<\kappa^{*},
$$

where

$$
\kappa^{*}:= \begin{cases}1, & \alpha+\beta=0 \\ \frac{4 \gamma \delta(1+\gamma \alpha)(1+\delta \beta)-(\gamma+\delta)^{2}}{2 \gamma \delta(\gamma+\delta)(\alpha+\beta)}, & \alpha+\beta>0 .\end{cases}
$$

Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be a sequence generated by the aDR algorithm.
Then $\left(x_{k}\right)$ converges weakly to a fixed point \bar{x} and $J_{1} \bar{x} \in \operatorname{zer}(A+B)$.

Adaptive DR (cont.)

Theorem [Bartz-Dao-Ph '19]:

Assume A, B are maximally α-comonotone and maximally β-comonotone, $\gamma+2 \alpha>0$, and

$$
\alpha+\beta \geq 0 \quad \text { and } \quad \gamma+2 \alpha-\varepsilon \leq \delta \leq \gamma+2 \alpha+\varepsilon \quad \text { with } \quad \varepsilon=2 \sqrt{(\gamma+\alpha)(\alpha+\beta)}
$$

and either three strict inequalities happen simultaneously or none of them happens. Define

$$
\lambda=1+\frac{\delta}{\gamma} \quad, \quad \mu=1+\frac{\gamma}{\delta} \quad, \quad 0<\kappa<\kappa^{*}
$$

where

$$
\kappa^{*}:= \begin{cases}1, & \alpha+\beta=0, \\ \frac{4(\gamma+\alpha)(\delta+\beta)-(\gamma+\delta)^{2}}{2(\gamma+\delta)(\alpha+\beta)}, & \alpha+\beta>0 .\end{cases}
$$

Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be a sequence generated by the aDR algorithm.
Then $\left(x_{k}\right)$ converges weakly to a fixed point \bar{x} and $J_{1} \bar{x} \in \operatorname{zer}(A+B)$.

Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bauschke '13] (Demiclosedness principle for firmly nonexpansive operators)
Let $T_{1}, T_{2}: X \rightarrow X$ be firmly nonexpansive operators, let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(z_{n}\right)_{n \in \mathbb{N}}$ be sequences in X. Suppose that as $n \rightarrow+\infty$,

$$
\begin{array}{r}
x_{n} \rightharpoonup x^{*}, \quad z_{n} \rightharpoonup z^{*}, \\
T_{1} x_{n} \rightharpoonup y^{*}, \quad T_{2} z_{n} \rightharpoonup y^{*}, \\
\left(x_{n}-T_{1} x_{n}\right)+\left(z_{n}-T_{2} z_{n}\right) \rightarrow\left(x^{*}-y^{*}\right)+\left(z^{*}-y^{*}\right), \\
T_{1} x_{n}-T_{2} z_{n} \rightarrow 0 .
\end{array}
$$

Then $y^{*}=T_{1} x^{*}=T_{2} z^{*}$.

Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bartz-Campoy-Ph '20] (Demiclosedness principle for cocoercive operators)
Let $T_{1}: X \rightarrow X$ and $T_{2}: X \rightarrow X$ be respectively $\sigma_{1^{-}}$and σ_{2}-cocoercive ${ }^{1}$, let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(z_{n}\right)_{n \in \mathbb{N}}$ be sequences in X, and let $\rho_{1}, \rho_{2} \in \mathbb{R}_{++}$be such that

$$
\frac{\rho_{1} \sigma_{1}+\rho_{2} \sigma_{2}}{\rho_{1}+\rho_{2}} \geq 1
$$

Suppose that as $n \rightarrow+\infty$,

$$
\begin{array}{r}
x_{n} \rightharpoonup x^{*}, \quad z_{n} \rightharpoonup z^{*}, \\
T_{1} x_{n} \rightharpoonup y^{*}, \\
\rho_{2} z_{n} \rightharpoonup y^{*}, \\
\left.\rho_{n}-T_{1} x_{n}\right)+\rho_{2}\left(z_{n}-T_{2} z_{n}\right) \rightarrow \rho_{1}\left(x^{*}-y^{*}\right)+\rho_{2}\left(z^{*}-y^{*}\right), \\
T_{1} x_{n}-T_{2} z_{n} \rightarrow 0 .
\end{array}
$$

Then $y^{*}=T_{1} x^{*}=T_{2} z^{*}$.

