# **Adaptive Gradient Descent without Descent**

Yura Malitsky

Variational Analysis and Optimisation Webinar series, 19 May 2021



# **Paper**

Reference: ICML-2020, arxiv:1910.09529



Konstantin Mishchenko (PhD student, KAUST)

We want to solve

$$\min_{x \in \mathbb{R}^d} f(x),$$

where  $f: \mathbb{R}^d \to \mathbb{R}$  is convex and differentiable.

We want to solve

$$\min_{x \in \mathbb{R}^d} f(x),$$

where  $f: \mathbb{R}^d \to \mathbb{R}$  is convex and differentiable.

How?

We want to solve

$$\min_{x \in \mathbb{R}^d} f(x),$$

where  $f: \mathbb{R}^d \to \mathbb{R}$  is convex and differentiable.

#### How?

- Gradient descent
- Accelerated gradient methods
- Newton's methods

- Tensor methods
- Stochastic methods
- Coordinate methods

We want to solve

$$\min_{x \in \mathbb{R}^d} f(x),$$

where  $f: \mathbb{R}^d \to \mathbb{R}$  is convex and differentiable.

#### How?

- Gradient descent
- Accelerated gradient methods
- Newton's methods

- Tensor methods
- Stochastic methods
- Coordinate methods

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

### History:

Cauchy (1847), Curry (1944), Goldshtein (1962), Polyak (1963), Armijo (1966)

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

### History:

Cauchy (1847), Curry (1944), Goldshtein (1962), Polyak (1963), Armijo (1966)

**Def.** f is L-smooth  $\iff \nabla f$  is L-Lipschitz  $\iff \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$ 

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

### **History:**

Cauchy (1847), Curry (1944), Goldshtein (1962), Polyak (1963), Armijo (1966)

**Def.** f is L-smooth  $\iff \nabla f$  is L-Lipschitz  $\iff \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$ 

#### **Theorem**

Suppose f is convex, L-smooth, and  $\lambda \in (0, \frac{2}{L})$ .

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

### **History:**

Cauchy (1847), Curry (1944), Goldshtein (1962), Polyak (1963), Armijo (1966)

**Def.** f is L-smooth  $\iff \nabla f$  is L-Lipschitz  $\iff \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$ 

#### **Theorem**

Suppose f is convex, L-smooth, and  $\lambda \in (0, \frac{2}{L})$ . Then  $x^k \to x^* \in \operatorname{argmin} f$ .

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

### **History:**

Cauchy (1847), Curry (1944), Goldshtein (1962), Polyak (1963), Armijo (1966)

**Def.** f is L-smooth  $\iff \nabla f$  is L-Lipschitz  $\iff ||\nabla f(x) - \nabla f(y)|| \le L||x - y||$ 

#### **Theorem**

Suppose f is convex, L-smooth, and  $\lambda \in (0, \frac{2}{L})$ . Then  $x^k \to x^* \in \operatorname{argmin} f$ . For  $\lambda = \frac{1}{L}$ , the rate is

$$f(x^k) - f(x^*) \le \frac{L||x^0 - x^*||^2}{2(2k+1)} = \mathcal{O}\left(\frac{1}{k}\right).$$

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Let x(t) be a continuous curve with  $x(\lambda k) = x^k$ .

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Let x(t) be a continuous curve with  $x(\lambda k) = x^k$ .

$$x(t + \lambda) = x(t) - \lambda \nabla f(x(t))$$

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Let x(t) be a continuous curve with  $x(\lambda k) = x^k$ .

$$x(t + \lambda) = x(t) - \lambda \nabla f(x(t))$$

$$\iff$$

$$\frac{x(t+\lambda) - x(t)}{\lambda} = -\nabla f(x(t))$$

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Let x(t) be a continuous curve with  $x(\lambda k) = x^k$ .

$$x(t+\lambda) = x(t) - \lambda \nabla f(x(t))$$

$$\iff$$

$$\frac{x(t+\lambda)-x(t)}{\lambda}=-\nabla f(x(t))$$

If 
$$\lambda \to 0$$
, 
$$x'(t) = -\nabla f(x(t))$$

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Let x(t) be a continuous curve with  $x(\lambda k) = x^k$ .

$$x(t+\lambda) = x(t) - \lambda \nabla f(x(t))$$

$$\iff$$

$$\frac{x(t+\lambda) - x(t)}{\lambda} = -\nabla f(x(t))$$

If 
$$\lambda \to 0$$
,

$$x'(t) = -\nabla f(x(t))$$



$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Let x(t) be a continuous curve with  $x(\lambda k) = x^k$ .

$$x(t+\lambda) = x(t) - \lambda \nabla f(x(t))$$

$$\iff$$

$$\frac{x(t+\lambda) - x(t)}{\lambda} = -\nabla f(x(t))$$

If 
$$\lambda \to 0$$
,

$$x'(t) = -\nabla f(x(t))$$



$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Let x(t) be a continuous curve with  $x(\lambda k) = x^k$ .

$$x(t+\lambda) = x(t) - \lambda \nabla f(x(t))$$

$$\iff$$

$$\frac{x(t+\lambda) - x(t)}{\lambda} = -\nabla f(x(t))$$

If 
$$\lambda \to 0$$
, 
$$x'(t) = -\nabla f(x(t))$$



## Continuous counterpart of GD:

$$x(0) = x_0$$
  
$$x'(t) = -\nabla f(x(t))$$

### Continuous counterpart of GD:

$$x(0) = x_0$$
  
$$x'(t) = -\nabla f(x(t))$$

Let  $\Psi(t) = ||x(t) - x^*||^2$  be a Lyapunov function.

