Variational Analysis and Optimisation Webinar Series

Adaptive Splitting Algorithms

Hung Phan

Mathematical Sciences University of Massachusetts Lowell

(日) (四) (王) (王) (王)

May 11 or 12, 2021

Introduction

The Douglas-Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas-Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

Introduction

The Douglas–Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas-Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

Definitions

Let X be a Hilbert spaces and let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a proper lsc convex function. The *subdifferential* of f at x: $\partial f(x) = \{ \text{all subgradients of } f \text{ at } x \}$, where a vector u is called a *subgradient* of f at x if

 $\forall y \in X, \quad f(y) \geq f(x) + \langle u, y - x \rangle.$

The indicator function of a set $\Omega \subset X$ is $\iota_{\Omega}(x) := \begin{cases} 0, & \text{if } x \in \Omega, \\ +\infty, & \text{otherwise.} \end{cases}$

The subdifferential of ι_{Ω} is the normal cone operator of Ω

$$\partial(\iota_{\Omega})(x) = \mathcal{N}_{\Omega}(x) = \left\{ u \in X, \langle u, z - x \rangle \leq 0, \forall z \in \Omega \right\}$$

Fermat's Stationary

Let $f, g: X \to \mathbb{R} \cup \{+\infty\}$ be proper lsc convex functions. The Fermat's stationary condition:

$$\overline{x}$$
 solves $\min_{x \in X} f(x) \iff 0 =
abla f(\overline{x})$ (f is differentiable)

 \overline{x} solves $\min_{x \in X} f(x) \iff 0 \in \partial f(\overline{x})$ (f is not differentiable)

 \overline{x} solves min $f(x) + g(x) \iff 0 \in \partial f(\overline{x}) + \partial g(\overline{x})$

$$\overline{x} \text{ solves } \min_{x \in \Omega} f(x) \iff \overline{x} \text{ solves } \min f(x) + \iota_{\Omega}(x) \iff 0 \in \partial f(\overline{x}) + N_{\Omega}(\overline{x})$$
$$\overline{x} \in \Omega_1 \cap \Omega_2 \iff \overline{x} \text{ solves } \min_{x \in X} \iota_{\Omega_1}(x) + \iota_{\Omega_2}(x) \iff 0 \in N_{\Omega_1}(\overline{x}) + N_{\Omega_2}(\overline{x})$$

So we may consider the inclusion problem: find an x such that

 $0 \in Ax + Bx$ where $A, B : X \Rightarrow X$ are set-valued operators.

Introduction

The Douglas-Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas-Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

Resolvent and Relaxed Resolvent

Let $A: X \rightrightarrows X$ be an operator.

The resolvent of A is defined by

The reflected resolvent of A is defined by

Let $\lambda > 0$, the λ -relaxed resolvent of A is defined by $J_A^{\lambda} := (1 - \lambda) \operatorname{Id} + \lambda J_A$

 $J_{\mathcal{A}} := (\mathsf{Id} + \mathcal{A})^{-1}$

$$R_A := J_A^2 = 2J_A - \mathsf{Id}$$

 $y \in J_A x \iff y = (\operatorname{Id} + A)^{-1} x \iff x \in y + A y$

The resolvent of the normal cone operator is the projection:

$$J_{N_{\Omega}}(x) = P_{\Omega}(x) = \left\{ y \in \Omega, \|x - y\| = \min_{z \in \Omega} \|x - z\| \right\}_{z \in \Omega}$$

The Douglas-Rachford (DR) Algorithm

$$x_{k+1} = Tx_k$$
 where $T = \frac{1}{2}(\operatorname{Id} + R_B R_A).$

Illustration:

$$y = J_A x_k, \quad z = R_A x, \quad w = J_B z, \quad t = R_B z, \quad x_{k+1} = \frac{1}{2}(x_k + t).$$

▶ If $x_{k+1} = x_k$, then y = w and $0 \in Ay + Bw$. i.e., y is a solution.

Sum of Finitely Many Operators

Consider the problem of finding an x such that

 $0\in A_1x+A_2x+\cdots+A_mx.$

Let $x := (x_1, \ldots, x_m)$. Define

$$\begin{split} \boldsymbol{A} &:= A_1 \times \cdots \times A_m : \mathsf{x} \mapsto A_1 x_1 \times \cdots \times A_m x_m \\ \text{and} \quad \boldsymbol{B}(\mathsf{x}) &:= N_\Delta(\mathsf{x}) \quad \text{where} \quad \Delta &:= \Big\{ (x, \dots, x) \in X^m \Big\}. \end{split}$$

Then

 $0 \in A_1 x + A_2 x + \cdots + A_m x \quad \iff \quad 0 \in \mathbf{A}(x) + \mathbf{B}(x).$

