Adaptive Gradient Descent without Descent

Yura Malitsky
Variational Analysis and Optimisation Webinar series, 19 May 2021

LINKOPING
I I." UNIVERSITY

Reference: ICML-2020, arxiv:1910.09529

Konstantin Mishchenko
(PhD student, KAUST)

arxiv:1910.09529

We want to solve

min f(x),
xeRd

where f: R? - R is convex and differentiable.

We want to solve

min f(x),
xeRd
where f: R? - R is convex and differentiable.

How?

We want to solve
min f(x),
xeRd
where f: R? - R is convex and differentiable.

How?

= Gradient descent = Tensor methods

= Accelerated gradient methods = Stochastic methods

= Newton's methods = Coordinate methods

We want to solve
min f(x),
xeRd
where f: R? - R is convex and differentiable.

How?

= Gradient descent = Tensor methods

= Accelerated gradient methods = Stochastic methods

= Newton's methods = Coordinate methods

Gradient descent

xk+1 — xk _ /1Vf(xk)

History:
Cauchy (1847), Curry (1944), Goldshtein (1962), Polyak (1963), Armijo (1966)

Gradient descent

xk+1 — xk _ /1Vf(xk)

History:
Cauchy (1847), Curry (1944), Goldshtein (1962), Polyak (1963), Armijo (1966)

Def. f is L-smooth <= Vf is L-Lipschitz <> ||V f(x)— Vf()| < L||x -yl

Gradient descent

xk+1 — xk _ /1Vf(xk)

History:
Cauchy (1847), Curry (1944), Goldshtein (1962), Polyak (1963), Armijo (1966)

Def. f is L-smooth <= Vf is L-Lipschitz <> ||V f(x)— Vf()| < L||x -yl

Theorem
Suppose f is convex, L-smooth, and A € (0, %)

Gradient descent

xk+1 — xk _ /1Vf(xk)

History:
Cauchy (1847), Curry (1944), Goldshtein (1962), Polyak (1963), Armijo (1966)

Def. f is L-smooth <= Vf is L-Lipschitz <> ||V f(x)— Vf()| < L||x -yl

Theorem
Suppose f is convex, L-smooth, and A € (0, %) Then x¥ — x* € argmin f.

Gradient descent

xk+1 — xk _ /1Vf(xk)

History:
Cauchy (1847), Curry (1944), Goldshtein (1962), Polyak (1963), Armijo (1966)

Def. f is L-smooth <= Vf is L-Lipschitz <> ||V f(x)— Vf()| < L||x -yl

Theorem

Suppose f is convex, L-smooth, and A € (0, %) Then x¥ — x* € argmin f. For A = % the

rate is o 5

L||x" — x* 1
I I _ O()

FO&F) = f(x*) < 2+ D =

)

From discrete to continuous

xk+l — yk _ AVf(xk)

From discrete to continuous

xHL = xk — AV f(x*)

Let x(¢) be a continuous curve with x(1k) = x.

From discrete to continuous

xHL = xk — AV f(x*)
Let x(¢) be a continuous curve with x(1k) = x.

For t = Ak,

x(t +4) = x(t) — AV f(x(t))

From discrete to continuous

xHL = xk — AV f(x*)
Let x(¢) be a continuous curve with x(1k) = x.

For t = Ak,

x(t +4) = x(t) — AV f(x(t))
=

w = —Vf(x(t))

From discrete to continuous

xHL = xk — AV f(x*)
Let x(¢) be a continuous curve with x(1k) = x.

For t = Ak,

x(t +4) = x(t) — AV f(x(t))
=

w = —Vf(x(t))

If 1 -0,
x'(t) = =V f(x(1))

From discrete to continuous

xHL = xk — AV f(x*)

Let x(¢) be a continuous curve with x(1k) = x.

For t = Ak, o
x(t+) =x(t) — AV f(x(t)) "l \
@ 25
x(t + /12 — x(t) — _Vf((t) . 7‘
If1 -0, N ———

x'(1) = =Vf(x(0)

From discrete to continuous

xHL = xk — AV f(x*)

Let x(¢) be a continuous curve with x(1k) = x.

For t = Ak,
X(t + 2) = x(t) = AV F(x()
@ 2.5
x(t+/1/%—x(t) = V() o.nf‘
If 10, ==
x'(t) = =V f(x(®) -

From discrete to continuous

xHL = xk — AV f(x*)
Let x(¢) be a continuous curve with x(1k) = x.

