
Variational Analysis and Optimisation Webinar Series

Adaptive Splitting Algorithms

Hung Phan
Mathematical Sciences

University of Massachusetts Lowell

May 11 or 12, 2021



Introduction

The Douglas–Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas–Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

2



Introduction

The Douglas–Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas–Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

3



Definitions

Let X be a Hilbert spaces and let f : X ! R [ {+1} be a proper lsc convex function.

The subdi↵erential of f at x : @f (x) =
n
all subgradients of f at x

o
, where a vector u is called

a subgradient of f at x if

8y 2 X , f (y) � f (x) + hu, y � xi .

The indicator function of a set ⌦ ⇢ X is ◆⌦(x) :=

(
0, if x 2 ⌦,

+1, otherwise.

The subdi↵erential of ◆⌦ is the normal cone operator of ⌦

@(◆⌦)(x) = N⌦(x) =
n
u 2 X , hu, z � xi  0, 8z 2 ⌦

o
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Fermat’s Stationary

Let f , g : X ! R [ {+1} be proper lsc convex functions. The Fermat’s stationary condition:

x solves min
x2X

f (x) () 0 = rf (x) (f is di↵erentiable)

x solves min
x2X

f (x) () 0 2 @f (x) (f is not di↵erentiable)

x solves min f (x) + g(x) (= 0 2 @f (x) + @g(x)

x solves min
x2⌦

f (x) () x solves min f (x) + ◆⌦(x) (= 0 2 @f (x) + N⌦(x)

x 2 ⌦1 \ ⌦2 () x solves min
x2X

◆⌦1(x) + ◆⌦2(x) (= 0 2 N⌦1(x) + N⌦2(x)

So we may consider the inclusion problem: find an x such that

0 2 Ax + Bx where A,B : X ◆ X are set-valued operators.
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Resolvent and Relaxed Resolvent

Let A : X ◆ X be an operator.

The resolvent of A is defined by JA := (Id+A)�1

The reflected resolvent of A is defined by RA := J2
A
= 2JA � Id

Let � > 0, the �-relaxed resolvent of A is defined by J�
A
:= (1� �) Id+�JA

y 2 JAx () y = (Id+A)�1x () x 2 y + Ay

x
y

z

2 Ay

The resolvent of the normal cone operator is the projection:

JN⌦(x) = P⌦(x) =
n
y 2 ⌦ , kx � yk = min

z2⌦
kx � zk

o

7



The Douglas–Rachford (DR) Algorithm

xk+1 = Txk where T =
1

2
(Id+RBRA).

Illustration:

y = JAxk , z = RAx , w = JBz , t = RBz , xk+1 =
1

2
(xk + t).

xk

y

z

w

xk+1

t

2 Ay

2 Bw

I If xk+1 = xk , then y = w and 0 2 Ay + Bw . i.e., y is a solution.
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Sum of Finitely Many Operators

Consider the problem of finding an x such that

0 2 A1x + A2x + · · ·+ Amx .

Let x := (x1, . . . , xm). Define

A := A1 ⇥ · · ·⇥ Am : x 7! A1x1 ⇥ · · ·⇥ Amxm

and B(x) := N�(x) where � :=
n
(x , . . . , x) 2 Xm

o
.

Then
0 2 A1x + A2x + · · ·+ Amx () 0 2 A(x) + B(x).

The resolvents

JA(x) = JA1x1 ⇥ · · ·⇥ JAm
xm,

JB(x) = (x , . . . , x) where x =
1

m
(x1 + · · ·+ xm).
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An Application [Koch, Ph ’19]

A common problem in civil engineering design is the grading of a parking lot or a building pad.
Within a given area, the engineer has to define grading slopes such that

I the grading site fits with existing structures.

I the drainage requirements on the surface are met.

I safety and comfort are taken into account.

I the engineer would like to change the existing surface as little as possible, in order to save
on earthwork costs.