The resolvents

$$J_{\mathbf{A}}(\mathbf{x}) = J_{A_1} \mathbf{x}_1 \times \cdots \times J_{A_m} \mathbf{x}_m,$$

$$J_{\mathbf{B}}(\mathbf{x}) = (\mathbf{x}, \dots, \mathbf{x}) \quad \text{where} \quad \mathbf{x} = \frac{1}{m} (\mathbf{x}_1 + \dots + \mathbf{x}_m).$$

A common problem in civil engineering design is the grading of a parking lot or a building pad. Within a given area, the engineer has to define grading slopes such that

- the grading site fits with existing structures.
- the drainage requirements on the surface are met.
- safety and comfort are taken into account.
- the engineer would like to change the existing surface as little as possible, in order to save on earthwork costs.

The grading site is usually represented as a Triangulated Irregular Network (TIN). The engineer is interested in *adjusting the heights* of the vertices in the triangulated grid, so that the newly obtained mesh-grid satisfies the above requirements.

2D View of a Construction Site

$\# \text{ of vertices} \approx 5,000$

of triangles: $\approx 7,000$

3D View of a Construction Site

The Triangular Mesh:

$$egin{aligned} V &= \{p_j = (p_{j1}, p_{j2}, z_j) \in \mathbb{R}^3\}, \ |V| = n, \ E &\subset \Big\{p_i p_j \ \Big| \ p_i, p_j \in V\Big\}, \ T &\subset \Big\{p_i p_j p_k \ \Big| \ p_i p_j, p_j p_k, p_k p_i \in E\Big\}. \end{aligned}$$

The variables are the **elevations** of the vertices, written as a vector

$$z = (z_1, z_2, \ldots, z_n) \in \mathbb{R}^n$$

12

Constraints and Costs

> Interpolation constraints, e.g., several values z_i 's are predetermined.

$$C_{ ext{interpolation}} := \Big\{ z \in \mathbb{R}^n \ , \ z_j = y_j ext{ for some vertex } j \Big\}.$$

Edge-slope constraints, e.g., slopes of several edges must be within a range.

$$\mathcal{C}_{ ext{edge-slope}} := \left\{ z \in \mathbb{R}^n \; , \; lpha \leq ext{slope}(e) \leq eta \; ext{for some edge} \; e
ight\}.$$

Edge-alignment constraints, e.g., slopes of several edges must equal.

$$C_{ ext{edge-alignment}} \mathrel{\mathop:}= \left\{ z \in \mathbb{R}^n \;, \; ext{slope}(e_1) = ext{slope}(e_2) \; ext{for some edges} \; e_1, e_2
ight\}$$

• Low-point constraints, e.g., minimum slope at drainage points.

$$C_{\mathsf{low-point}} := \Big\{ z \in \mathbb{R}^n \ , \ \mathsf{slope}(e) \geq lpha \ \mathsf{for all} \ e \ \mathsf{connected} \ \mathsf{to} \ \mathsf{a} \ \mathsf{low-point} \Big\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Constraints and Costs

Surface-alignment constraints, e.g., slopes of several triangles must equal.

$$C_{\mathsf{surface-alignment}} := \left\{ z \in \mathbb{R}^n \ , \ \mathsf{slope}(\Delta_1) = \mathsf{slope}(\Delta_2) \ \mathsf{for \ some \ triangles} \ \Delta_1, \Delta_2
ight\}.$$

Surface orientation constraints

$$C_{\mathsf{surface-orientation}} := \Big\{ z \in \mathbb{R}^n \ , \ \mathsf{slope}(\Delta) = \angle (\vec{n}_\Delta, \vec{q}) \le lpha \ \mathsf{for \ some \ triangle} \ \Delta \Big\}.$$

Special case: surface maximum slope: $\angle(\vec{n}_{\Delta}, \vec{e}_3) \le \alpha$, $\vec{e}_3 = (0, 0, 1) \in \mathbb{R}^3$. Special case: surface minimum slope: $\angle(\vec{n}_{\Delta}, \vec{d}) \le \alpha$, $\vec{d} = (d_1, d_2, 0) \in \mathbb{R}^3$.

The cost function F can be a linear combination of

- Earth work total volume (i.e., cut and fill).
- Earth work net volume (dirt from cutting can be used for filling).
- Curvatures between adjacent triangles.

The Optimization Problem

min
$$\sum_i \alpha_i F_i(z)$$
 subject to $z \in C := \bigcap_i C_i$.