### Continuous counterpart of GD:

$$x(0) = x_0$$
  
$$x'(t) = -\nabla f(x(t))$$

Let  $\Psi(t) = ||x(t) - x^*||^2$  be a Lyapunov function. Then

$$\frac{\mathrm{d}}{\mathrm{d}t}\|x(t)-x^*\|^2=2\langle x(t)-x^*,x'(t)\rangle$$

### Continuous counterpart of GD:

$$x(0) = x_0$$
  
$$x'(t) = -\nabla f(x(t))$$

Let  $\Psi(t) = ||x(t) - x^*||^2$  be a Lyapunov function. Then

$$\frac{\mathrm{d}}{\mathrm{d}t} ||x(t) - x^*||^2 = 2\langle x(t) - x^*, x'(t) \rangle$$
$$= 2\langle x(t) - x^*, -\nabla f(x(t)) \rangle$$

### Continuous counterpart of GD:

$$x(0) = x_0$$
  
$$x'(t) = -\nabla f(x(t))$$

Let  $\Psi(t) = ||x(t) - x^*||^2$  be a Lyapunov function. Then

$$\frac{\mathrm{d}}{\mathrm{d}t} ||x(t) - x^*||^2 = 2\langle x(t) - x^*, x'(t) \rangle$$

$$= 2\langle x(t) - x^*, -\nabla f(x(t)) \rangle$$

$$\leq 2\langle f(x^*) - f(x(t)) \rangle$$

 $\leftarrow$  convexity

### Continuous counterpart of GD:

$$x(0) = x_0$$
  
$$x'(t) = -\nabla f(x(t))$$

Let  $\Psi(t) = ||x(t) - x^*||^2$  be a Lyapunov function. Then

$$\frac{\mathrm{d}}{\mathrm{d}t} ||x(t) - x^*||^2 = 2\langle x(t) - x^*, x'(t) \rangle$$

$$= 2\langle x(t) - x^*, -\nabla f(x(t)) \rangle$$

$$\leq 2(f(x^*) - f(x(t))) \qquad \leftarrow \text{convexity}$$

$$< 0$$

### Continuous counterpart of GD:

$$x(0) = x_0$$
  
$$x'(t) = -\nabla f(x(t))$$

Let  $\Psi(t) = ||x(t) - x^*||^2$  be a Lyapunov function. Then

$$\frac{\mathrm{d}}{\mathrm{d}t} ||x(t) - x^*||^2 = 2\langle x(t) - x^*, x'(t) \rangle$$

$$= 2\langle x(t) - x^*, -\nabla f(x(t)) \rangle$$

$$\leq 2(f(x^*) - f(x(t))) \qquad \leftarrow \text{convexity}$$

$$\leq 0$$

$$\Rightarrow$$
  $x(t) \to x^* \in \operatorname{argmin} f$  and  $f(x(t)) - f(x^*) \le \frac{1}{2t} ||x_0 - x^*||^2$ 

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

1. GD is not general: many functions are not L-smooth (i.e., gradients are not L-Lipschitz). **Example:**  $x^p$ , with p > 2;  $\exp x$ ;  $\log x$ ;  $\tan x$ 

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

- 1. GD is not general: many functions are not *L*-smooth (i.e., gradients are not *L*-Lipschitz). **Example:**  $x^p$ , with p > 2;  $\exp x$ ;  $\log x$ ;  $\tan x$
- 2. GD is not a free lunch: one needs to guess  $\lambda$ .

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

- 1. GD is not general: many functions are not *L*-smooth (i.e., gradients are not *L*-Lipschitz). **Example:**  $x^p$ , with p > 2;  $\exp x$ ;  $\log x$ ;  $\tan x$
- 2. GD is not a free lunch: one needs to guess  $\lambda$ .
- 3. GD is not robust: with  $\lambda \geq \frac{2}{L}$  may lead to divergence.

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

- 1. GD is not general: many functions are not *L*-smooth (i.e., gradients are not *L*-Lipschitz). **Example:**  $x^p$ , with p > 2;  $\exp x$ ;  $\log x$ ;  $\tan x$
- 2. GD is not a free lunch: one needs to guess  $\lambda$ .
- 3. GD is not robust: with  $\lambda \geq \frac{2}{L}$  may lead to divergence.
- 4. GD is slow: even if L is finite, it might be larger than local smoothness.