The grading site is usually represented as a Triangulated Irregular Network (TIN). The engineer
is interested in adjusting the heights of the vertices in the triangulated grid, so that the newly
obtained mesh-grid satisfies the above requirements.
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2D View of a Construction Site

# of vertices ⇡ 5, 000

# of triangles: ⇡ 7, 000
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3D View of a Construction Site

The Triangular Mesh:

V = {pj = (pj1, pj2, zj) 2 R3}, |V | = n,

E ⇢
n
pipj

��� pi , pj 2 V
o
,

T ⇢
n
pipjpk

��� pipj , pjpk , pkpi 2 E
o
.

The variables are the elevations of the ver-
tices, written as a vector

z = (z1, z2, . . . , zn) 2 Rn
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Constraints and Costs

I Interpolation constraints, e.g., several values zi ’s are predetermined.

Cinterpolation :=
n
z 2 Rn , zj = yj for some vertex j

o
.

I Edge-slope constraints, e.g., slopes of several edges must be within a range.

Cedge-slope :=
n
z 2 Rn , ↵  slope(e)  � for some edge e

o
.

I Edge-alignment constraints, e.g., slopes of several edges must equal.

Cedge-alignment :=
n
z 2 Rn , slope(e1) = slope(e2) for some edges e1, e2

o
.

I Low-point constraints, e.g., minimum slope at drainage points.

Clow-point :=
n
z 2 Rn , slope(e) � ↵ for all e connected to a low-point

o
.
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Constraints and Costs

I Surface-alignment constraints, e.g., slopes of several triangles must equal.

Csurface-alignment :=
n
z 2 Rn , slope(�1) = slope(�2) for some triangles �1,�2

o
.

I Surface orientation constraints

Csurface-orientation :=
n
z 2 Rn , slope(�) = \(~n�, ~q)  ↵ for some triangle �

o
.

Special case: surface maximum slope: \(~n�,~e3)  ↵, ~e3 = (0, 0, 1) 2 R3.

Special case: surface minimum slope: \(~n�, ~d)  ↵, ~d = (d1, d2, 0) 2 R3.

The cost function F can be a linear combination of

I Earth work total volume (i.e., cut and fill).

I Earth work net volume (dirt from cutting can be used for filling).

I Curvatures between adjacent triangles.
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The Optimization Problem

min
X

i

↵iFi (z) subject to z 2 C :=
\

i

Ci .

By replacing Ci ’s with the indicator functions, this is equivalent to

min
z

mX

j=1

fj(z) where fj 2 {↵iFi , ◆Ci
}.

Given zk = (zk,i ) 2 Xm, the DR iteration (in product space) is defined by

xk :=
1

m

X

i

xk,i ,

8i = 1, . . . ,m : yk,i := J�@fi (2xk,i � xk,i ) = prox�fi (2xk,i � xk,i ),

8i = 1, . . . ,m : xk+1,i := xk,i � xk + yk,i ,

(new iteration) zk+1 := (xk+1,i )i2m.

Then the (xk)k2N converges to a solution.
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Monotonicity and Firm Nonexpansiveness

An operator A is monotone if 8(a, u), (b, v) 2 grA, ha� b, u � vi � 0.

A is maximally monotone if there is no monotone operator Â such that grA ( gr Â.

An operator T is firmly expansive (on its domain) if for all x , y 2 domT ,

kTx � Tyk2  kx � yk2 � k(Id�T )x � (Id�T )yk2

a

u

b

v

a� b

u� v

Tx

x

Ty

y

Tx� Ty

(x� Tx)� (y � Ty)x� y

A is monotone () T = (Id+A)�1 is firmly nonexpansive

A is maximally monotone () dom(Id+A)�1 = X
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Convergence Analysis

Theorem ([Lions-Mercier 1979])

Let A,B : X ◆ X be two maximally monotone operators such that zer(A+ B) 6= ?. Let (xk)
be a sequence generated by the Douglas–Rachford algorithm

xk+1 = Txk , T =
1

2
(Id+RBRA).

Then xk converges weakly to a fixed point x 2 FixT = FixRBRA and JAx 2 zer(A+ B).