By replacing C_i 's with the indicator functions, this is equivalent to

$$\min_{z} \quad \sum_{j=1}^{m} f_j(z) \quad \text{where} \quad f_j \in \{\alpha_i F_i, \iota_{C_i}\}.$$

Given $z_k = (z_{k,i}) \in X^m$, the DR iteration (in product space) is defined by

$$\begin{split} \overline{x}_k &:= \frac{1}{m} \sum_i x_{k,i}, \\ \forall i = 1, \dots, m: \quad y_{k,i} &:= J_{\gamma \partial f_i} (2\overline{x}_{k,i} - x_{k,i}) = \operatorname{prox}_{\gamma f_i} (2\overline{x}_{k,i} - x_{k,i}), \\ \forall i = 1, \dots, m: \quad x_{k+1,i} &:= x_{k,i} - \overline{x}_k + y_{k,i}, \\ (\text{new iteration}) \quad z_{k+1} &:= (x_{k+1,i})_{i \in m}. \end{split}$$

Then the $(\overline{x}_k)_{k \in \mathbb{N}}$ converges to a solution.

Introduction

The Douglas–Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas-Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

Monotonicity and Firm Nonexpansiveness

An operator A is monotone if $\forall (a, u), (b, v) \in \text{gr } A, \langle a - b, u - v \rangle \geq 0.$

A is maximally monotone if there is no monotone operator \hat{A} such that $\operatorname{gr} A \subsetneq \operatorname{gr} \hat{A}$.

An operator T is firmly expansive (on its domain) if for all $x, y \in \text{dom } T$,

 $||Tx - Ty||^2 \le ||x - y||^2 - ||(Id - T)x - (Id - T)y||^2$

A is monotone $\iff T = (Id + A)^{-1}$ is firmly nonexpansive

A is maximally monotone \iff dom $(Id + A)^{-1} = X$

Theorem ([Lions-Mercier 1979])

Let $A, B : X \rightrightarrows X$ be two maximally monotone operators such that $\operatorname{zer}(A + B) \neq \emptyset$. Let (x_k) be a sequence generated by the Douglas–Rachford algorithm

$$x_{k+1} = Tx_k$$
, $T = \frac{1}{2}(\operatorname{Id} + R_B R_A).$

Then x_k converges weakly to a fixed point $\overline{x} \in Fix T = Fix R_B R_A$ and $J_A \overline{x} \in zer(A + B)$.

Theorem ([Svaiter '11])

The sequence $J_A x_k$ converges weakly to $J_A \overline{x}$.

Theorem ([Bauschke '13])

The sequence $J_A x_k$ converges weakly to $J_A \overline{x}$. (The proof is based on Demiclosedness Principle).

Introduction

The Douglas–Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas-Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

$$\begin{array}{ll} x_{k+1} = T x_k &, \quad T = (1-\kappa) \operatorname{Id} + \kappa R_2 R_1, \\ \text{here} & J_1 := J_{\gamma A}, \ J_2 := J_{\delta B} \\ & R_1 := (1-\lambda) \operatorname{Id} + \lambda J_1, \ R_2 := (1-\mu) \operatorname{Id} + \mu J_2, \\ & \gamma > 0, \ \delta > 0, \ \ (\lambda - 1)(\mu - 1) = 1, \ \ \delta = \gamma(\lambda - 1), \ \ \kappa \in \]0, 1[. \end{array}$$

Illustration:

W

$$y = J_1 x_k$$
, $z = R_1 x_k$, $w = J_2 z$, $t = R_2 z$,
 $x_{k+1} = (1 - \kappa) x_k + \kappa t$.

If $x_{k+1} = x_k \in Fix T$, then

$$y = w$$
 and $0 \in Ay + Bw$,

i.e., y is a solution.

Ξ.

Generalized Monotonicity and Comonotonicity

Let $A: X \rightrightarrows X$ and $\alpha \in \mathbb{R}$. We say that A is

 $\begin{array}{ll} \alpha \text{-monotone if} \quad \forall (x, u), (y, v) \in \operatorname{gr} A, \quad \langle x - y, u - v \rangle \geq \alpha \|x - y\|^2, \\ \alpha \text{-comonotone if} \quad \forall (x, u), (y, v) \in \operatorname{gr} A, \quad \langle x - y, u - v \rangle \geq \alpha \|u - v\|^2, \end{array}$

and maximally α -monotone/comonotone if there is no α -monotone/comonotone operator whose graph strictly contains gr A.

- $\blacktriangleright \alpha = 0$: monotone.
- $\alpha > 0$: strongly monotone / strongly comonotone (= cocoercive).
- $\alpha < 0$: weakly monotone/ weakly comonotone.

Apply the aDR to the problem: find x such that $0 \in Ax + Bx$ where

- A and B are maximally α and β monotone with $\alpha + \beta \ge 0$.
- A and B are maximally α and β comonotone with $\alpha + \beta \ge 0$.