What to do?

#### What to do?

 $\bullet$  GD is not a free lunch: one needs to guess  $\lambda.$ 

#### What to do?

• GD is not a free lunch: one needs to guess  $\lambda$ .

**Solution:** line search?

try 
$$\lambda = \gamma^i$$
 
$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$
 until  $f(x^{k+1}) \le f(x^k) - c||\nabla f(x^k)||^2$ 

#### What to do?

• GD is not a free lunch: one needs to guess  $\lambda$ .

**Solution:** line search?

try 
$$\lambda = \gamma^i$$
 
$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$
 until  $f(x^{k+1}) \le f(x^k) - c ||\nabla f(x^k)||^2$ 

Cons: more expensive than GD

■ GD is slow

GD is slow

**Solution:** Polyak's stepsize?

$$\lambda_k = \frac{f(x^k) - f_*}{\|\nabla f(x^k)\|^2}$$
$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

GD is slow

**Solution:** Polyak's stepsize?

$$\lambda_k = \frac{f(x^k) - f_*}{\|\nabla f(x^k)\|^2}$$
$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

Cons: needs  $f_*$ 

GD is slow

**Solution:** Polyak's stepsize?

$$\lambda_k = \frac{f(x^k) - f_*}{\|\nabla f(x^k)\|^2}$$
$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

Cons: needs  $f_*$ 

Solution-2: Barzilai-Borwein stepsize?

$$\lambda_k = \frac{\langle \nabla f(x^k) - \nabla f(x^{k-1}), x^k - x^{k-1} \rangle}{\|\nabla f(x^k) - \nabla f(x^{k-1})\|^2}$$
$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

GD is slow

**Solution:** Polyak's stepsize?

$$\lambda_k = \frac{f(x^k) - f_*}{\|\nabla f(x^k)\|^2}$$
$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

Cons: needs  $f_*$ 

Solution-2: Barzilai-Borwein stepsize?

$$\lambda_k = \frac{\langle \nabla f(x^k) - \nabla f(x^{k-1}), x^k - x^{k-1} \rangle}{\|\nabla f(x^k) - \nabla f(x^{k-1})\|^2}$$
$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

Cons: guarantees only for quadratic f, doesn't work in general. Counterexample in [Burdakov et al., 2019]

### Law of cosines:

$$||a + b||^2 = ||a||^2 + 2\langle a, b\rangle + ||b||^2$$

Law of cosines:

$$||a + b||^2 = ||a||^2 + 2\langle a, b\rangle + ||b||^2$$

Convexity:

$$\langle \nabla f(x), y - x \rangle \le f(y) - f(x)$$

Law of cosines:

$$||a + b||^2 = ||a||^2 + 2\langle a, b\rangle + ||b||^2$$

Convexity:

$$\langle \nabla f(x), y - x \rangle \le f(y) - f(x)$$

**Smoothness:** 

$$||\nabla f(y) - \nabla f(x)|| \le L||y - x||$$

Law of cosines:

$$||a + b||^2 = ||a||^2 + 2\langle a, b\rangle + ||b||^2$$

Convexity:

$$\langle \nabla f(x), y - x \rangle \le f(y) - f(x)$$

**Smoothness:** 

$$||\nabla f(y) - \nabla f(x)|| \le L||y - x||$$

convexity 
$$\iff$$

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$$

Law of cosines:

$$||a + b||^2 = ||a||^2 + 2\langle a, b\rangle + ||b||^2$$

Convexity:

$$\langle \nabla f(x), y - x \rangle \le f(y) - f(x)$$

**Smoothness:** 

$$||\nabla f(y) - \nabla f(x)|| \le L||y - x||$$

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$$

descent inequality

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Law of cosines:

Convexity:

Smoothness:

$$x^{k+1} = x^k - \lambda \nabla f(x^k)$$

Law of cosines:

$$\begin{aligned} ||x^{k+1} - x^*||^2 &= ||x^{k+1} - x^k + x^k - x^*||^2 \\ &= ||x^k - x^*||^2 + 2\langle x^{k+1} - x^k, x^k - x^* \rangle + ||x^{k+1} - x^k||^2 \\ &= ||x^k - x^*||^2 + 2\lambda \langle \nabla f(x^k), x^* - x^k \rangle + ||x^{k+1} - x^k||^2 \end{aligned}$$

Convexity:

$$2\lambda\langle\nabla f(x^k), x^* - x^k\rangle \le 2\lambda\big(f(x^*) - f(x^k)\big)$$

Smoothness:

