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Let us formulate some definitions and statements of Convex
Analysis.
A set X ⊂ Rn is called convex, if for all x1 ∈ X and x2 ∈ X the
next formula

𝜆x1 + (1 − 𝜆)x2 ∈ X ∀𝜆 ∈ [0, 1] ⊂ R,

hold.
We assume that the empty set ∅ is convex by definition.
The sum of two convex sets X1,X2 ⊂ Rn is called the set

X = X1 + X2 = {x1 + x2
⃒⃒
x1 ∈ X1, x2 ∈ X2}.
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Sometimes the set X = X1 + X2 is called the algebraic sum of two
convex sets X1 and X2 or the Minkowski sum.
By writing X1 − X2 we will understand the set X1 + (−X2).
If the set X ⊂ Rn is convex and 𝛼X , 𝛼 ∈ R, then

𝛼X = {y ∈ Rn
⃒⃒
y = 𝛼x , x ∈ X}.
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Let K ⊂ Rn be a convex cone.

K * = {g ∈ Rn | ⟨g , x⟩ > 0 ∀x ∈ K}

is called the conjugate cone to K .
Let X ⊂ Rn be a closed and convex set, a point x ∈ X .
A set

N(X , x) =
{︀
g ∈ Rn

⃒⃒
⟨g , z − x⟩ 6 0 ∀z ∈ X

}︀
is called the normal cone to the set X at x .
The normal cone is a closed convex cone.
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A closed convex set is called smooth if for each boundary point
there is only one support hyperplane.

Theorem 1.
If at every boundary point of a closed convex set a normal cone
consists of a single ray then this set is smooth.

This is an obvious property of a smooth set.
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Let a set X ⊂ Rn be closed and convex and X does not coincide
with Rn.
Fix 𝜀 > 0. Form a closed convex set

X (𝜀) = X + 𝜀B1(0n),

where
Br (a) = {x ∈ Rn | ||x − a|| ≤ r},

||x || =
√︀
⟨x , x⟩.
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At this picture you can see that the rectangle vertices are smoothed
out.

Fig. 1. The family of sets X𝜀.
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Theorem 2.
The following statements take place.

For every 𝜀 > 0 a normal cone to the set X (𝜀) consists of a
single ray at each boundary point z0 ∈ bd (X (𝜀)) .
For every 𝜀 > 0 the set X (𝜀) is smooth.
The next inclusion

N(X (𝜀), z0) ⊂ N(X , x0)

holds, where x0 = arg min
x∈X

||x − z0||.
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Let X ⊂ Rn be an unbounded closed convex set.
Consider a multivalued mapping

X (·) : (0,+∞) → 2R
n
.

Theorem 3.
This multivalued mapping is Kuratowski continuous.
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Theorem 4.
Let X ⊂ Rn be a compact convex set. Then

𝜌H(X (𝜀),X ) → 0, if 𝜀 → +0,

where 𝜌H(X (𝜀),X ) is the Hausdorff metric,

𝜌H(A,B) = max

{︂
sup
a∈A

inf
b∈B

||a− b||, sup
b∈B

inf
a∈A

||a− b||
}︂
.
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Convex functions

Let f : Rn → R
⋃︀
{+∞}

⋃︀
{−∞}.

The set
dom f = {x ∈ Rn

⃒⃒
f (x) < +∞}.

is called the effective domain of a function f .
The set

epi f = {[x , 𝜇] ∈ Rn × R
⃒⃒
f (x) 6 𝜇}

is called the epigraph of f .
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A function f is called a convex if epi f is convex. A convex
function f is said to be proper if its epigraph is non-empty and
contains no vertical lines.
For proper convex functions it is possible to give another definition
which equivalent to the above.

A function f : Rn → R ∪ {+∞} is called convex if

f (𝜆1x1 + 𝜆2x2) 6 𝜆1f (x1) + 𝜆2f (x2) ∀x1, x2 ∈ Rn,

𝜆1, 𝜆2 ≥ 0, 𝜆1 + 𝜆2 = 1.
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Let f be a convex function.