For t = Ak,

x(t +4) = x(t) — AV f(x(t))
=

x(t+/1/%—x(t) = V() oo |

If1 -0, asp
x'(t) = =V f(x(t)

Gradient flow

Continuous counterpart of GD:

x(0) = xq
x'(t) = =V f(x())

Gradient flow

Continuous counterpart of GD:
x(0) = xq
x'(t) = =V f(x(1))

Let W(t) = ||x(t) — x*||*> be a Lyapunov function.

Gradient flow

Continuous counterpart of GD:

x(0) = xq
x'(t) = =V f(x())

Let W(¢t) = ||x(t) — x*||*> be a Lyapunov function. Then

d *12 _ * g
IO = XM = 20x(0) = x*, X' ()

Gradient flow

Continuous counterpart of GD:

x(0) = xq
x'(t) = =V f(x())

Let W(¢t) = ||x(t) — x*||*> be a Lyapunov function. Then

Sty = I = 2x(6) — 2, ' (1)
= 20(6) ~ ', ~VF(x(0)

Gradient flow

Continuous counterpart of GD:
x(0) = xq
x'(t) = =V f(x(1))

Let W(¢t) = ||x(t) — x*||*> be a Lyapunov function. Then

d *12 _ * g
IO = XM = 20x(0) = x*, X' ()

= 2(x(t) — x*, =V f(x()))
< 2(f(x*) — f(x(1))) « convexity

Gradient flow

Continuous counterpart of GD:
x(0) = xq
x'(t) = =V f(x(1))

Let W(¢t) = ||x(t) — x*||*> be a Lyapunov function. Then

d *12 _ * g
IO = XM = 20x(0) = x*, X' ()

= 2(x(t) — x*, =V f(x()))
< 2(f(x*) — f(x(1))) « convexity
<0

Gradient flow

Continuous counterpart of GD:
x(0) = xq
x'(t) = =V f(x(1))

Let W(¢t) = ||x(t) — x*||*> be a Lyapunov function. Then

d *12 _ * g
IO = XM = 20x(0) = x*, X' ()

= 2(x(t) — x*, =V f(x()))
< 2(f(x*) — f(x(1))) « convexity
<0

= x(t) —» x* € argmin f and fx@®) — f(x*) < 2lt||x0 — x*|?

From continuous to discrete: possible issues

xHL = xk — AV f(x*)

From continuous to discrete: possible issues

xHL = xk — AV f(x*)

1. GD is not general: many functions are not L-smooth (i.e., gradients are not L-Lipschitz).
Example: xP, with p > 2; exp x; log x; tan x

From continuous to discrete: possible issues

xHL = xk — AV f(x*)

1. GD is not general: many functions are not L-smooth (i.e., gradients are not L-Lipschitz).
Example: xP, with p > 2; exp x; log x; tan x

2. GD is not a free lunch: one needs to guess A.

From continuous to discrete: possible issues

xHL = xk — AV f(x*)

1. GD is not general: many functions are not L-smooth (i.e., gradients are not L-Lipschitz).
Example: xP, with p > 2; exp x; log x; tan x

2. GD is not a free lunch: one needs to guess A.

3. GD is not robust: with 1 > % may lead to divergence.

From continuous to discrete: possible issues

xHL = xk — AV f(x*)

1. GD is not general: many functions are not L-smooth (i.e., gradients are not L-Lipschitz).
Example: xP, with p > 2; exp x; log x; tan x

2. GD is not a free lunch: one needs to guess A.
3. GD is not robust: with 1 > % may lead to divergence.

4. GD is slow: even if L is finite, it might be larger than local smoothness.

Workaround-1

What to do?

Workaround-1

What to do?

= GD is not a free lunch: one needs to guess A.

Workaround-1

What to do?

= GD is not a free lunch: one needs to guess A.
Solution: line search?

try A=y
xk+1 = xk — AV f(x*)
until f(x¥*1) < f(xK) — ||V £(xF)|?

Workaround-1

What to do?
= GD is not a free lunch: one needs to guess A.
Solution: line search?
try A=y
XK+ = xk — AV f(xK)
until) <) =l VAP

Cons: more expensive than GD

Workaround-2

= GD is slow

Workaround-2

= GD is slow
Solution: Polyak’s stepsize?