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} ||x^{k+1} - x^k||^2$$

$$\iff$$

$$f(x^{k+1}) \le f(x^k) - \frac{2 - \lambda L}{2\lambda} ||x^{k+1} - x^k||^2$$

If 
$$\lambda \leq \frac{1}{L}$$
,

$$||x^{k+1}-x^*||^2+2\lambda(f(x^{k+1})-f(x^*))\leq ||x^k-x^*||^2$$

If 
$$\lambda \leq \frac{1}{L}$$
,

$$||x^{k+1} - x^*||^2 + 2\lambda (f(x^{k+1}) - f(x^*)) \le ||x^k - x^*||^2$$

Almost the same as in the continuous case:

$$\frac{\mathrm{d}}{\mathrm{d}t}||x(t) - x^*||^2 + 2(f(x(t) - f(x^*))) \le 0$$

If 
$$\lambda \leq \frac{1}{L}$$
,

$$\|x^{k+1} - x^*\|^2 + 2\lambda (f(x^{k+1}) - f(x^*)) \le \|x^k - x^*\|^2$$

Almost the same as in the continuous case:

$$\frac{\mathrm{d}}{\mathrm{d}t} \|x(t) - x^*\|^2 + 2(f(x(t) - f(x^*)) \le 0$$

If 
$$\Psi_k = ||x^k - x^*||^2$$
 and  $\Psi(t) = ||x(t) - x^*||^2$ ,

$$\Psi_{k+1} + 2\lambda (f(x^{k+1}) - f(x^*)) \le \Psi_k \qquad \text{vs.} \qquad \frac{\mathrm{d}}{\mathrm{d}t} \Psi(t) + 2(f(x(t)) - f(x^*)) \le 0$$

$$f \text{ is $L$-smooth } \iff \nabla f \text{ is $L$-Lipschitz } \iff \|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|$$

$$f \text{ is $L$-smooth} \iff \nabla f \text{ is $L$-Lipschitz} \iff \|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|$$
 
$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$
 
$$L_k = \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$
 
$$\lambda_k = \frac{1}{L_k}$$

$$f \text{ is $L$-smooth} \iff \nabla f \text{ is $L$-Lipschitz} \iff \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

$$L_k = \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$

$$\lambda_k = \min\left\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1} , \frac{1}{2L_k}\right\}$$

$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$$

$$f \text{ is $L$-smooth} \iff \nabla f \text{ is $L$-Lipschitz} \iff \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

$$L_k = \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$

$$\lambda_k = \min\left\{\frac{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}}{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}}, \frac{1}{2L_k}\right\}$$

$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$$

### **Iteration** k

$$\begin{split} x^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ L_k &= \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|} \\ \lambda_k &= \min \left\{ \sqrt{1 + \theta_{k-1}} \lambda_{k-1}, \frac{1}{2L_k} \right\} \\ \theta_k &= \frac{\lambda_k}{\lambda_{k-1}} \end{split}$$

### **Iteration** k

Given 
$$x^k$$
,  $\nabla f(x^{k-1})$ ,  $\theta_{k-1}$ 

$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

$$L_k = \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$

$$\lambda_k = \min\left\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}, \frac{1}{2L_k}\right\}$$

$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$$

#### **Iteration** k

Given 
$$x^k$$
,  $\nabla f(x^{k-1})$ ,  $\theta_{k-1}$ 

1. Compute  $\nabla f(x^k)$  and  $L_k$ 

$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

$$L_k = \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$

$$\lambda_k = \min\left\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}, \frac{1}{2L_k}\right\}$$

$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$$

#### **Iteration** k

Given 
$$x^k$$
,  $\nabla f(x^{k-1})$ ,  $\theta_{k-1}$ 

1. Compute  $\nabla f(x^k)$  and  $L_k$ 

$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

$$L_k = \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$

$$\lambda_k = \min\left\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}, \frac{1}{2L_k}\right\}$$

$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$$

### **Iteration** k

Given  $x^k$ ,  $\nabla f(x^{k-1})$ ,  $\theta_{k-1}$ 

- 1. Compute  $\nabla f(x^k)$  and  $L_k$
- 2. Compute  $\lambda_k$

$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

$$L_k = \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$

$$\lambda_k = \min\left\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}, \frac{1}{2L_k}\right\}$$

$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$$

### **Iteration** k

Given  $x^k$ ,  $\nabla f(x^{k-1})$ ,  $\theta_{k-1}$ 

- 1. Compute  $\nabla f(x^k)$  and  $L_k$
- 2. Compute  $\lambda_k$
- 3. Compute  $x^{k+1}$  and  $\theta_k$

$$x^{k+1} = \frac{x^k - \lambda_k \nabla f(x^k)}{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}$$

$$L_k = \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$

$$\lambda_k = \min\left\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}, \frac{1}{2L_k}\right\}$$

$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$$

### **Iteration** k

Given  $x^k$ ,  $\nabla f(x^{k-1})$ ,  $\theta_{k-1}$ 

- 1. Compute  $\nabla f(x^k)$  and  $L_k$
- 2. Compute  $\lambda_k$
- 3. Compute  $x^{k+1}$  and  $\theta_k$

$$x^{k+1} = \frac{x^k - \lambda_k \nabla f(x^k)}{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}$$

$$L_k = \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$

$$\lambda_k = \min\left\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}, \frac{1}{2L_k}\right\}$$