If x ∈ int domf , then f is continuous at x .

Let f be a convex function. If the partial derivatives of f with
respect to each variable exist at a point x ∈ int domf then f is
differentiable at x .
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A proper convex function is called essentially smooth if it satisfies
the following three conditions:

The set X = int (dom f) is not empty;
f is differentiable at each x ∈ X ;
if x1, x2, . . . is a sequence in X converging to a boundary point
x of X , then

lim
i→+∞

|f ′(xi )| = +∞.

Any smooth convex function on Rn will be essentially smooth, as
the set of sequences satisfying the last condition is empty.
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The conjugate of a function f is

f *(v) = sup
x∈Rn

{⟨x , v⟩ − f (x)}, v ∈ Rn.

Obviously, that the equality

f *(v) = sup
x∈dom f

{⟨x , v⟩ − f (x)}, v ∈ Rn,

is true.
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Note some properties of conjugate functions.

f * is closed and convex (even when f is not).
The Fenchel inequality is true:

f (x) + f *(v) ≥ ⟨x , v⟩ ∀x ∈ Rn, ∀v ∈ Rn.

A proper convex closed function f : Rn → R ∪ {+∞} is
convex if and only if when

f (x) = (f *)*(x), x ∈ Rn.

In this case domf * ̸= ∅.
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A convex function may be nonsmooth.
Let f : Rn → R ∪ {+∞} be convex and x ∈ dom f .
The set

𝜕f (x) = {v ∈ Rn
⃒⃒
f (z) − f (x) ≥ ⟨v , z − x⟩ ∀z ∈ Rn}

is called the subdifferential of f at x .
A vector v ∈ 𝜕f (x) is called a subgradient of f at x .
The subdifferential generalizes the derivative to functions which are
not differentiable. If f is convex and differentiable, then its gradient
at x is a subgradient.
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Let f : Rn → R ∪ {+∞} is a proper convex function, x0 ∈ dom f ,
𝜕f (x0) ̸= ∅. Then 𝜕f (x0) is convex and closed.

For a convex function there is a close connection between the
subdifferential and its directional derivative.

If a point x0 ∈ int (dom f), the set 𝜕f (x0) is bounded, then in this
case f ′(x , g) is finite for each g ∈ Rn and

f ′(x0, g) = max
v∈𝜕f (x0)

⟨v , g⟩.
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Let f be a finite convex function on Rn. Then a multivalued
mapping

𝜕f : Rn → 2R
n

is upper semicontinuous.

Here 2R
n

is a family of subsets of Rn.

A point x* ∈ Rn is a minimizer of a convex function f if and only if
f is subdifferentiable at x and

0 ∈ 𝜕f (x*)

Any local minimum of convex function is also a global minimum of
it.
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Let f1, f2 : Rn → R ∪ {+∞} be a proper convex functions. A
function

f (x) = inf
x1 + x2 = x
x1, x2 ∈ Rn

{f1(x1) + f2(x2)} = inf
x1∈Rn

{f1(x1) + f2(x − x1)}

is called the infimal convolution of two functions f1, f2 and is
denoted by

f (x) = (f1 ⊕ f2)(x).

The infimal convolution f is convex on Rn.
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The infimal convolution can also be defined in terms of addition of
epigraphs f1 and f2:

(f1 ⊕ f2)(x) = inf
{︀
𝜇 ∈ R

⃒⃒
(x , 𝜇) ∈ [ epi f1 + epi f2 ]

}︀
.

Note some properties of convex functions obtained in the result of
the infimal convolution. Let f1 and f2 be convex functions, then

dom (f1 ⊕ f2) = dom f1 + dom f2.