[^0]Theorem [Bartz-Campoy-Ph'20] (Demiclosedness principle for averaged operators)
Let $T_{1}, T_{2}: X \rightarrow X$ be respectively $\theta_{1^{-}}$and θ_{2}-averaged where $\left.\theta_{1}, \theta_{2} \in\right] 0,1\left[\right.$. Let $\left(x_{n}\right)_{k \in \mathbb{N}}$ and $\left(z_{n}\right)_{k \in \mathbb{N}}$ be sequences in X and let $\rho_{1}, \rho_{2}>0$ be such that

$$
\theta_{1} \leq \frac{\rho_{2}}{\rho_{1}+\rho_{2}} \quad \text { and } \quad \theta_{2} \leq \frac{\rho_{1}}{\rho_{1}+\rho_{2}}
$$

Suppose that as $n \rightarrow+\infty$,

$$
\begin{array}{r}
x_{n} \rightharpoonup x^{*} \quad \text { and } \quad z_{n} \rightharpoonup z^{*}, \\
T_{1}\left(x_{n}\right) \rightharpoonup y^{*} \quad \text { and } \quad T_{2}\left(z_{n}\right) \rightharpoonup y^{*}, \\
\rho_{1}\left(x_{n}-T_{1}\left(x_{n}\right)\right)+\rho_{2}\left(z_{n}-T_{2}\left(z_{n}\right)\right) \rightarrow 0, \\
T_{1}\left(x_{n}\right)-T_{2}\left(z_{n}\right) \rightarrow 0 .
\end{array}
$$

Then $T_{1}\left(x^{*}\right)=T_{2}\left(z^{*}\right)=y^{*}$.

Theorem [Bartz-Campoy-Ph '20] (Monotone operators)

Suppose that A and B are maximally α-monotone and maximally β-monotone, respectively, where $\alpha+\beta \geq 0$ and $\operatorname{zer}(A+B) \neq \varnothing$. Suppose the parameters $\gamma, \delta, \lambda, \mu, \kappa>0$ are appropriately chosen. Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be generated the aDR. Then

$$
J_{\gamma A}\left(x_{k}\right) \rightharpoonup J_{\gamma A}\left(x^{*}\right) \in \operatorname{zer}(A+B), \quad \text { where } x^{*} \text { is the weak limit of } x_{k} \text {. }
$$

Theorem [Bartz-Campoy-Ph '20] (Comonotone operators)

Suppose that A and B are maximally α-comonotone and maximally β-comonotone, respectively, where $\alpha+\beta \geq 0$ and $\operatorname{zer}(A+B) \neq \varnothing$. Suppose the parameters $\gamma, \delta, \lambda, \mu, \kappa>0$ are appropriately chosen. Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be generated the aDR. Then

$$
J_{\gamma A}\left(x_{k}\right) \rightharpoonup J_{\gamma A}\left(x^{*}\right) \in \operatorname{zer}(A+B), \quad \text { where } x^{*} \text { is the weak limit of } x_{k} .
$$

The Douglas-Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas-Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