Theorem ([Svaiter ’11])

The sequence JAxk converges weakly to JAx .

Theorem ([Bauschke ’13])

The sequence JAxk converges weakly to JAx . (The proof is based on Demiclosedness Principle).
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The Adaptive DR Algorithm (aDR)

xk+1 = Txk , T = (1� ) Id+R2R1,

where J1 := J�A, J2 := J�B

R1 := (1� �) Id+�J1, R2 := (1� µ) Id+µJ2,

� > 0, � > 0, (�� 1)(µ� 1) = 1, � = �(�� 1),  2 ]0, 1[.

Illustration:

y = J1xk , z = R1xk , w = J2z , t = R2z ,

xk+1 = (1� )xk + t.

If xk+1 = xk 2 FixT , then

y = w and 0 2 Ay + Bw ,

i.e., y is a solution.

xk
y

z

w

xk+1

t

2 �A
y

2 �Bw

I If � = µ = 2, � = � > 0, then the adaptive DR becomes the classical DR.
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Generalized Monotonicity and Comonotonicity

Let A : X ◆ X and ↵ 2 R. We say that A is

↵-monotone if 8(x , u), (y , v) 2 grA, hx � y , u � vi � ↵kx � yk2,
↵-comonotone if 8(x , u), (y , v) 2 grA, hx � y , u � vi � ↵ku � vk2,

and maximally ↵-monotone/comonotone if there is no ↵-monotone/comonotone operator
whose graph strictly contains grA.

I ↵ = 0: monotone.

I ↵ > 0: strongly monotone / strongly comonotone (= cocoercive).

I ↵ < 0: weakly monotone/ weakly comonotone.

Apply the aDR to the problem: find x such that 0 2 Ax + Bx where

I A and B are maximally ↵- and �- monotone with ↵+ � � 0.

I A and B are maximally ↵- and �- comonotone with ↵+ � � 0.
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Weak and Strong Monotonicity

Note that:
A is ↵1-monotone () A+ ↵2 Id is (↵1 + ↵2)-monotone.

So, if A is ↵-monotone and B is �-monotone with ↵+ � � 0, then

A+ B =
⇣
A� ↵� �

2
Id
⌘
+
⇣
B +

↵� �

2
Id
⌘
=: eA+ eB .

Here, eA and eB are both
�↵+�

2

�
-monotone, in particular, monotone.

So, one can simply solve the problem

0 2 eAx + eBx

using available tools for monotone operators, e.g., the classical DR algorithm.
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Convergence of the Adaptive DR Algorithm

Theorem [Dao-Ph ’19]: Let X be a Euclidean space. Assume A,B : X ◆ X are respectively
maximally ↵-monotone and maximally �-monotone with zer(A+ B) 6= ?. Let
� > 0, � > 0,� > 1, µ > 1,  2 ]0, 1[, and suppose further that

↵+ � � 0, 1 + 2�↵ > 0,

2� 2��  µ  2 + 2�↵,

(�� 1)(µ� 1) = 1, � = (�� 1)�.

Let (xk)k2N be a sequence generated by the adaptive DR algorithm. Then (xk) converges
weakly to a point x 2 FixT with J1x 2 zer(A+ B).

Theorem [Dao-Ph ’19]: Let � = µ = 2 and � = � > 0. Suppose that

↵+ � > 0 , 1 + �
↵�

↵+ �
>  > 0.

Let (xk)k2N be generated by the classical DR algorithm. Then (xk) converges weakly to a point
x 2 FixT with J1x 2 zer(A+ B).
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Sketch of the Proof

Under the assumptions, we derive

kTx � Tyk2  kx � yk2 � 1� 


k(Id�T )x � (Id�T )yk2

� µ
�
2 + 2�↵� µ

�
kJ1x � J1yk2

� µ
�
µ� (2� 2��)

�
kJ2R1x � J2R1yk2.