Let f1 and f2 be closed convex functions in Rn. Then

(f1 ⊕ f2)* = f *1 + f *2 . (1)

If ri (dom f1) ∩ ri (dom f2) ̸= ∅, then

(f1 + f2)* = f *1 ⊕ f *2 .
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Let f1 and f2 be closed convex functions on Rn, and

ri (dom f1) ∩ ri (dom f2) ̸= ∅,

then, if f1 is essentially smooth, then f1 ⊕ f2 is also essentially
smooth.

If functions f1 and f2 is not identically equal +∞ and the infimal
convolution f1 ⊕ f2 is exact at a point x = x1 + x2, then

𝜕(f1 ⊕ f2)(x) = 𝜕f1(x1) ∩ 𝜕f2(x2).
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Let f1 be a continuous convex function on Rn and

f2(x) =
1

2
⟨Mx , x⟩, where M be a definite positive matrix. The

function

f (x) = (f1 ⊕ f2)(x) = inf
y∈Rn

{︂
f1(y) +

1

2
⟨M(x − y), (x − y)⟩

}︂
.

is called the Moreau-Yosida regularization.
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Example 1.

Let X1 ⊂ Rn and X2 ⊂ Rn be convex sets and
f1(x) = 𝛿(X1, x), f2(x) = 𝛿(X2, x) be the indicator functions of X1

and X2, then

f (x) = (f1 ⊕ f2) (x) = 𝛿(X1 + X2)(x).

For example, if

X1 = co
{︂(︂

1
0

)︂
,

(︂
−1
0

)︂}︂
⊂ R2, X2 = co

{︂(︂
0
1

)︂
,

(︂
0
−1

)︂}︂
⊂ R2,

then
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𝛿(X1, x) =

{︂
0, x ∈ X1,

+∞, x ̸∈ X1,
, 𝛿(X2, x) =

{︂
0, x ∈ X2,

+∞, x ̸∈ X2,

X1 + X2 = co
{︂(︂

1
1

)︂
,

(︂
−1
1

)︂
,

(︂
1
−1

)︂
,

(︂
−1
−1

)︂}︂
⊂ R2,

𝛿(X1 + X2, x) =

{︂
0, x ∈ X1 + X2,

+∞, x ̸∈ X1 + X2.
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Example 2.

Let X ⊂ Rn be a convex set, f1(x) = 𝛿(X , x) be the indicator
function, f2 be a convex function, then

f (x) = (f1 ⊕ f2) (x) = inf
x1∈X

f2(x − x1).

Let

X = co {−1, 1} ⊂ R, f1(x) = 𝛿(X , x), f2(x) = x2, x ∈ R.

Then

f (x) = (f1 ⊕ f2) (x) =

⎧⎨⎩
(1 + x)2, x < −1,

0, |x | 6 1,
(1 − x)2, x > 1.
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Fix 𝜀 > 0. Denote a function

t𝜀(x) =

{︂
−
√︀
𝜀2 − ⟨x , x⟩, ||x || 6 𝜀,
+∞, ||x || > 𝜀,

x ∈ Rn.

We have

t*𝜀 (v) = 𝜀
√︀

1 + ⟨v , v⟩, v ∈ Rn, 𝜀 > 0.

The function t𝜀 is determined only in a ball of radius 𝜀 with the
center at the zero point.
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This function is essentially smooth, i.e., it is differentiable in each
internal point x ∈ int dom t𝜀, and, if x1, x2, . . . is a sequence of
elements from int dom t𝜀 converging to the point x ̸∈ int dom t2𝜀,
then

lim
i→+∞

|f ′(xi )| = +∞.

.
Therefore, the effective domain of the function t*𝜀 is the whole
space Rn.
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Smooth approximation of convex functions

Consider a convex function f : Rn → R and a closed convex set
D ⊂ Rn. Denote by

X = epi f =
{︀

[x , 𝜇] ∈ Rn × R
⃒⃒
𝜇 ≥ f (x), x ∈ D

}︀
.