_ G-,
T IVEGR)P
yk+L — yk —/lka(xk)

Workaround-2

= GD is slow
Solution: Polyak’s stepsize?

_ G-,
T IVEGR)P

yk+L — yk —/lka(xk)

Cons: needs f,

Workaround-2

= GD is slow
Solution: Polyak’s stepsize?

_ G-,
T IVEGR)P
yk+L — yk —/lka(xk)

Cons: needs f,

Solution-2: Barzilai-Borwein stepsize?

A = (V) = VAR, xk = XK1
IVF(xk) =V fxk=1)]|2

XK+ = xk — 2,V £(xk)

Workaround-2

= GD is slow
Solution: Polyak’s stepsize?

_ G-,
T IVEGR)P
yk+L — yk —/lka(xk)

Cons: needs f,

Solution-2: Barzilai-Borwein stepsize?

A = (V) = VAR, xk = XK1
IVF(xk) =V fxk=1)]|2

XK+ = xk — 2,V £(xk)

Cons: guarantees only for quadratic f, doesn't work in general.
Counterexample in [Burdakov et al., 2019]

Required tools

Law of cosines:
lla + blI* = ||al|* + 2(a, b) + ||b]|?

Required tools

Law of cosines:
lla + blI* = ||al|* + 2(a, b) + ||b]|?

Convexity:

(VfX),y —x) < f(y) - f(x)

Required tools

Law of cosines:
lla + blI* = ||al|* + 2(a, b) + ||b]|?

Convexity:
(Vfx),y = x) < f(y) = f(x)

Smoothness:
IVF) = Vi)l < Llly — x|

Required tools

Law of cosines:
lla + blI* = ||al|* + 2(a, b) + ||b]|?

Convexity:

(Vfx),y = x) < f(y) = f(x)
Smoothness:

IVF) = Vol < Llly — x|

convexity

—

FO) < FG)+ (VG y =)+ lly — P

Required tools

Law of cosines:
lla + blI* = ||al|* + 2(a, b) + ||b]|?

Convexity:
(V). y —x) < f(y) — f(%)
Smoothness:

IVF3) = V&Il < Lily — x|

convexity

—

FO) < FG)+ (VG y =)+ lly — P

descent inequality

Standard analysis of GD

xk+l — yk _ /IVf(xk)

Law of cosines:

Convexity:
Smoothness:

10

Standard analysis of GD

xK+1 = xk — AV f(xk)
Law of cosines:
||xk+1 _ x*Hz — ”xk+1 _ xk + xk _ x>:<||2
= ||k = x*||2 + 2061 — XK, xk — x*) + [kl — xk|2

= ||Ix* — x*||? + 24V f(xK), x* — xF) + [|x*+1 — x¥||2

Convexity:
22V (k) x* — xk) < 22(f(x*) — f(x*))
Smoothness: i
FGERH) < FOEF) + (VFk), x4 = 3Ky 4 2+ — k2
=

2—AL
||xk+1 _xk”2

Fek) < flok) — =2 .

Standard analysis of GD

If 1<

=~

[— X2 24(F () = F)) < ok — x|

11

Standard analysis of GD

If 1<

=~

[— X2 24(F () = F)) < ok — x|

Almost the same as in the continuous case:

D) = x| + 207 e0) — fxD <0

11

Standard analysis of GD

If 1<

=~

[— X2 24(F () = F)) < ok — x|

Almost the same as in the continuous case:

D) = x| + 207 e0) — fxD <0

If Wy = [l — x*||> and W(e) = ||x(®) — x*|1%,

Wigr + 22 () = f(x") < Wy vs. %‘P(t) +2(f(x(®) - f(x*)) <0

11

Proposed algorithm

fis L-smooth < Vf is L-Lipschitz < ||Vf(x) = Vf(»)| < L||x =]l

12

Proposed algorithm

fis L-smooth < Vf is L-Lipschitz < ||Vf(x) = Vf(»)| < L||x =]l

yk+L = yk —lka(xk)

_ IVFGR) = VR
[k — k=]
1

A = —

Ly

12

Proposed algorithm

fis L-smooth < Vf is L-Lipschitz < ||Vf(x) = Vf(»)| < L||x =]l
K+l — xk _ 1V f(xK
1 = xk — 1, VI(xF) * * kk et -
. /77;(/ L= VR = v ieE)
L= (X)) =N¥F)I 5= [k — xk=1]]