$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$$

### **Iteration** k

Given  $x^k$ ,  $\nabla f(x^{k-1})$ ,  $\theta_{k-1}$ 

- 1. Compute  $\nabla f(x^k)$  and  $L_k$
- 2. Compute  $\lambda_k$
- 3. Compute  $x^{k+1}$  and  $\theta_k$
- 4. Set k = k + 1

$$x^{k+1} = x^k - \lambda_k \nabla f(x^k)$$

$$L_k = \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$

$$\lambda_k = \min\left\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}, \frac{1}{2L_k}\right\}$$

$$\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$$

$$\begin{split} x^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ \lambda_k &= \min \left\{ \sqrt{1 + \theta_{k-1}} \lambda_{k-1}, \frac{\|x^k - x^{k-1}\|}{2\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \right\} \\ \theta_k &= \frac{\lambda_k}{\lambda_{k-1}} \end{split}$$

$$\begin{split} x^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ \lambda_k &= \min \left\{ \sqrt{1 + \theta_{k-1}} \lambda_{k-1}, \frac{\|x^k - x^{k-1}\|}{2\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \right\} \\ \theta_k &= \frac{\lambda_k}{\lambda_{k-1}} \end{split}$$

New energy:

$$\Psi_{k+1} = \|x^{k+1} - x^*\|^2 + 2\lambda_k (1 + \theta_k) \left( f(x^k) - f(x^*) \right) + \frac{1}{2} \|x^{k+1} - x^k\|^2$$

$$\begin{split} x^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ \lambda_k &= \min \left\{ \sqrt{1 + \theta_{k-1}} \lambda_{k-1}, \frac{\|x^k - x^{k-1}\|}{2\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \right\} \\ \theta_k &= \frac{\lambda_k}{\lambda_{k-1}} \end{split}$$

New energy:

$$\Psi_{k+1} = \|x^{k+1} - x^*\|^2 + 2\lambda_k (1 + \theta_k) (f(x^k) - f(x^*)) + \frac{1}{2} \|x^{k+1} - x^k\|^2$$

$$\Psi_{k+1} \leq \Psi_k$$

$$\begin{split} x^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ \lambda_k &= \min \left\{ \sqrt{1 + \theta_{k-1}} \lambda_{k-1}, \frac{\|x^k - x^{k-1}\|}{2\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \right\} \\ \theta_k &= \frac{\lambda_k}{\lambda_{k-1}} \end{split}$$

New energy:

$$\Psi_{k+1} = \|x^{k+1} - x^*\|^2 + 2\lambda_k (1 + \theta_k) (f(x^k) - f(x^*)) + \frac{1}{2} \|x^{k+1} - x^k\|^2$$

$$\Psi_{k+1} \le \Psi_k + \left(\lambda_k^2 \|\nabla f(x^k) - \nabla f(x^{k-1})\|^2 - \frac{1}{4} \|x^k - x^{k-1}\|^2\right)$$

$$+ 2\left(\lambda_{k-1}(1 + \theta_{k-1}) - \lambda_k \theta_k\right) (f(x^{k-1}) - f(x^*))$$

$$\begin{aligned} x^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ \lambda_k &= \min \left\{ \sqrt{1 + \theta_{k-1}} \lambda_{k-1}, \frac{\|x^k - x^{k-1}\|}{2\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \right\} \\ \theta_k &= \frac{\lambda_k}{\lambda_{k-1}} \end{aligned}$$

New energy:

$$\Psi_{k+1} = \|x^{k+1} - x^*\|^2 + 2\lambda_k (1 + \theta_k) (f(x^k) - f(x^*)) + \frac{1}{2} \|x^{k+1} - x^k\|^2$$

$$\Psi_{k+1} \le \Psi_k + \left(\lambda_k^2 \|\nabla f(x^k) - \nabla f(x^{k-1})\|^2 - \frac{1}{4} \|x^k - x^{k-1}\|^2\right) + 2(\lambda_{k-1}(1 + \theta_{k-1}) - \lambda_k \theta_k)(f(x^{k-1}) - f(x^*))$$

$$\begin{aligned} x^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ \lambda_k &= \min \left\{ \sqrt{1 + \theta_{k-1}} \lambda_{k-1} \frac{\|x^k - x^{k-1}\|}{2\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \right\} \\ \theta_k &= \frac{\lambda_k}{\lambda_{k-1}} \end{aligned}$$

New energy:

$$\Psi_{k+1} = \|x^{k+1} - x^*\|^2 + 2\lambda_k (1 + \theta_k) (f(x^k) - f(x^*)) + \frac{1}{2} \|x^{k+1} - x^k\|^2$$

$$\Psi_{k+1} \le \Psi_k + \left(\lambda_k^2 \|\nabla f(x^k) - \nabla f(x^{k-1})\|^2 - \frac{1}{4} \|x^k - x^{k-1}\|^2\right) + 2\left(\lambda_{k-1}(1 + \theta_{k-1}) - \lambda_k \theta_k\right) f(x^{k-1}) - f(x^*)$$