Note that:

A is α_1 -monotone $\iff A + \alpha_2 \operatorname{Id}$ is $(\alpha_1 + \alpha_2)$ -monotone.

So, if A is α -monotone and B is β -monotone with $\alpha + \beta \ge 0$, then

$$A + B = \left(A - \frac{\alpha - \beta}{2} \operatorname{Id}\right) + \left(B + \frac{\alpha - \beta}{2} \operatorname{Id}\right) =: \widetilde{A} + \widetilde{B}.$$

Here, \widetilde{A} and \widetilde{B} are both $\left(\frac{\alpha+\beta}{2}\right)$ -monotone, in particular, monotone.

So, one can simply solve the problem

$$0 \in \widetilde{A}x + \widetilde{B}x$$

using available tools for monotone operators, e.g., the classical DR algorithm.

Convergence of the Adaptive DR Algorithm

Theorem [Dao-Ph'19]: Let X be a Euclidean space. Assume $A, B : X \rightrightarrows X$ are respectively maximally α -monotone and maximally β -monotone with $\operatorname{zer}(A+B) \neq \emptyset$. Let $\gamma > 0, \delta > 0, \lambda > 1, \mu > 1, \kappa \in]0, 1[$, and suppose further that

 $egin{array}{lll} lpha+eta\geq 0, & 1+2\gammalpha> 0, \ 2-2\gammaeta\leq \mu\leq 2+2\gammalpha, \ (\lambda-1)(\mu-1)=1, & \delta=(\lambda-1)\gamma. \end{array}$

Let $(x_k)_{k\in\mathbb{N}}$ be a sequence generated by the adaptive DR algorithm. Then (x_k) converges weakly to a point $\overline{x} \in \text{Fix } T$ with $J_1\overline{x} \in \text{zer}(A+B)$.

Theorem [Dao-Ph'19]: Let $\lambda = \mu = 2$ and $\gamma = \delta > 0$. Suppose that

$$\alpha + \beta > 0$$
 , $1 + \gamma \frac{\alpha \beta}{\alpha + \beta} > \kappa > 0.$

Let $(x_k)_{k \in \mathbb{N}}$ be generated by the classical DR algorithm. Then (x_k) converges weakly to a point $\overline{x} \in \text{Fix } T$ with $J_1 \overline{x} \in \text{zer}(A + B)$.

Sketch of the Proof

Under the assumptions, we derive

$$\|Tx - Ty\|^{2} \leq \|x - y\|^{2} - \frac{1 - \kappa}{\kappa} \|(\operatorname{Id} - T)x - (\operatorname{Id} - T)y\|^{2} \\ - \kappa \mu (2 + 2\gamma \alpha - \mu) \|J_{1}x - J_{1}y\|^{2} \\ - \kappa \mu (\mu - (2 - 2\gamma \beta)) \|J_{2}R_{1}x - J_{2}R_{1}y\|^{2}.$$

Since $2-2\gamma\beta\leq\mu\leq 2+2\gamma\alpha$, we obtain

$$||Tx - Ty||^2 \le ||x - y||^2 - \frac{1 - \kappa}{\kappa} ||(Id - T)x - (Id - T)y||^2$$

which allows for the convergence of the adaptive DR algorithm via the Krasnosel'skiĭ–Mann Theorem.

Remark: Under- and Over-Reflecting the Resolvents

Let $\alpha > 0$ and suppose that A is maximally α -monotone ("strong"), B is maximally $(-\alpha)$ -monotone ("weak").

Then

$$\mu=2+2\gammalpha>2 \quad ext{and} \quad \lambda=rac{\mu}{\mu-1}<2.$$

- Under-reflect the resolvent of the strongly monotone operator A (use $\lambda < 2$).
- Over-reflect the resolvent of the weakly monotone operator *B* (use $\mu > 2$).

Let $\theta > 0$, we say that an operator $T : X \to X$ is conically θ -averaged if

 $T = (1 - \theta) \operatorname{Id} + \theta N$ for some nonexpansive operator N.