Since 2� 2��  µ  2 + 2�↵, we obtain

kTx � Tyk2  kx � yk2 � 1� 


k(Id�T )x � (Id�T )yk2,

which allows for the convergence of the adaptive DR algorithm via the Krasnosel’skĭı–Mann
Theorem.
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Remark: Under- and Over-Reflecting the Resolvents

Let ↵ > 0 and suppose that A is maximally ↵-monotone (“strong”),
B is maximally (�↵)-monotone (“weak”).

Then
µ = 2 + 2�↵ > 2 and � =

µ

µ� 1
< 2.

I Under-reflect the resolvent of the strongly monotone operator A (use � < 2).

I Over-reflect the resolvent of the weakly monotone operator B (use µ > 2).

xk

y
z

w

xk+1

t

2 �A
y

2 �Bw
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Convergence Analysis via Conical Averagedness

Let ✓ > 0, we say that an operator T : X ! X is conically ✓-averaged if

T = (1� ✓) Id+✓N for some nonexpansive operator N.

✓ = 1 : nonexpansive

✓ = 1
2 : firmly nonexpansive

✓ 2 ]0, 1[ : averaged

Proposition (Compositions of two conically averaged operators) [Bartz-Dao-Ph ’19]

Let T1,T2 : X ! X be conically ✓1-averaged and conically ✓2-averaged. Suppose that either
✓1 = ✓2 = 1 or ✓1✓2 < 1. Let also ! 2 Rr {0}. Then

T :=
⇣ 1

!
T2

⌘�
!T1

�
is conically ✓-averaged with ✓ :=

(
1, ✓1 = ✓2 = 1,
✓1+✓2�2✓1✓2

1�✓1✓2
, ✓1✓2 < 1.
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Adaptive DR (cont.)

Theorem [Bartz-Dao-Ph ’19]:

Assume A,B are maximally ↵-monotone and maximally �-monotone, 1 + 2�↵ > 0, µ > 1, and

↵+ � � 0 and 2 + 2�↵� "  µ  2 + 2�↵+ " with " = 2
p
�(1 + �↵)(↵+ �),

and either three strict inequalities happen simultaneously or none of them happens. Define

� =
µ

µ� 1
, � =

�

µ� 1
, 0 <  < ⇤,

where

⇤ :=

(
1, ↵+ � = 0,
4��(1+�↵)(1+��)�(�+�)2

2��(�+�)(↵+�) , ↵+ � > 0.

Let (xk)k2N be a sequence generated by the aDR algorithm.

Then (xk) converges weakly to a fixed point x and J1x 2 zer(A+ B).
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Adaptive DR (cont.)

Theorem [Bartz-Dao-Ph ’19]:

Assume A,B are maximally ↵-comonotone and maximally �-comonotone, � + 2↵ > 0, and

↵+ � � 0 and � + 2↵� "  �  � + 2↵+ " with " = 2
p
(� + ↵)(↵+ �),

and either three strict inequalities happen simultaneously or none of them happens. Define

� = 1 +
�

�
, µ = 1 +

�

�
, 0 <  < ⇤,

where

⇤ :=

(
1, ↵+ � = 0,
4(�+↵)(�+�)�(�+�)2

2(�+�)(↵+�) , ↵+ � > 0.

Let (xk)k2N be a sequence generated by the aDR algorithm.

Then (xk) converges weakly to a fixed point x and J1x 2 zer(A+ B).
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Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bauschke ’13] (Demiclosedness principle for firmly nonexpansive operators)

Let T1,T2 : X ! X be firmly nonexpansive operators, let (xn)n2N and (zn)n2N be sequences in
X . Suppose that as n ! +1,

xn * x⇤, zn * z⇤,

T1xn * y⇤, T2zn * y⇤,

(xn � T1xn) + (zn � T2zn) ! (x⇤ � y⇤) + (z⇤ � y⇤),

T1xn � T2zn ! 0.