### Convergence

#### **Theorem**

Suppose that  $f: \mathbb{R}^d \to \mathbb{R}$  is convex with locally Lipschitz gradient  $\nabla f$ . Then  $x^k \to x^* \in \operatorname{argmin} f$  and

$$f(\hat{x}^k) - f(x^*) \le \frac{C}{\sum_{i=1}^k \lambda_i} = \mathcal{O}\left(\frac{1}{k}\right).$$

### Convergence

#### **Theorem**

Suppose that  $f: \mathbb{R}^d \to \mathbb{R}$  is convex with locally Lipschitz gradient  $\nabla f$ . Then  $x^k \to x^* \in \operatorname{argmin} f$  and

$$f(\hat{x}^k) - f(x^*) \le \frac{C}{\sum_{i=1}^k \lambda_i} = \mathcal{O}\left(\frac{1}{k}\right).$$

■ Local Lipschitzness  $\iff$  Lipschitzness in the small neighborhood:  $x^p$ , with  $p \ge 2$ ,  $\exp(x)$ ,  $\tan(x)$  all satisfy.

## Convergence

#### **Theorem**

Suppose that  $f: \mathbb{R}^d \to \mathbb{R}$  is convex with locally Lipschitz gradient  $\nabla f$ . Then  $x^k \to x^* \in \operatorname{argmin} f$  and

$$f(\hat{x}^k) - f(x^*) \le \frac{C}{\sum_{i=1}^k \lambda_i} = \mathcal{O}\Big(\frac{1}{k}\Big).$$

- Local Lipschitzness  $\iff$  Lipschitzness in the small neighborhood:  $x^p$ , with  $p \ge 2$ ,  $\exp(x)$ ,  $\tan(x)$  all satisfy.
- $\qquad \text{If } \nabla f \text{ is $L$-Lipschitz, then } \lambda_i \geq \frac{1}{2L_i} \, \geq \, \frac{1}{2L} \, \Longrightarrow \, \mathcal{O}\left(\frac{1}{k}\right) \text{ rate.}$

# How good is it?

 $l_2$ -regularized logistic regression:

$$\frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-b_i a_i^{\mathsf{T}} x}) + \frac{\gamma}{2} ||x||^2$$



mushroom dataset

Let f be  $\mu$ -strongly convex, i.e.,

$$\alpha f(x) + (1-\alpha)f(y) \ge f(\alpha x + (1-\alpha)y) + \frac{\alpha(1-\alpha)}{2}\mu||x-y||^2$$

Let f be  $\mu$ -strongly convex, i.e.,

$$\alpha f(x) + (1 - \alpha)f(y) \ge f(\alpha x + (1 - \alpha)y) + \frac{\alpha(1 - \alpha)}{2}\mu ||x - y||^2$$

**GD** complexity for 
$$||x^k - x^*||^2 \le \varepsilon$$
 is  $\mathcal{O}(\frac{L}{\mu} \log \frac{1}{\varepsilon})$ 

Let f be  $\mu$ -strongly convex, i.e.,

$$\alpha f(x) + (1 - \alpha)f(y) \ge f(\alpha x + (1 - \alpha)y) + \frac{\alpha(1 - \alpha)}{2}\mu||x - y||^2$$

**GD** complexity for 
$$\|x^k - x^*\|^2 \le \varepsilon$$
 is  $\mathcal{O}(\frac{L}{\mu}\log\frac{1}{\varepsilon})$ 

Our complexity for 
$$||x^k - x^*||^2 \le \varepsilon$$
 is  $\mathcal{O}(\frac{L'}{\mu'}\log\frac{1}{\varepsilon})$ ,

Let f be  $\mu$ -strongly convex, i.e.,

$$\alpha f(x) + (1 - \alpha)f(y) \ge f(\alpha x + (1 - \alpha)y) + \frac{\alpha(1 - \alpha)}{2}\mu ||x - y||^2$$

**GD** complexity for 
$$\|x^k - x^*\|^2 \le \varepsilon$$
 is  $\mathcal{O}(\frac{L}{\mu}\log\frac{1}{\varepsilon})$ 

Our complexity for 
$$||x^k - x^*||^2 \le \varepsilon$$
 is  $\mathcal{O}(\frac{L'}{\mu'}\log\frac{1}{\varepsilon})$ ,

where  $L', \mu'$  are  $\overline{local}$  smoothness and strong convexity on  $\overline{\operatorname{conv}}\{x_0, x_1, ...\}$ 

# Heuristics

When f is  $\mu\text{-strongly}$  convex and L-smooth, the "best" GD-type method is

$$y^{k+1} = x^k - \frac{1}{L} \nabla f(x^k),$$
  
$$x^{k+1} = y^{k+1} + \beta (y^{k+1} - y^k),$$

where 
$$\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$$
 [Nesterov, 2004]