 $\begin{array}{lll} \theta = 1 & : & {\rm nonexpansive} \\ \theta = \frac{1}{2} & : & {\rm firmly \ nonexpansive} \\ \theta \in \left] 0,1 \right[& : & {\rm averaged} \end{array}$

Proposition (Compositions of two conically averaged operators) [Bartz-Dao-Ph'19]

Let $T_1, T_2 : X \to X$ be conically θ_1 -averaged and conically θ_2 -averaged. Suppose that either $\theta_1 = \theta_2 = 1$ or $\theta_1 \theta_2 < 1$. Let also $\omega \in \mathbb{R} \setminus \{0\}$. Then

$$\mathcal{T} := \Big(\frac{1}{\omega}\mathcal{T}_2\Big)\big(\omega\mathcal{T}_1\big) \quad \text{is conically θ-averaged with} \quad \theta := \begin{cases} 1, & \theta_1 = \theta_2 = 1, \\ \frac{\theta_1 + \theta_2 - 2\theta_1\theta_2}{1 - \theta_1\theta_2}, & \theta_1\theta_2 < 1. \end{cases}$$

Theorem [Bartz-Dao-Ph'19]:

Assume A, B are maximally α -monotone and maximally β -monotone, $1+2\gamma\alpha>$ 0, $\mu>$ 1, and

$$\alpha+\beta\geq 0 \quad \text{and} \quad 2+2\gamma\alpha-\varepsilon\leq \mu\leq 2+2\gamma\alpha+\varepsilon \quad \text{with} \quad \varepsilon=2\sqrt{\gamma(1+\gamma\alpha)(\alpha+\beta)},$$

and either three strict inequalities happen simultaneously or none of them happens. Define

$$\lambda = rac{\mu}{\mu-1} \quad, \quad \delta = rac{\gamma}{\mu-1} \quad, \quad 0 < \kappa < \kappa^*,$$

where

$$\kappa^* := \begin{cases} 1, & \alpha + \beta = \mathbf{0}, \\ \frac{4\gamma\delta(1+\gamma\alpha)(1+\delta\beta)-(\gamma+\delta)^2}{2\gamma\delta(\gamma+\delta)(\alpha+\beta)}, & \alpha + \beta > \mathbf{0}. \end{cases}$$

Let $(x_k)_{k \in \mathbb{N}}$ be a sequence generated by the aDR algorithm.

Then (x_k) converges weakly to a fixed point \overline{x} and $J_1\overline{x} \in \operatorname{zer}(A+B)$.

Theorem [Bartz-Dao-Ph'19]:

Assume A, B are maximally α -comonotone and maximally β -comonotone, $\gamma + 2\alpha > 0$, and

$$\alpha+\beta\geq 0 \quad \text{and} \quad \gamma+2\alpha-\varepsilon\leq\delta\leq\gamma+2\alpha+\varepsilon \quad \text{with} \quad \varepsilon=2\sqrt{(\gamma+\alpha)(\alpha+\beta)},$$

and either three strict inequalities happen simultaneously or none of them happens. Define

$$\lambda = 1 + rac{\delta}{\gamma} \quad , \quad \mu = 1 + rac{\gamma}{\delta} \quad , \quad 0 < \kappa < \kappa^*,$$

where

$$\kappa^* := \begin{cases} 1, & \alpha + \beta = \mathbf{0}, \\ \frac{4(\gamma + \alpha)(\delta + \beta) - (\gamma + \delta)^2}{2(\gamma + \delta)(\alpha + \beta)}, & \alpha + \beta > \mathbf{0}. \end{cases}$$

Let $(x_k)_{k \in \mathbb{N}}$ be a sequence generated by the aDR algorithm.

Then (x_k) converges weakly to a fixed point \overline{x} and $J_1\overline{x} \in \operatorname{zer}(A+B)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bauschke '13] (Demiclosedness principle for firmly nonexpansive operators) Let $T_1, T_2 : X \to X$ be firmly nonexpansive operators, let $(x_n)_{n \in \mathbb{N}}$ and $(z_n)_{n \in \mathbb{N}}$ be sequences in X. Suppose that as $n \to +\infty$,

$$x_n
ightarrow x^*, \quad z_n
ightarrow z^*,$$

 $T_1 x_n
ightarrow y^*, \quad T_2 z_n
ightarrow y^*,$
 $(x_n - T_1 x_n) + (z_n - T_2 z_n)
ightarrow (x^* - y^*) + (z^* - y^*),$
 $T_1 x_n - T_2 z_n
ightarrow 0.$

Then $y^* = T_1 x^* = T_2 z^*$.

Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bartz-Campoy-Ph '20] (Demiclosedness principle for cocoercive operators) Let $T_1: X \to X$ and $T_2: X \to X$ be respectively σ_1 - and σ_2 -cocoercive¹, let $(x_n)_{n \in \mathbb{N}}$ and $(z_n)_{n \in \mathbb{N}}$ be sequences in X, and let $\rho_1, \rho_2 \in \mathbb{R}_{++}$ be such that

$$\frac{\rho_1\sigma_1+\rho_2\sigma_2}{\rho_1+\rho_2} \ge 1.$$

Suppose that as $n \to +\infty$,

$$\begin{aligned} x_n &\rightharpoonup x^*, \quad z_n \rightharpoonup z^*, \\ T_1 x_n &\rightharpoonup y^*, \quad T_2 z_n \rightharpoonup y^*, \\ \rho_1(x_n - T_1 x_n) + \rho_2(z_n - T_2 z_n) &\rightarrow \rho_1(x^* - y^*) + \rho_2(z^* - y^*), \\ T_1 x_n - T_2 z_n &\rightarrow 0. \end{aligned}$$

Then $y^* = T_1 x^* = T_2 z^*$.