The Alternating Directions Method of Multipliers (ADMM) is a well studied splitting algorithm for the optimization problem

$$
\begin{array}{cl}
\min & f(x)+g(z) \\
\text { s.t. } & M x=z, \quad x \in \mathbb{R}^{n} \quad, z \in \mathbb{R}^{m},
\end{array}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ are proper, Isc, convex functions, and $M \in \mathbb{R}^{m \times n}$. Given an initial point $\left(x^{0}, y^{0}, y^{0}\right)$ and a parameter $\gamma>0$, the ADMM generates

$$
\begin{aligned}
& x^{k+1}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} L_{\gamma}\left(x, z^{k}, y^{k}\right), \\
& z^{k+1}=\underset{z \in \mathbb{R}^{m}}{\operatorname{argmin}} L_{\gamma}\left(x^{k+1}, z, y^{k}\right), \\
& y^{k+1}=y^{k}+\gamma\left(M x^{k+1}-z^{k+1}\right),
\end{aligned}
$$

where $L_{\gamma}(x, z, y)=f(x)+g(z)+\langle y, M x-z\rangle+\frac{\gamma}{2}\|M x-z\|^{2}$ is the augmented Lagrangian associated with (P).

Let $\left(x^{0}, z^{0}, y^{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{m}$ be an initial point and let $\gamma, \delta>0$. The aADMM iterates as follows

$$
\begin{aligned}
& x^{k+1}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} L_{\gamma}\left(x, z^{k}, y^{k}\right)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{f(x)+\frac{\gamma}{2}\left\|M x-z^{k}+\frac{y^{k}}{\gamma}\right\|^{2}\right\} \\
& z^{k+1}=\underset{z \in \mathbb{R}^{m}}{\operatorname{argmin}} L_{\delta}\left(x^{k+1}, z, y^{k}\right)=\underset{z \in \mathbb{R}^{m}}{\operatorname{argmin}}\left\{g(z)+\frac{\delta}{2}\left\|M x^{k+1}-z+\frac{y^{k}}{\delta}\right\|^{2}\right\} \\
& y^{k+1}=y^{k}+\delta\left(M x^{k+1}-z^{k+1}\right)
\end{aligned}
$$

where the augmented Lagrangian is

$$
L_{\gamma}(x, z, y)=f(x)+g(z)+\langle y, M x-z\rangle+\frac{\gamma}{2}\|M x-z\|^{2} .
$$

Weak and Strong Convexity

We say that f is α-convex if $f-\frac{\alpha}{2}\|\cdot\|^{2}$ is convex, equivalently, if $\forall x, y \in \mathbb{R}^{n}, \lambda \in[0,1]$,

$$
f((1-\lambda) x+\lambda y) \leq \lambda f(x)+(1-\lambda) f(y)-\frac{\alpha}{2} \lambda(1-\lambda)\|x-y\|^{2}
$$

$\alpha>0$: We also say that f is strongly convex.
$\alpha<0$: We also say that f is weakly convex (or hypoconvex).
The function f is coercive if

$$
\lim _{\|x\| \rightarrow \infty} f(x)=+\infty
$$

and supercoercive if

$$
\lim _{\|x\| \rightarrow \infty} \frac{f(x)}{\|x\|}=+\infty
$$

It is known that

$$
\text { strong convexity } \Longrightarrow \text { supercoercivity } \Longrightarrow \text { coercivity. }
$$

More Definitions

The Fréchet subdifferential of f at x is the set

$$
\widehat{\partial} f(x):=\left\{u \in \mathbb{R}^{n}: \liminf _{\substack{y \rightarrow x \\ y \neq x}} \frac{f(y)-f(x)-\langle u, y-x\rangle}{\|y-x\|} \geq 0\right\}
$$

The recession function of f is defined by

$$
\left.\left.\operatorname{rec} f: \mathbb{R}^{n} \rightarrow\right]-\infty,+\infty\right]: y \mapsto \sup _{x \in \operatorname{dom} f}\{f(x+y)-f(x)\}
$$

The Fenchel conjugate of f is defined by

$$
\left.\left.f^{*}: \mathbb{R}^{n} \rightarrow\right]-\infty,+\infty\right]: u \mapsto \sup _{x \in \mathbb{R}^{n}}\{\langle u, x\rangle-f(x)\}
$$