- xk—1|| 1
Ak = min {\/ 14+ 61 4k—1 > fk}
Lx o _
7 T

12

Proposed algorithm

fis L-smooth < Vf is L-Lipschitz < ||Vf(x) = Vf(»)| < L||x =]l
K+l — xk _ 1V f(xK
1 = xk — 1, VI(xF) * * kk et -
. /77;(/ L= VR = v ieE)
L= (X)) =N¥F)I 5= [k — xk=1]]

- xk—1|| 1
A = min{ V146 1Ak, fk}
Lx o _
7 T

12

Algorithm description

Iteration k Algorithm
yk+l — ok Aka(xk)

IV - VD)

« [k — xle=1]
. 1
/1k = mln{\/ 1+ Gk_l;tk_l, E}
1
O, = —%-

A

13

Algorithm description

Iteration k Algorithm
Given x¥, Vf(xk=1), 6_; XK+ = xk — 2,V f(xF)
[V f(xk) = V f(xck=D)||
Tk =k
/1k = mln{\/ 14 Gk_l;tk_l, L}
2L
O e

A

13

Algorithm description

Iteration k Algorithm
Given x¥, Vf(xk=1), 6_; XK+ = xk — 2,V f(xF)
1. k L -
Compute Vf(x*) and Ly, | VFGR) V)|
SN PO
/1k = mln{ 14 Gk_l;tk_l, L}
g 2L,

O A

A

13

Algorithm description

Iteration k Algorithm
Given x¥, Vf(xk=1), 6_; XK+ = xk — 2,V f(xF)
k
1. Compute Vf(x*) and Ly IV F(X) = VFGED)|
S e
1
/1k = mln{ 14 Gk_l;tk_l, —}
g 2L,
A
6 = —

A

13

Algorithm description

Iteration k Algorithm
Given x¥, Vf(xk=1), 6_; XK+ = xk — 2,V f(xF)
L k L -
Compute Vf(x*) and Ly IV F(5) — V()|
2. Compute i k= [lck — xk—1]]
A = min YT+ e i, i}
2L
O A

A

13

Algorithm description

Iteration k Algorithm
Given xk, Vf(xk71), G,_; xk+1 =
k
1. Compute Vf(x*) and Ly IVFGR) = VFGR=1)|
2. Compute Ay k= [lck — xk—1]]
k+1
3. Compute x*** and 6, A = min{\/TGk_lik_l, L}
2L,
O e

A

13

Algorithm description

Iteration k Algorithm
Given xk, Vf(xk71), G,_; xk+1 =
k
1. Compute Vf(x*) and Ly IVFGR) = VFGR=1)|
2. Compute Ay k= [lck — xk—1]]
k+1
3. Compute x*** and 6 A = min{\/TGk_lik_l, L}
2L,
A
Gk = —k

Ak—1

13

Algorithm description

Iteration k Algorithm

: k k-1 k+1 _ k _ k
Given x¥, Vf(xk=1), 6_; X = X0 = 4 Vf(xF)

1. Compute Vf(x¥) and L; IVFGR) = VFGR=1)|

2. Compute Ay k= [lck — xk—1]]

3. Compute x¥*1 and 6) 1

P 5 /1k = mln{\/ 1+ Gk—l/‘tk—l’ E}
4 Setk=k+1 i
A
6 = —

A

13

Adaptive Gradient Descent without Descent

xkH1 = xk — 1, VF(x*)

= min {\T+ 61 —
Ak_mlll{ 1+6, k—1’2||Vf(xk)—Vf(xk_l)H}

k—lll

Ak

O = Ak—1

14

Adaptive Gradient Descent without Descent

xkH1 = xk — 1, VF(x*)

= min {\T+ 61 —
Ak_mlll{ 1+6, k—1’2||Vf(xk)—Vf(xk_l)H}

k—lll

Ak

O = Ak—1

New energy:

Wiepr = [JFH = x*)|2 4+ 221 + 6)(f(xF) — f(x)) + %ka“ — xk|?

14

Adaptive Gradient Descent without Descent

xkH1 = xk — 1, VF(x*)

| I
Ak = min {\/Tek_ﬂlk—l’znvf(xk) — Vf(xk=1)]] }

_ A
Ak-1

Ok
New energy:
A o 1
Wpepr = (X = x| + 22,1 + G)(F(XF) = f(x) + §||xk+1 — xK||?