Construct a family of convex closed sets Z𝜀 ⊂ Rn+1

Z𝜀 = X + 𝜀B1(0n+1) ⊂ Rn+1, 𝜀 > 0,

a family of convex closed sets D𝜀 ⊂ Rn

D𝜀 = D + 𝜀B1(0n) ⊂ Rn,
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and a family of convex functions

f𝜀(x) =

{︂
inf 𝜇, [x , 𝜇] ∈ Z𝜀

+∞, at other cases.

Here

B𝜀(0n) = {x ∈ Rn | ||x || 6 𝜀}, B𝜀(0n+1) = {x ∈ Rn+1 | ||x || 6 𝜀}.

We have
dom f𝜀 = D𝜀,

and for each fixed 𝜀 > 0 the graph of the function f𝜀 is the lower
envelope of the corresponding sets X𝜀.
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Fix a positive number 𝜀 > 0. Let z ∈ D. Consider a family of
convex functions {𝜙𝜀(x , z)}

𝜙𝜀(x , z) = f (z) + t𝜀(x , z),

where

t𝜀(x , z) =

{︂
−
√︀
𝜀2 − ||x − z ||2, x ∈ B𝜀(z),

+∞, at other cases.

Here

B𝜀(z) = 𝜖B1(z) = {x ∈ Rn
⃒⃒
||x − z || 6 𝜀 } ⊂ D𝜀.

It is obvious that

dom 𝜙𝜀(·, z) = B𝜀(z),
⋃︁
z∈D

B𝜀(z) = D𝜀.
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Denote H𝜀(z) = epi 𝜙𝜀(·, z) ⊂ Rn+1. Consider also functions

𝜙𝜀(x) = inf
z∈D

𝜙𝜀(x , z)

and its epigraphs H𝜀 = epi 𝜙𝜀.
From the construction of the function f𝜀 we have

Lemma 1.
The next equality

f𝜀(x) = (f ⊕ t𝜀)(x)

holds where

t𝜀(x) =

{︂
−
√︀
𝜀2 − ||x ||2, ||x || 6 𝜀,

+∞, at other points.
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Note the fact that the function t𝜀 is an essentially smooth function
for every fixed positive 𝜀.
Consider the function f𝜀(x) = (f ⊕ t𝜀)(x).
As the function f𝜀 is a closed proper convex function then the
Fenchel inequality

f *𝜀 (v) = f *(v) + t*𝜀 (v), v ∈ Rn

holds.
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Example 3.

Let

f (x) = max

{︂
−2x − 6,−1

2
x − 3, 2x − 8

}︂
, x ∈ R.

Or

f (x) =

⎧⎪⎨⎪⎩
−2x − 6 x ∈ (−∞,−2),

−1

2
x − 3 x ∈ [−2, 2) ,

2x − 8, x ∈ [2,+∞) .
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Fig.2. The functions f (x).
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Consider two variants.
1. Let the set D be the Euclidean space R. Then the set of
minimizers of this function consists of a single point x* = 2 and
f (2) = −4. Fix an arbitrary positive 𝜀 > 0. Then (see Fig.1)
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f𝜀(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2x − 6 −
√

5𝜀, x ∈

(︃
−∞,−2 − 2

√
5𝜀

5

)︃
,

−2 −
√︀

𝜀2 − (x + 2)2, x ∈

[︃
−2 − 2

√
5𝜀

5
,−2 −

√
5𝜀

5

)︃
,

−1

2
x − 3 −

√
5𝜀

2
, x ∈

[︃
−2 −

√
5𝜀

5
, 2 −

√
5𝜀

5

)︃
,

−4 −
√︀
𝜀2 − (x − 2)2 x ∈

[︃
2 −

√
5𝜀

5
, 2 +

2
√

5𝜀

5

)︃
,

2x − 8 −
√

5𝜀 x ∈

[︃
2 +

2
√

5𝜀

5
,+∞

)︃
.
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Fig.3. The family functions f𝜀(x).
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The function f𝜀 is continuously differentiable on R and