Convergence of the aADMM [Bartz-Campoy-Ph '21]

Let $M \in \mathbb{R}^{m \times n}$ be a nonzero matrix, let $\left.\left.f: \mathbb{R}^{n} \rightarrow\right]-\infty,+\infty\right]$ be proper, Isc and α-convex, and let $\left.\left.g: \mathbb{R}^{m} \rightarrow\right]-\infty,+\infty\right]$ be proper, Isc and β-convex with

$$
\alpha \geq 0 \quad \text { and } \quad \alpha+\beta\|M\|^{2} \geq 0 .
$$

Suppose that one of the following conditions holds:
(A.1) the Lagrangian L_{0} has a critical point,
(A.2) the Lagrangian L_{0} has a saddle point,
(A.3) problem (P) has an optimal solution and $0 \in \operatorname{ri}(\operatorname{dom} g-M(\operatorname{dom} f))$;
and that one of the following conditions holds:
(B.1) $0 \in \operatorname{ri}\left(\operatorname{dom} f^{*}-\operatorname{ran} M^{T}\right)$,
(B.2) $\operatorname{ri}(\operatorname{ran} \partial f) \cap \operatorname{ran} M^{T} \neq \varnothing$,
(B.3) $(\operatorname{rec} f)(x)>0$ for all $x \in \operatorname{ker} M \backslash\left\{x \in \mathbb{R}^{n}:-(\operatorname{rec} f)(-x)=(\operatorname{rec} f)(x)=0\right\}$,
(B.4) f is coercive (in particular, supercoercive),
(B.5) $\alpha>0$ (i.e., f is strongly convex),
(B.6) $M^{T} M$ is invertible.

Convergence of the aADMM (cont.)

Let $\delta>\max \{0,-2 \beta\}$ and set

$$
\begin{array}{ll}
\gamma=\delta+2 \beta, & \text { if } \alpha+\beta\|M\|^{2}=0 \\
\gamma \in] \max \left\{0, \delta+2 \beta-\Delta_{\delta}\right\}, \delta+2 \beta+\Delta_{\delta}[, & \text { if } \alpha+\beta\|M\|^{2}>0
\end{array}
$$

where

$$
\Delta_{\delta}:=\frac{1}{\|M\|} \sqrt{2\left(\alpha+\beta\|M\|^{2}\right)(\delta+2 \beta)}
$$

Set $\left(x^{0}, z^{0}, y^{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{m}$ and let $\left(x^{k}, z^{k}, y^{k}\right)_{k \in \mathbb{N}}$ be generated by the aADMM. Then

$$
M x^{k} \rightarrow M x^{\star}, \quad z^{k} \rightarrow z^{\star} \quad \text { and } \quad y^{k} \rightarrow y^{\star}
$$

where $\left(x^{\star}, z^{\star}, y^{\star}\right)$ is a critical point of $L_{0}(x, z, y)$. Consequently, $\left(x^{\star}, z^{\star}\right)$ is a solution of (P). If, in particular, (B.5) or (B.6) holds, then $x^{k} \rightarrow x^{\star}$.

Convergence of the aADMM: Sketch of the Proof

Define

$$
\begin{aligned}
& Q: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m}: y \mapsto\left\{-M x:-M^{T} y \in \partial f(x)\right\}=(-M) \circ(\partial f)^{-1} \circ\left(-M^{T}\right)(y), \\
& S: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m}: y \mapsto\{z: y \in \widehat{\partial} g(z)\}=(\widehat{\partial} g)^{-1}(y),
\end{aligned}
$$

Then the sequence $w^{k}:=y^{k}+\delta z^{k}$ is generated by the aDR algorithm with parameters γ, δ applied to S and Q.