Then y⇤ = T1x⇤ = T2z⇤.
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Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bartz-Campoy-Ph ’20] (Demiclosedness principle for cocoercive operators)

Let T1 : X ! X and T2 : X ! X be respectively �1- and �2-cocoercive1, let (xn)n2N and
(zn)n2N be sequences in X , and let ⇢1, ⇢2 2 R++ be such that

⇢1�1 + ⇢2�2
⇢1 + ⇢2

� 1.

Suppose that as n ! +1,

xn * x⇤, zn * z⇤,

T1xn * y⇤, T2zn * y⇤,

⇢1(xn � T1xn) + ⇢2(zn � T2zn) ! ⇢1(x
⇤ � y⇤) + ⇢2(z

⇤ � y⇤),

T1xn � T2zn ! 0.

Then y⇤ = T1x⇤ = T2z⇤.

1Firm nonexpansiveness is equivalent to 1-cocoercivity
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Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bartz-Campoy-Ph ’20] (Demiclosedness principle for averaged operators)

Let T1,T2 : X ! X be respectively ✓1- and ✓2-averaged where ✓1, ✓2 2 ]0, 1[. Let (xn)k2N and
(zn)k2N be sequences in X and let ⇢1, ⇢2 > 0 be such that

✓1 
⇢2

⇢1 + ⇢2
and ✓2 

⇢1
⇢1 + ⇢2

.

Suppose that as n ! +1,

xn * x⇤ and zn * z⇤,

T1(xn) * y⇤ and T2(zn) * y⇤,

⇢1(xn � T1(xn)) + ⇢2(zn � T2(zn)) ! 0,

T1(xn)� T2(zn) ! 0.

Then T1(x⇤) = T2(z⇤) = y⇤.
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Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bartz-Campoy-Ph ’20] (Monotone operators)

Suppose that A and B are maximally ↵-monotone and maximally �-monotone, respectively,
where ↵+� � 0 and zer(A+B) 6= ?. Suppose the parameters �, �,�, µ, > 0 are appropriately
chosen. Let (xk)k2N be generated the aDR. Then

J�A(xk) * J�A(x
⇤) 2 zer(A+ B), where x⇤ is the weak limit of xk .

Theorem [Bartz-Campoy-Ph ’20] (Comonotone operators)

Suppose that A and B are maximally ↵-comonotone and maximally �-comonotone, respectively,
where ↵+� � 0 and zer(A+B) 6= ?. Suppose the parameters �, �,�, µ, > 0 are appropriately
chosen. Let (xk)k2N be generated the aDR. Then

J�A(xk) * J�A(x
⇤) 2 zer(A+ B), where x⇤ is the weak limit of xk .
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An Adaptive Alternating Directions Method of Multipliers (aADMM)

The Alternating Directions Method of Multipliers (ADMM) is a well studied splitting algorithm
for the optimization problem

min f (x) + g(z)

s.t. Mx = z , x 2 Rn , z 2 Rm,

where f : Rn ! R, g : Rm ! R are proper, lsc, convex functions, and M 2 Rm⇥n.

Given an initial point (x0, y0, y0) and a parameter � > 0, the ADMM generates

xk+1 = argmin
x2Rn

L�(x , z
k , yk),

zk+1 = argmin
z2Rm

L�(x
k+1, z , yk),

yk+1 = yk + �(Mxk+1 � zk+1),

where L�(x , z , y) = f (x) + g(z) + hy ,Mx � zi+ �

2
kMx � zk2 is the augmented Lagrangian

associated with (P).
34



The aADMM [Bartz-Campoy-Ph ’21]

Let (x0, z0, y0) 2 Rn ⇥ Rm ⇥ Rm be an initial point and let �, � > 0. The aADMM iterates as
follows

xk+1 = argmin
x2Rn

L�(x , z
k , yk) = argmin

x2Rn

⇢
f (x) +

�

2

���Mx � zk +
yk

�

���
2
�
,

zk+1 = argmin
z2Rm

L�(x
k+1, z , yk) = argmin

z2Rm

⇢
g(z) +

�

2

���Mxk+1 � z +
yk

�

���
2
�
,

yk+1 = yk + �(Mxk+1 � zk+1),

where the augmented Lagrangian is

L�(x , z , y) = f (x) + g(z) + hy ,Mx � zi+ �

2
kMx � zk2.
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Weak and Strong Convexity

We say that f is ↵-convex if f � ↵
2 k · k

2 is convex, equivalently, if 8x , y 2 Rn, � 2 [0, 1],

f ((1� �)x + �y)  �f (x) + (1� �)f (y)� ↵

2
�(1� �)kx � yk2.