When f is  $\mu$ -strongly convex and L-smooth, the "best" GD-type method is

$$y^{k+1} = x^k - \frac{1}{L} \nabla f(x^k),$$
  
$$x^{k+1} = y^{k+1} + \beta (y^{k+1} - y^k),$$

where 
$$\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$$
 [Nesterov, 2004]

**GD** complexity: 
$$\mathcal{O}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$$
 vs. **Accelerated GD** complexity:  $\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$ 

When f is  $\mu$ -strongly convex and L-smooth, the "best" GD-type method is

$$y^{k+1} = x^k - \frac{1}{L} \nabla f(x^k),$$
  
$$x^{k+1} = y^{k+1} + \beta (y^{k+1} - y^k),$$

where  $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$  [Nesterov, 2004]

**GD** complexity:  $\mathcal{O}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$  vs. **Accelerated GD** complexity:  $\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$ 

We know how to estimate L locally.

When f is  $\mu$ -strongly convex and L-smooth, the "best" GD-type method is

$$y^{k+1} = x^k - \frac{1}{L} \nabla f(x^k),$$
  
$$x^{k+1} = y^{k+1} + \beta (y^{k+1} - y^k),$$

where  $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$  [Nesterov, 2004]

**GD** complexity:  $\mathcal{O}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$  vs. **Accelerated GD** complexity:  $\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$ 

- We know how to estimate L locally.
- What about  $\mu$ ?

When f is  $\mu$ -strongly convex and L-smooth, the "best" GD-type method is

$$y^{k+1} = x^k - \frac{1}{L} \nabla f(x^k),$$
  
$$x^{k+1} = y^{k+1} + \beta (y^{k+1} - y^k),$$

where  $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$  [Nesterov, 2004]

**GD** complexity:  $\mathcal{O}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$  vs. **Accelerated GD** complexity:  $\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\varepsilon}\right)$ 

- We know how to estimate L locally.
- What about  $\mu$ ? f is  $\mu$ -strongly convex  $\Longrightarrow f^*$  is  $\frac{1}{\mu}$ -smooth.

# Adaptive "accelerated" gradient descent

$$\begin{split} \lambda_k &= \min \Big\{ \sqrt{1 + \frac{\theta_{k-1}}{2}} \lambda_{k-1}, \frac{\|x^k - x^{k-1}\|}{2\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \Big\} \\ \Lambda_k &= \min \Big\{ \sqrt{1 + \frac{\Theta_{k-1}}{2}} \Lambda_{k-1}, \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{2\|x^k - x^{k-1}\|} \Big\} \\ \beta_k &= \frac{\sqrt{1/\lambda_k} - \sqrt{\Lambda_k}}{\sqrt{1/\lambda_k} + \sqrt{\Lambda_k}} \\ y^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ x^{k+1} &= y^{k+1} + \beta_k (y^{k+1} - y^k) \\ \theta_k &= \frac{\lambda_k}{\lambda_{k-1}}, \ \Theta_k &= \frac{\Lambda_k}{\Lambda_{k-1}} \end{split}$$

### Adaptive "accelerated" gradient descent

$$\begin{split} \lambda_k &= \min \Big\{ \sqrt{1 + \frac{\theta_{k-1}}{2}} \lambda_{k-1}, \frac{\|x^k - x^{k-1}\|}{2\|\nabla f(x^k) - \nabla f(x^{k-1})\|} \Big\} \\ \Lambda_k &= \min \Big\{ \sqrt{1 + \frac{\Theta_{k-1}}{2}} \Lambda_{k-1}, \frac{\|\nabla f(x^k) - \nabla f(x^{k-1})\|}{2\|x^k - x^{k-1}\|} \Big\} \\ \beta_k &= \frac{\sqrt{1/\lambda_k} - \sqrt{\Lambda_k}}{\sqrt{1/\lambda_k} + \sqrt{\Lambda_k}} \\ y^{k+1} &= x^k - \lambda_k \nabla f(x^k) \\ x^{k+1} &= y^{k+1} + \beta_k (y^{k+1} - y^k) \\ \theta_k &= \frac{\lambda_k}{\lambda_{k-1}}, \; \Theta_k = \frac{\Lambda_k}{\Lambda_{k-1}} \end{split}$$



mushroom dataset

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad n \text{ is big}$$

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad n \text{ is big}$$

#### SGD:

- 1. Sample  $\xi^k \in \{1, \dots, n\}$
- $2. \ x^{k+1} = x^k \lambda_k \nabla f_{\xi^k}(x^k)$

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad n \text{ is big}$$

#### SGD:

- 1. Sample  $\xi^k \in \{1, \dots, n\}$
- $2. \ x^{k+1} = x^k \lambda_k \nabla f_{\xi^k}(x^k)$