Under the assumptions made:

- $\operatorname{zer}(Q+S) \neq \varnothing$.
- Q is maximally $\frac{\alpha}{\|M\|^{2}}$-comonotone, S is maximally β-comonotone, and $\frac{\alpha}{\|M\|^{2}}+\beta \geq 0$.

Finally, apply the convergence result of the aDR for two comonotone operators.

Thank you！

Bartz，S．，Dao，M．N．，Phan，H．M．：Conical averagedness and convergence analysis of fixed point algorithms，preprint 2019，arXiv：1910．14185．
－Bartz，S．，Campoy，R．，Phan，H．M．：Demiclosedness principles for generalized nonexpansive mappings，J．Optim．Theory Appl．186（3），759－778（2020）
國 Bauschke，H．H．：New demiclosedness principles for（firmly）nonexpansive operators．In：Bailey D．et al．（eds）Compu－ tational and Analytical Mathematics，Springer Proceedings in Mathematics \＆Statistics．Springer，New York（2013）

Dao，M．N．，Phan，H．M．：Adaptive Douglas－Rachford splitting algorithm for the sum of two operators，SIAM J．Optim． 29（4），2697－2724（2019）

Douglas，J．，Rachford，H．H．：On the numerical solution of the heat condition problem in 2 and 3 space variables，Trans． AMS．82，421－439（1956）

Guo，K．，Han，D．，Yuan，X．：Convergence analysis of Douglas－Rachford splitting method for＂strongly＋weakly＂ convex programming，SIAM J．Numer．Anal．55（4），1549－1577（2017）．

Koch，V．R．，Phan，H．M．：Optimization of triangular networks with spatial constraints，Optim．Methods Softw．（2019）， DOI：10．1080／10556788．2019．1604703．

Lions，P．L．，Mercier，B．：Splitting algorithms for the sum of two nonlinear operators，SIAM J．Numer．Anal．16，964－979 （1979）

Svaiter，B．F．：On weak convergence of the Douglas－Rachford method．SIAM J．Control Optim．49（1），280－287（2011）

Bartz，S．，Campoy，R．，Phan，H．M：An adaptive alternating directions method of multipliers，preprint 2021， arXiv：2103．07159

Boyd，S．，Parikh，N．，Chu，E．，Peleato，B．，Eckstein，J．：Distributed optimization and statistical learning via the alternating direction method of multipliers．Found．Trends Mach．Learn．3（1），1－122（2011）

Chen，L．，Sun，D．，Toh，K．C．：A note on the convergence of ADMM for linearly constrained convex optimization problems．Comput．Optim．Appl．66（2），327－343（2017）

Eckstein，J．，Yao，W．：Understanding the convergence of the alternating direction method of multipliers：Theoretical and computational perspectives．Pac．J．Optim．11（4），619－644（2015）

Fortin，M．，Glowinski，R．：On decomposition－coordination methods using an augmented Lagrangian．In M．Fortin and R． Glowinski（eds．），Augmented Lagrangian Methods：Applications to the Solution of Boundary－Value Problems．Studies in Mathematics and Its Applications 15，97－146（1983）

Gabay，D．：Applications of the method of multipliers to variational inequalities．In M．Fortin and R．Glowinski（eds．）， Augmented Lagrangian Methods：Applications to the Solution of Boundary－Value Problems．Studies in Mathematics and Its Applications 15 299－331（1983）

Gabay，G．，Mercier，B．：A dual algorithm for the solution of nonlinear variational problems via finite element approxi－ mations．Comput．Math．Appl．2（1），17－40（1976）

Glowinski，R．，Marroco，A．：Sur l＇approximation，par éléments finis d＇ordre un，et la résolution，par pénalisation－dualité d＇une classe de problèmes de Dirichlet non linéaires．ESAIM－Math．Model．Num．9（R2），41－76（1975）

[^0]: ${ }^{1}$ Firm nonexpansiveness is equivalent to 1 -cocoercivity