f ′𝜀(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2, x ∈

(︃
−∞,−2 − 2

√
5𝜀

5

)︃
,

x + 2√︀
𝜀2 − (x + 2)2

, x ∈

[︃
−2 − 2

√
5𝜀

5
,−2 −

√
5𝜀

5

)︃
,

−1

2
, x ∈

[︃
−2 −

√
5𝜀

5
, 2 −

√
5𝜀

5

)︃
,

x − 2√︀
𝜀2 − (x − 2)2

x ∈

[︃
2 −

√
5𝜀

5
, 2 +

2
√

5𝜀

5

)︃
,

2 x ∈

[︃
2 +

2
√

5𝜀

5
,+∞

)︃
.
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Hence f ′𝜀(2) = 0 and f𝜀(2) = −4 − 𝜀. We have

f *(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2v + 2, v ∈

[︂
−2,−1

2

)︂
,

2v + 4, v ∈
[︂
−1

2
, 2

]︂
,

+∞, at other points.
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2. Consider the case when the set D is the segment [−3, 0]. Then
consider the function

f̃ (x) = max

{︂
−2x − 6,−1

2
x − 3

}︂
, x ∈ [−3, 1] ⊂ R.

f̃ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞, x ∈ (−∞,−2),

−2x − 6, x ∈
[︂
−2,−1

2

)︂
,

−1

2
x − 3, x ∈

[︂
−1

2
, 0

]︂
,

+∞, x ∈
(︂
−1

2
,+∞

)︂
.

Then D𝜀 = [−3 − 𝜀, 𝜀] (see Fig.4.) and
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f̃𝜀(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞, x ∈ (−∞,−3 − 𝜀),

−
√︀
𝜀2 − (x + 3)2, x ∈

[︃
−3 − 𝜀,−3 − 2

√
5𝜀

5

)︃
,

−2x − 6 −
√

5𝜀 x ∈

[︃
−3 − 2

√
5𝜀

5
,−2 − 2

√
5𝜀

5

)︃
,

−2 −
√︀

𝜀2 − (x + 2)2, x ∈

[︃
−2 − 2

√
5𝜀

5
,−2 −

√
5𝜀

5

)︃
,

−1

2
x − 3 −

√
5𝜀

2
, x ∈

[︃
−2 −

√
5𝜀

5
,−

√
5𝜀

4

)︃
,

−3 −
√
𝜀2 − x2, x ∈

[︃
−
√

5𝜀

4
, 𝜀

]︃
,

+∞, x ∈ (𝜀,+∞).
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The function f̃𝜀 is differentiable for all x ∈ (−3 − 𝜀, 𝜀) and
f̃ ′𝜀(0) = 0. As

f̃𝜀(0) = −3 − 𝜀, f̃𝜀(−3 − 𝜀) = 0, f𝜀(𝜀) = −3,

then
min
x∈D𝜀

f𝜀(x) = −3 − 𝜀.
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Fig.4. The family f̃𝜀(x).
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Theorem 4.
For the function f𝜀 the following statements

dom f𝜀 = dom f1 + B𝜀(0n), epi f𝜀 = epi f1 + B𝜀(0n+1),

hold.

Theorem 5.
For any fixed 𝜀 > 0 the function f𝜀 is continuously differentiable at
each interior point of D𝜀.

Corollary 1.
The set epi f𝜀 is smooth for any positive 𝜀
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Theorem 6.
1 For any fixed point x0 there exists a unique point z0 ∈ D for

which
𝜙𝜀(x0) = f (z0) + t𝜀(x0, z0).

2 H𝜀 = epi 𝜙𝜀 =
⋃︀
z∈D

epi 𝜙𝜀(·, z) =
⋃︀
z∈D

H𝜀(z).

3 H𝜀 = Z𝜀.
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Corollary 2.
For any fixed 𝜀 > 0

f𝜀(x) = 𝜙𝜀(x).