↵ > 0: We also say that f is strongly convex.
↵ < 0: We also say that f is weakly convex (or hypoconvex).

The function f is coercive if
lim

kxk!1
f (x) = +1

and supercoercive if

lim
kxk!1

f (x)

kxk = +1.

It is known that

strong convexity =) supercoercivity =) coercivity.
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More Definitions

The Fréchet subdi↵erential of f at x is the set

b@f (x) :=

8
<

:u 2 Rn : lim inf
y!x

y 6=x

f (y)� f (x)� hu, y � xi
ky � xk � 0

9
=

; .

The recession function of f is defined by

rec f : Rn ! ]�1,+1] : y 7! sup
x2dom f

{f (x + y)� f (x)},

The Fenchel conjugate of f is defined by

f ⇤ : Rn ! ]�1,+1] : u 7! sup
x2Rn

{hu, xi � f (x)}.
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Convergence of the aADMM [Bartz-Campoy-Ph ’21]

Let M 2 Rm⇥n be a nonzero matrix, let f : Rn ! ]�1,+1] be proper, lsc and ↵-convex, and let
g : Rm ! ]�1,+1] be proper, lsc and �-convex with

↵ � 0 and ↵+ �kMk2 � 0.

Suppose that one of the following conditions holds:

(A.1) the Lagrangian L0 has a critical point,

(A.2) the Lagrangian L0 has a saddle point,

(A.3) problem (P) has an optimal solution and 0 2 ri(dom g �M(dom f ));

and that one of the following conditions holds:

(B.1) 0 2 ri(dom f ⇤ � ranMT ),

(B.2) ri(ran @f ) \ ranMT 6= ?,

(B.3) (rec f )(x) > 0 for all x 2 kerM \ {x 2 Rn : �(rec f )(�x) = (rec f )(x) = 0},
(B.4) f is coercive (in particular, supercoercive),

(B.5) ↵ > 0 (i.e., f is strongly convex),

(B.6) MTM is invertible.
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Convergence of the aADMM (cont.)

Let � > max{0,�2�} and set

� = � + 2�, if ↵+ �kMk2 = 0,

� 2 ]max{0, � + 2� ���}, � + 2� +��[ , if ↵+ �kMk2 > 0;

where

�� :=
1

kMk

q
2 (↵+ �kMk2) (� + 2�).

Set (x0, z0, y0) 2 Rn ⇥ Rm ⇥ Rm and let (xk , zk , yk)k2N be generated by the aADMM. Then

Mxk ! Mx?, zk ! z? and yk ! y?

where (x?, z?, y?) is a critical point of L0(x , z , y). Consequently, (x?, z?) is a solution of (P). If,
in particular, (B.5) or (B.6) holds, then xk ! x?.
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Convergence of the aADMM: Sketch of the Proof

Define

Q : Rm ◆ Rm : y 7!
n
�Mx : �MT y 2 @f (x)

o
= (�M) � (@f )�1 � (�MT )(y),

S : Rm ◆ Rm : y 7!
n
z : y 2 b@g(z)

o
= (b@g)�1(y),

Then the sequence wk := yk + �zk is generated by the aDR algorithm with parameters �, �
applied to S and Q.

Under the assumptions made:

I zer(Q + S) 6= ?.

I Q is maximally ↵
kMk2 -comonotone, S is maximally �-comonotone, and ↵

kMk2 + � � 0.

Finally, apply the convergence result of the aDR for two comonotone operators.
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