Decrease of energy:

Wiy < Wi

14

Adaptive Gradient Descent without Descent

xkH1 = xk — 1, VF(x*)

A = min V14612 —
k_mm{ + COk—1 k—thVf(xk)_Vf(xk_l)H}

k—lll

Ak

O = Ak—1

New energy:
A N 1
Wpepr = (X = x| + 22,1 + G)(F(XF) = f(x) + Ellxk“ — xK||?

Decrease of energy:
1
Wy S+ (/liHVf(xk) - VFGEY|? - lexk = xk_1||2)
+ 2(A 1 (X + 6 _y) — A6k)(F (xR = F(x*))

14

Adaptive Gradient Descent without Descent

xkH1 = xk — 1, VF(x*)

. X< — x
Ak = min {\/Tek_ﬂlk—l’ zllvf(xk) — Vf(xk_l)“}

k—lH

Ak

O = Ak—1

New energy:
, N 1
Wpepr = (X = x| + 22,1 + G)(F(XF) = f(x) + zllxk“ — xK||?

Decrease of energy:
1
Weor < Wi+ (BNVFER) = VAFDIR = 21k - x4112)
+ 2(e—1 (1 + 6—) — B)(FF1) = f(x*))

14

Adaptive Gradient Descent without Descent

xk+1 — xk —/lka(xk)

A =min{\/1+@ A HXk_x]
« K11 IV AR = V (k-1

k—lH

Ak

O = Ak—1

New energy:
, . 1
Wiy = [= x*|12 + 22,1 + 6)(F(F) — f(x*)) + §||karl — xK||2

Decrease of energy:
1
Weor < Wi+ (BNVFER) = VAFDIR = 21k - x4112)
+2 (Aer (1 + B—1) = A BJf 51 = f(x*))

14

Convergence

Theorem

Suppose that f: R? = R is convex with locally Lipschitz gradient Vf. Then

k

x® - x* € argmin f and

FE) = f) < ch — = o().

=17

15

Convergence

Theorem

Suppose that f: R? = R is convex with locally Lipschitz gradient Vf. Then

k

x® - x* € argmin f and

FE) = f) < ch — = o().

=17

= |ocal Lipschitzness <= Lipschitzness in the small neighborhood:
xP, with p > 2, exp(x), tan(x) all satisfy.

15

Convergence

Theorem

Suppose that f: R? = R is convex with locally Lipschitz gradient Vf. Then

k

x® - x* € argmin f and

FE) = f(x) < Zf — = o().

=17

= |ocal Lipschitzness <= Lipschitzness in the small neighborhood:
xP, with p > 2, exp(x), tan(x) all satisfy.

. : . 1 1 1
= If Vf is L-Lipschitz, then 4; > 20, > I = O(E) rate.

15

How good is it?

l,-regularized logistic regression:

._.
15}
4

flxk) — f.
o
2

1 — T 14
- log(1 —bja; x /4 2
— 3 log(1 + i) 1+ L

i=1 1074

— GD

1072 - _e— Nesterov

—+— AdGD

0 500 1000 1500 2000 2500 3000
Iteration

mushroom dataset

16

Strongly convex case

Let f be u-strongly convex, i.e.,

a(l —a)
2

af(x)+ 1 -a)f(y) 2 flax + (1 - a)y) + pllx = ylI?

17

Strongly convex case

Let f be u-strongly convex, i.e.,

a(l —a)

5K =2

af(x)+ 1 -a)f(y) 2 flax + (1 - a)y) +

GD complexity for ||x* — x*||2 < ¢ is O(% log i)
u

17

Strongly convex case

Let f be u-strongly convex, i.e.,

af(x) + (1~) 2 flace + (1 —a)y) + LDy

GD complexity for ||x* — x*||2 < ¢ is O(% log i)
u

!
Our complexity for ||x* — x*|?> < ¢ is O(L—, log i),
)%

17

Strongly convex case

Let f be u-strongly convex, i.e.,

a(l—«a
af(x) + (1~) 2 flace + (1 —a)y) + LDy
GD complexity for ||x* — x*||> < ¢ is O('ﬁ log i)
Our complexity for ||x¥ — x*||> < ¢ is O(;LT: log i),

where L', u" are local smoothness and strong convexity on conv{xg, Xy, ... }

17

Heuristics

18

Acceleration (heuristic)