 $hd \lambda_k o 0$  in theory, small  $\lambda_k$  in practice

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad n \text{ is big}$$

#### SGD:

- 1. Sample  $\xi^k \in \{1, \dots, n\}$
- 2.  $x^{k+1} = x^k \lambda_k \nabla f_{\xi^k}(x^k)$

**Adaptive SGD:** 

ho  $\lambda_k o 0$  in theory, small  $\lambda_k$  in practice

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad n \text{ is big}$$

#### SGD:

- 1. Sample  $\xi^k \in \{1, \dots, n\}$
- $2. \ x^{k+1} = x^k \lambda_k \nabla f_{\xi^k}(x^k)$

#### Adaptive SGD:

1. Sample  $\xi^k \in \{1, \dots, n\}$ 

ho  $\lambda_k o 0$  in theory, small  $\lambda_k$  in practice

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad n \text{ is big}$$

#### SGD:

- 1. Sample  $\xi^k \in \{1, \dots, n\}$
- 2.  $x^{k+1} = x^k \lambda_k \nabla f_{\xi^k}(x^k)$

#### Adaptive SGD:

- 1. Sample  $\xi^k \in \{1, ..., n\}$
- 2.  $L_k = \frac{\|\nabla f_{\xi k}(x^k) \nabla f_{\xi k}(x^{k-1})\|}{\|x^k x^{k-1}\|}$

 $\triangleright \lambda_k \to 0$  in theory, small  $\lambda_k$  in practice

ightharpoonup Cannot use  $\nabla f_{\xi^{k-1}}(x^{k-1})$ 

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad n \text{ is big}$$

SGD:

1. Sample 
$$\xi^k \in \{1, ..., n\}$$

2. 
$$x^{k+1} = x^k - \lambda_k \nabla f_{\xi^k}(x^k)$$

 $hd \lambda_k 
ightarrow 0$  in theory, small  $\lambda_k$  in practice

#### **Adaptive SGD:**

1. Sample  $\xi^k \in \{1, \dots, n\}$ 

2. 
$$L_k = \frac{\|\nabla f_{\xi k}(x^k) - \nabla f_{\xi k}(x^{k-1})\|}{\|x^k - x^{k-1}\|}$$

3. 
$$\lambda_k = \min\left\{\sqrt{1 + \frac{\theta_{k-1}}{\beta}}\lambda_{k-1}, \frac{\alpha}{L_k}\right\}$$

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad n \text{ is big}$$

#### SGD:

- 1. Sample  $\xi^k \in \{1, \dots, n\}$
- 2.  $x^{k+1} = x^k \lambda_k \nabla f_{\xi^k}(x^k)$

#### **Adaptive SGD:**

- 1. Sample  $\xi^k \in \{1, \dots, n\}$
- 2.  $L_k = \frac{\|\nabla f_{\xi k}(x^k) \nabla f_{\xi k}(x^{k-1})\|}{\|x^k x^{k-1}\|}$
- 3.  $\lambda_k = \min\left\{\sqrt{1 + \frac{\theta_{k-1}}{\beta}}\lambda_{k-1}, \frac{\alpha}{L_k}\right\}$
- 4.  $x^{k+1} = x^k \lambda_k \nabla f_{\xi^k}(x^k)$
- 5.  $\theta_k = \frac{\lambda_k}{\lambda_{k-1}}$

 $hd \lambda_k o 0$  in theory, small  $\lambda_k$  in practice

#### ResNet-18

$$\lambda_k = \min\left\{\sqrt{1 + \frac{\theta_{k-1}}{\beta}}\lambda_{k-1}, \frac{\alpha}{L_k}\right\} \qquad x^{k+1} = x^k - \lambda_k \nabla f_{\xi^k}(x^k)$$

$$\lambda_k = \min \Big\{ \sqrt{1 + \frac{\theta_{k-1}}{\beta}} \lambda_{k-1}, \frac{\alpha}{L_k} \Big\} \qquad \qquad x^{k+1} = x^k - \lambda_k \nabla f_{\xi^k}(x^k)$$



Train loss

Test accuracy

$$\lambda_k = \min\Bigl\{\sqrt{1 + \frac{\theta_{k-1}}{\beta}}\lambda_{k-1}, \frac{\alpha}{L_k}\Bigr\}$$

$$x^{k+1} = x^k - \lambda_k \nabla f_{\xi^k}(x^k)$$





Train loss

Test accuracy

Learning rate

Acceleration

- Acceleration
- Mirror descent variant

- Acceleration
- Mirror descent variant
- Nonconvexity

- Acceleration
- Mirror descent variant
- Nonconvexity
- Robust version of adaptive SGD

$$\lambda_k = \min\Bigl\{\sqrt{1 + \frac{\theta_{k-1}}{\beta}}\lambda_{k-1}, \frac{\alpha}{L_k}\Bigr\} \qquad \qquad x^{k+1} = x^k - \lambda_k \nabla f_{\xi^k}(x^k)$$



Train loss Test accuracy Learning rate