Theorem 7.
Let a point x0 ∈ intD𝜀. Then there exists a unique point z0 ∈ D
for which

f ′𝜀(x0) ∈ 𝜕f (z0).
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Note some properties of functions conjugate to the functions f and
f𝜀. Let f be a closed proper convex function on Rn. A set

dom 𝜕f = {x ∈ Rn
⃒⃒
𝜕f (x) ̸= ∅}

and
range 𝜕f =

⋃︁
x∈Rn

𝜕f (x)

are called respectively the effective set and the image of 𝜕f . It is
known, that

ri(dom f *) ⊂ range 𝜕f ⊂ dom f *.
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Take
v ∈ range 𝜕f𝜀 ⊂ domf *𝜀 .

Then there exists a point x ∈ domf𝜀 for which v ∈ 𝜕f𝜀(x),
therefore,

f𝜀(x) + f *𝜀 (v) = ⟨x , v⟩.

Consider the point x̄ = [x , f𝜀(x)]. Find

z̄ = arg min
z̃∈X𝜀

||z̃ − x̄ || = [z , f (z)],

Therefore

f ′𝜀(x) ∈ 𝜕f (z), x̄ = z̄ + 𝜀𝜇(x)[f ′𝜀(x),−1], x = z + 𝜀𝜇(v)f ′𝜀(x).

where
𝜇(x) =

1√︀
1 + ||f ′𝜀(x)||2

.
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Theorem 8.
If the set D is compact and convex, then

min
x∈D

f (x) = min
x∈D𝜀

f𝜀(x) + 𝜀.

Let M be the set of minimizers of f on D, and M𝜀 be the set of
minimizers of f𝜀 on D𝜀.
The case when these sets are empty is not excluded.

Theorem 9.
1 The next equality M = M𝜀 holds.
2 If M is not empty set, then

f𝜀(z*) = f (z*) − 𝜀 ∀z* ∈ M.
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Difference of convex functions

Let f1, f2 : Rn → R be finite convex functions on Rn and

f (x) = f1(x) − f2(x).

The function f is a quasidifferentiable function.
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Quasidifferentiable functions

Let a function f be defined on Rn and be directionally differentiable
at a point x ∈ Rn and its directional derivative f ′(x , g) can be
represented in the form

f ′(x , g) = lim
𝜆↓0

f (x + 𝜆g) − f (x)

𝜆
= max

v∈𝜕f (x)
⟨v , g⟩ + min

w∈𝜕f (x)
⟨w , g⟩.

Here 𝜕f (x) ⊂ Rn, 𝜕f (x) ⊂ Rn are convex compact sets in Rn.
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The function f is called a quasidifferentiable at a point x ∈ Rn. A
pair of sets 𝒟f (x) = [𝜕f (x), 𝜕f (x)] is called a quasidifferential of
a quasidifferentiable function f at x .
The set 𝜕f (x) ⊂ Rn is called a subdifferential of f at x , the set
𝜕f (x) ⊂ Rn is called a superdifferential of f at x .
Differentiable, convex, concave functions, maximum functions are
quasidifferentiable functions.
As the function f is quasidifferentiable on Rn and

𝒟f (x) = [𝜕f1(x),−𝜕f2(x)]

is its quasidifferential at a point x ∈ Rn, where 𝜕fi (x) are the
subdifferentials of convex functions fi (x), i = 1, 2, at the point
x ∈ Rn in the sense of Convex Analysis.
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Let’s consider the optimization problem: find

inf
x∈Rn

f (x).

The following necessary optimality conditions for the function f on
Rn hold.

Theorem 10.
For a point x* ∈ Rn to be a minimizer of the function f on Rn, it is
necessary, that

𝜕f2(x*) ⊂ 𝜕f1(x*). (2)

For a point x* ∈ Rn to be a maximizer of the function f on Rn, it
is necessary, that

𝜕f1(x*) ⊂ 𝜕f2(x*). (3)
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If the inclusion
𝜕f2(x*) ⊂ int 𝜕f1(x*)

holds at the point x* ∈ Rn then this point is a strict local
minimizer of the function f on Rn.