¹Firm nonexpansiveness is equivalent to 1-cocoercivity

Demiclosedness Principles and Weak Convergence of the aDR

Theorem [Bartz-Campoy-Ph'20] (Demiclosedness principle for averaged operators) Let $T_1, T_2 : X \to X$ be respectively θ_1 - and θ_2 -averaged where $\theta_1, \theta_2 \in]0, 1[$. Let $(x_n)_{k \in \mathbb{N}}$ and $(z_n)_{k \in \mathbb{N}}$ be sequences in X and let $\rho_1, \rho_2 > 0$ be such that

$$heta_1 \leq rac{
ho_2}{
ho_1+
ho_2} \quad ext{and} \quad heta_2 \leq rac{
ho_1}{
ho_1+
ho_2}.$$

Suppose that as $n \to +\infty$,

$$x_n
ightarrow x^*$$
 and $z_n
ightarrow z^*$,
 $T_1(x_n)
ightarrow y^*$ and $T_2(z_n)
ightarrow y^*$,
 $ho_1(x_n - T_1(x_n)) +
ho_2(z_n - T_2(z_n))
ightarrow 0$,
 $T_1(x_n) - T_2(z_n)
ightarrow 0$.

Then $T_1(x^*) = T_2(z^*) = y^*$.

・ロット (日)・ (田)・ (日)・ (日)・

Theorem [Bartz-Campoy-Ph'20] (Monotone operators)

Suppose that A and B are maximally α -monotone and maximally β -monotone, respectively, where $\alpha + \beta \geq 0$ and $\operatorname{zer}(A + B) \neq \emptyset$. Suppose the parameters $\gamma, \delta, \lambda, \mu, \kappa > 0$ are appropriately chosen. Let $(x_k)_{k \in \mathbb{N}}$ be generated the aDR. Then

 $J_{\gamma A}(x_k) \rightarrow J_{\gamma A}(x^*) \in \operatorname{zer}(A+B)$, where x^* is the weak limit of x_k .

Theorem [Bartz-Campoy-Ph'20] (Comonotone operators)

Suppose that A and B are maximally α -composition and maximally β -composition, respectively, where $\alpha + \beta > 0$ and $\operatorname{zer}(A + B) \neq \emptyset$. Suppose the parameters $\gamma, \delta, \lambda, \mu, \kappa > 0$ are appropriately chosen. Let $(x_k)_{k \in \mathbb{N}}$ be generated the aDR. Then

 $J_{\gamma A}(x_k) \rightarrow J_{\gamma A}(x^*) \in \operatorname{zer}(A+B)$, where x^* is the weak limit of x_k .

Introduction

The Douglas-Rachford Algorithm (DR)

An Application

Convergence Analysis of the DR Algorithm

An Adaptive Douglas–Rachford Algorithm (aDR)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

An Adaptive Alternating Directions Method of Multipliers (aADMM)

The Alternating Directions Method of Multipliers (ADMM) is a well studied splitting algorithm for the optimization problem

> min f(x) + g(z)s.t. Mx = z, $x \in \mathbb{R}^n$, $z \in \mathbb{R}^m$,

where $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^m \to \mathbb{R}$ are proper, lsc, convex functions, and $M \in \mathbb{R}^{m \times n}$. Given an initial point (x^0, y^0, y^0) and a parameter $\gamma > 0$, the ADMM generates

$$x^{k+1} = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} L_{\gamma}(x, z^k, y^k),$$
$$z^{k+1} = \underset{z \in \mathbb{R}^m}{\operatorname{argmin}} L_{\gamma}(x^{k+1}, z, y^k),$$
$$y^{k+1} = y^k + \gamma(Mx^{k+1} - z^{k+1})$$

where $L_{\gamma}(x, z, y) = f(x) + g(z) + \langle y, Mx - z \rangle + \frac{\gamma}{2} ||Mx - z||^2$ is the augmented Lagrangian <ロ> < 団> < 団> < 言> < 言> こま のへで 34 associated with (P).