When f is u-strongly convex and L-smooth, the “best” GD-type method is
1
yk+1 — Xk _ va(xk)’
xk+1 — yk+1 + ,B(yk“ _ yk),

VE-yE
L+

where § = [Nesterov, 2004]

19

Acceleration (heuristic)

When f is u-strongly convex and L-smooth, the “best” GD-type method is
1
yk+1 — Xk _ va(xk)’
xk+1 — yk+1 + ,B(yk“ _ yk),

VE-yE
L+

where § = [Nesterov, 2004]

GD complexity: O (l% log é) VS. Accelerated GD complexity: O <\/§10g —)

1
€

19

Acceleration (heuristic)

When f is u-strongly convex and L-smooth, the “best” GD-type method is

1
yk+1 — xk _ va(xk)’

xk+1 — yk+1 + B(yk+1 _ yk),

where 8 = g;% [Nesterov, 2004]
GD complexity: O (l% log é) VS. Accelerated GD complexity: O <\/§10g é)

= We know how to estimate L locally.

19

Acceleration (heuristic)

When f is u-strongly convex and L-smooth, the “best” GD-type method is

1
yk+1 — xk _ va(xk)’

xk+1 — yk+1 + B(yk+1 _ yk),

where 8 = g;% [Nesterov, 2004]
GD complexity: O (l% log é) VS. Accelerated GD complexity: O <\/§10g é)

= We know how to estimate L locally.

= What about u?

19

Acceleration (heuristic)

When f is u-strongly convex and L-smooth, the “best” GD-type method is
1
yk+1 — xk _ va(xk)’
xk+1 — yk+1 + B(yk+1 _ yk),

VE-yE
L+

where § = [Nesterov, 2004]

GD complexity: O (l% log é) VS. Accelerated GD complexity: O <\/§10g —)

1
€

= We know how to estimate L locally.

= What about u? f is u-strongly convex = f* is L smooth.
)%

19

Adaptive “accelerated” gradient descent

— Ok—1 [i
ﬂk—mm{ L3 k'l’2||Vf<xk)—Vf(xk‘1)”}

SRR G S C T IVfF) =V f kD)
A = mln{ 1+ - Ag_1, G T— }

,3 = \/IMk_\/A_k
K VTV

yk+1 = xk — Aka(xk)

xk+1 — yk+1 + .Bk(ka _yk)

_ M _ M
%= qn & =12
k-1 k-1

20

Adaptive “accelerated” dient descent

o Ot [l —x¥1) 10
A = mm{ L+ = A 2||Vf<xk)—Vf(xk‘1)”} 7

o op V)=V FkD)| T
A = mln{\/;/\k—l’ W} 5::10"0
5, = VTV)

k \/1//1;(+\/A—k o
PR = Xk _ 2, VF(x9) 10"
xk+1 = yk+1 + ‘Sk(}\}kﬂ _yk)

O = 2k @, = 2k

k /1k_1 & Ag_1

GD
Nesterov
—*— AdGD

—&— AdGD-accel

0 500 1000

1500
Iteration

2000 2500 3000
mushroom dataset

20

Stochastic extensions (heuristic)

1 n
1 (%), i< bi
min — ;fl(x) n is big

21

Stochastic extensions (heuristic)

. -
min — ;fi(x), n is big
SGD:
1. Sample &k €1{1,...,n}

2. XK+ = 5k — 4V fre (xF)

21

Stochastic extensions (heuristic)

. -
min — ;fi(x), n is big
SGD:
1. Sample &k €1{1,...,n}

2, il = 5 —xlkagk(xk) > A = 0 in theory, small A, in practice

21

Stochastic extensions (heuristic)

. -
min — ;fi(x), n is big
SGD:
1. Sample &k €1{1,...,n}

2, il = 5 —xlkagk(xk) > A = 0 in theory, small A, in practice

Adaptive SGD:

21

Stochastic extensions (heuristic)

. -
min — ;fi(x), n is big
SGD:
1. Sample &k €1{1,...,n}

2, il = 5 —xlkagk(xk) > A = 0 in theory, small A, in practice

Adaptive SGD:
1. Sample £k €{1,...,n}

21

Stochastic extensions (heuristic)

i o
e ;fi(x), n is big
SGD:
1. Sample §k efl,..,n}

2. xrl = x* _Akvfik(xk) > Ag — 0 in theory, small 4 in practice

Adaptive SGD:

1. Sample £k €{1,...,n}

2 I = IV 1 (X)=Vf e (XKD

k-1
ek —xk—1 | > Cannot use Vfgk_l(x)

21

Stochastic extensions (heuristic)

i o
e ;ﬁ(x), n is big
SGD:
1. Sample §k efl,..,n}

2. xrl = x* _Akvfik(xk) > Ag — 0 in theory, small 4 in practice

Adaptive SGD:

1. Sample £k €{1,...,n}

2 I = IV 1 (X)=Vf e (XKD

k-1
ek —xk—1 | > Cannot use Vfgk_l(x)

3. A = min{\/ I+ 91;3_1/1k_1’ ﬁ} > «a, 8 should be tuned

21

Stochastic extensions (heuristic)

. -
min — ;fi(x), n is big
SGD:
1. Sample &k €1{1,...,n}

2, il = 5 —xlkagk(xk) > A = 0 in theory, small A, in practice

Adaptive SGD:

1. Sample £k €{1,...,n}
__”Vfék(xk)_vffk(xk_ln| k—1
2. Ly = mmT > Cannot use V fer-1(x*~")
3. A = minf, 1+ %12, 2] > @, B should be tuned
B Ly

4. XK+ = Xk — 40V fere (%)

A
G = 2
ko1 21

o1

ResNet-18

/1}(= min{ 1+ %Ak—l’ Lik} xk“ = xk = Akagk(xk)

22

— SGD
0
10 —e— SGDm
—s— Adam
10

Train loss
=
o
o

103
10
0 50 100 150
Epoch
Train loss

200

—+— AdSGD, (1+6;_1,0.5/L)
Sy, —+— AdSGD, (1+6;,/50,1/L;)

XK+ = Xk — 240V fere (%)

0.94
0.92
>.0.90
[y
e
30.88
S
®
7086
= — SGD
0.84 SGDm
— Adam
0.82 —— AdGD, (1 +6¢-1/10, 1/Ly)
AdGD, (1 + 61, 0.5/Ly)
0.80
0 50 100 150 200 250
Epoch

Test accuracy
22

ResNet-18

— sGD
0
10 —s— SGDm
—u— Adam
101 —+— AdSGD, (1+6;_1,0.5/L;)
g S, —+— AdSGD, (146, 1/50,1/Ly)
< 1072 :
o
=
103
10+
0 50 100 150 200 250
Epoch
Train loss

4
@
3

0.84

0.82

50

100

—— SGD
~—— SGDm
—— Adam

—— AdGD, (1 +6k-1/10, 1/Ly)
—— AdGD, (1 +6k-1,0.5/Ly)

150
Epoch

Test accuracy

XK+ = Xk — 240V fere (%)

o b\l.l.ﬂd. |

—+— AdSGD, (1+6;_1,0.5/Ly)

—e— AdSGD, (1+0; 1/10,1/Ly)
—+— AdSGD, (1+6;1/50,1/Ly)

oy

200 250 0 50 100 150 200 250
Epoch

Learning rate
22

Open questions

= Acceleration

23

Open questions

= Acceleration

= Mirror descent variant

23

Open questions

= Acceleration
= Mirror descent variant

= Nonconvexity

23

Open questions

Acceleration

Mirror descent variant

Nonconvexity

Robust version of adaptive SGD

23

DenseNet-121

Train loss
=
o
o

—— SGD

103 —* SGDm
—u— Adam
—+— AdSGD, (1+0;_1,0.5/Ly)

104 v
—4— AdSGD, (1+6;,_,/50,1/L;)
0 50 100
Epoch
Train loss

{

Test accuracy
mguo

e

150

200

o

o

102
10!
0
L1 AdSGD, (140, 1,0.5/Ls)
" 2::2[) ; y o —e— AdSGD, (1+6_,/10,1/Ly)
(L 1 0.5/ L) AdSGD, (140, /50,1/Ly)
—+— AdSGD, (14 6,_/50,1/L;)
TR 102
103
50 100 150 200 0 50 100 150 200

Epoch

Epoch

Test accuracy Learning rate

	Appendix