Let $(x^0, z^0, y^0) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m$ be an initial point and let $\gamma, \delta > 0$. The aADMM iterates as follows

$$\begin{aligned} x^{k+1} &= \operatorname*{argmin}_{x \in \mathbb{R}^n} L_{\gamma}(x, z^k, y^k) &= \operatorname*{argmin}_{x \in \mathbb{R}^n} \left\{ f(x) + \frac{\gamma}{2} \left\| Mx - z^k + \frac{y^k}{\gamma} \right\|^2 \right\}, \\ z^{k+1} &= \operatorname*{argmin}_{z \in \mathbb{R}^m} L_{\delta}(x^{k+1}, z, y^k) = \operatorname*{argmin}_{z \in \mathbb{R}^m} \left\{ g(z) + \frac{\delta}{2} \left\| Mx^{k+1} - z + \frac{y^k}{\delta} \right\|^2 \right\}, \\ y^{k+1} &= y^k + \delta(Mx^{k+1} - z^{k+1}), \end{aligned}$$

where the augmented Lagrangian is

$$L_\gamma(x,z,y)=f(x)+g(z)+\langle y,\mathit{M} x-z
angle+rac{\gamma}{2}\|\mathit{M} x-z\|^2.$$

・ロ・・日・・ヨ・・日・ ・日・

Weak and Strong Convexity

We say that f is α -convex if $f - \frac{\alpha}{2} \| \cdot \|^2$ is convex, equivalently, if $\forall x, y \in \mathbb{R}^n, \lambda \in [0, 1]$,

$$f((1-\lambda)x+\lambda y)\leq \lambda f(x)+(1-\lambda)f(y)-rac{lpha}{2}\lambda(1-\lambda)\|x-y\|^2.$$

 $\alpha > 0$: We also say that f is strongly convex. $\alpha < 0$: We also say that f is weakly convex (or hypoconvex).

The function *f* is *coercive* if

 $\lim_{\|x\|\to\infty}f(x)=+\infty$

and supercoercive if

$$\lim_{\|x\|\to\infty}\frac{f(x)}{\|x\|}=+\infty.$$

It is known that

strong convexity \implies supercoercivity \implies coercivity.

More Definitions

The *Fréchet subdifferential* of f at x is the set

$$\widehat{\partial}f(x) := \left\{ u \in \mathbb{R}^n : \liminf_{\substack{y \to x \\ y \neq x}} \frac{f(y) - f(x) - \langle u, y - x \rangle}{\|y - x\|} \ge 0 \right\}.$$

The *recession function* of f is defined by

$$\operatorname{rec} f : \mathbb{R}^n \to] - \infty, +\infty] : y \mapsto \sup_{x \in \operatorname{dom} f} \{f(x+y) - f(x)\},\$$

The *Fenchel conjugate* of *f* is defined by

$$f^*: \mathbb{R}^n o]-\infty, +\infty]: u \mapsto \sup_{x \in \mathbb{R}^n} \{ \langle u, x \rangle - f(x) \}.$$

・ロト・日本・モート ヨー うへの

Convergence of the aADMM [Bartz-Campoy-Ph'21]

Let $M \in \mathbb{R}^{m \times n}$ be a nonzero matrix, let $f : \mathbb{R}^n \to]-\infty, +\infty]$ be proper, lsc and α -convex, and let $g : \mathbb{R}^m \to]-\infty, +\infty]$ be proper, lsc and β -convex with

 $\alpha \ge 0$ and $\alpha + \beta \|M\|^2 \ge 0.$

Suppose that one of the following conditions holds:

- (A.1) the Lagrangian L_0 has a critical point,
- (A.2) the Lagrangian L_0 has a saddle point,
- (A.3) problem (P) has an optimal solution and $0 \in ri(dom g M(dom f))$;

and that one of the following conditions holds:

(B.1)
$$0 \in \operatorname{ri}(\operatorname{dom} f^* - \operatorname{ran} M^T)$$
,

(B.2) $\operatorname{ri}(\operatorname{ran} \partial f) \cap \operatorname{ran} M^T \neq \emptyset$,

(B.3) $(\operatorname{rec} f)(x) > 0$ for all $x \in \ker M \setminus \{x \in \mathbb{R}^n : -(\operatorname{rec} f)(-x) = (\operatorname{rec} f)(x) = 0\}$,

(B.4) f is coercive (in particular, supercoercive),

(B.5) $\alpha > 0$ (i.e., f is strongly convex),

(B.6) $M^T M$ is invertible.

Let $\delta > \max\{0, -2\beta\}$ and set

$$\begin{split} \gamma &= \delta + 2\beta, & \text{if } \alpha + \beta \|M\|^2 = 0, \\ \gamma &\in \left] \max\{0, \delta + 2\beta - \Delta_{\delta}\}, \delta + 2\beta + \Delta_{\delta} \right[, & \text{if } \alpha + \beta \|M\|^2 > 0; \end{split}$$

where

$$\Delta_{\delta} := \frac{1}{\|\boldsymbol{M}\|} \sqrt{2 \left(\alpha + \beta \|\boldsymbol{M}\|^2\right) \left(\delta + 2\beta\right)}.$$

Set $(x^0, z^0, y^0) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m$ and let $(x^k, z^k, y^k)_{k \in \mathbb{N}}$ be generated by the aADMM. Then

$$M\!x^k
ightarrow M\!x^\star, \quad z^k
ightarrow z^\star \quad {
m and} \quad y^k
ightarrow y^\star$$

where (x^*, z^*, y^*) is a critical point of $L_0(x, z, y)$. Consequently, (x^*, z^*) is a solution of (P). If, in particular, (B.5) or (B.6) holds, then $x^k \to x^*$.

Define

$$Q: \mathbb{R}^m \rightrightarrows \mathbb{R}^m: y \mapsto \left\{-Mx: -M^T y \in \partial f(x)\right\} = (-M) \circ (\partial f)^{-1} \circ (-M^T)(y),$$

$$S: \mathbb{R}^m \rightrightarrows \mathbb{R}^m: y \mapsto \left\{z: y \in \widehat{\partial}g(z)\right\} = (\widehat{\partial}g)^{-1}(y),$$

Then the sequence $w^k := y^k + \delta z^k$ is generated by the aDR algorithm with parameters γ, δ applied to S and Q.

Under the assumptions made:

▶ $\operatorname{zer}(Q+S) \neq \emptyset$.

▶ Q is maximally $\frac{\alpha}{\|\|M\|^2}$ -comonotone, S is maximally β -comonotone, and $\frac{\alpha}{\|\|M\|^2} + \beta \ge 0$.

Finally, apply the convergence result of the aDR for two comonotone operators.

Thank you!

- Bartz, S., Dao, M.N., Phan, H.M.: Conical averagedness and convergence analysis of fixed point algorithms, preprint 2019, arXiv:1910.14185.
- Bartz, S., Campoy, R., Phan, H.M.: Demiclosedness principles for generalized nonexpansive mappings, J. Optim. Theory Appl. 186(3), 759–778 (2020)
- Bauschke, H.H.: New demiclosedness principles for (firmly) nonexpansive operators. In: Bailey D. et al. (eds) Computational and Analytical Mathematics, Springer Proceedings in Mathematics & Statistics. Springer, New York (2013)
- Dao, M.N., Phan, H.M.: Adaptive Douglas–Rachford splitting algorithm for the sum of two operators, SIAM J. Optim. 29(4), 2697–2724 (2019)
- Douglas, J., Rachford, H.H.: On the numerical solution of the heat condition problem in 2 and 3 space variables, Trans. AMS. 82, 421–439 (1956)
- Guo, K., Han, D., Yuan, X.: Convergence analysis of Douglas–Rachford splitting method for "strongly + weakly" convex programming, SIAM J. Numer. Anal. 55(4), 1549–1577 (2017).
- Koch, V.R., Phan, H.M.: Optimization of triangular networks with spatial constraints, *Optim. Methods Softw.* (2019), DOI:10.1080/10556788.2019.1604703.
- Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators, *SIAM J. Numer. Anal.* **16**, 964–979 (1979)

Svaiter, B.F.: On weak convergence of the Douglas–Rachford method. SIAM J. Control Optim. 49(1), 280–287 (2011)

Thank you!

- Bartz, S., Campoy, R., Phan, H.M: An adaptive alternating directions method of multipliers, preprint 2021, arXiv:2103.07159
- Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. *Found. Trends Mach. Learn.* **3**(1), 1–122 (2011)
- Chen, L., Sun, D., Toh, K.C.: A note on the convergence of ADMM for linearly constrained convex optimization problems. *Comput. Optim. Appl.* **66**(2), 327–343 (2017)
- Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives. *Pac. J. Optim.* **11**(4), 619–644 (2015)
- Fortin, M., Glowinski, R.: On decomposition-coordination methods using an augmented Lagrangian. In M. Fortin and R. Glowinski (eds.), Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications 15, 97–146 (1983)
- Gabay, D.: Applications of the method of multipliers to variational inequalities. In M. Fortin and R. Glowinski (eds.), Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications 15 299–331 (1983)
- Gabay, G., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. *Comput. Math. Appl.* 2(1), 17–40 (1976)

Glowinski, R., Marroco, A.: Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires. *ESAIM-Math. Model. Num.* **9**(R2), 41–76 (1975)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●