If the inclusion
𝜕f1(x*) ⊂ int 𝜕f2(x*)

is satisfied at the point x* ∈ Rn then this point is a strict local
maximizer of the function f on Rn.
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A point x* is called an inf− stationary point of f if inclusion (2)
holds. A point x** is called a sup− stationary point of f if inclusion
(3) holds.
We say that a point x* is Clark’s stationary point of function f on
Rn, if the next condition

𝜕f1(x*)
⋂︁

𝜕f2(x*) ̸= ∅

holds. It is obvious that inf − and sup-stationary points of the
function f on Rn are also Clark’s stationary points of f on Rn.
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Lemma 2.
Fix any point x ∈ Rn, then

f1(x) − f2(x) ≤ f *2 (v) − f *1 (v) ∀v ∈ 𝜕f1(x), (4)

f1(x) − f2(x) ≥ f *2 (v) − f *1 (v) ∀v ∈ 𝜕f2(x), (5)

f1(x) − f2(x) = f *2 (v) − f *1 (v) ∀v ∈ 𝜕f1(x) ∩ 𝜕f2(x). (6)
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Denote by
f o(v) = f *2 (v) − f *1 (v), v ∈ Rn.

If a point v ̸∈ dom f *1 ∪ dom f *2 , then we face with the case
+∞−∞.
Therefore in different cases under considering of certain extremal
properties, we will define this function on different depending on
the situation
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1. If the point x* ∈ Rn is Clark’s stationary point of the function f
on Rn, then the equality

f (x*) = f o(v) ∀v ∈ 𝜕f1(x*) ∩ 𝜕f2(x*)

holds.

2. If the point x* ∈ Rn is an inf-stationary point of the function f
on Rn, then the equality

f (x*) = f o(v*) ∀v* ∈ 𝜕f2(x*) (7)

holds.
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3. If the point x* ∈ Rn is sup-stationary point of the function f on
Rn, then the equality

f (x*) = f o(v*) ∀v* ∈ 𝜕f1(x*) (8)

holds.
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Example 4.

Consider a function

f (x) = f1(x) − f2(x) = |x1| − |x2|, x = (x1, x2) ∈ R2.

However, it is Clark’s stationary point of the function f on R2.
Define conjugate functions of f1 and f2. We have

f *1 (v) =

{︂
0, v ∈ co {(1, 0), (−1, 0)},

+∞, v ̸∈ co {(1, 0), (−1, 0)},

f *2 (v) =

{︂
0, v ∈ co {(0, 1), (0,−1)},

+∞, v ̸∈ co {(0, 1), (0,−1)},
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As 𝜕f1(x*) = co {(1, 0), (−1, 0)}, 𝜕f2(x*) = co {(0, 1), (0,−1)},
then

02 ∈ 𝜕f1(x*) ∩ 𝜕f2(x*) = co {(1, 0), (−1, 0)} ∩ co {(0, 1), (0,−1)}.

Therefore f (x*) = 0 = f o(02).
From conditions (6) it follows that if the point x* is Clarke’s
stationary point of the function f on Rn, then the next relation

𝜕f *1 (v*) ∩ 𝜕f *2 (v*) ̸= ∅ ∀v* ∈ 𝜕f1(x*) ∩ 𝜕f2(x*)

is valid
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Example 5.

Consider the function

f1(x) =

{︂
x3, x ≥ 0,
0, x < 0,

, f2(x) =

{︂
0, x ≥ 0,

−x3, x < 0,
x ∈ R.

Note that the functions f1 and f2 are convex and continuously
differentiable. Then f (x) = x3. The function f has a unique
stationary point x* = 0 and

f ′1(x*) = 0, f ′2(x*) = 0.
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, ,
Fig.5. The functions f1 and f2.

Lyudmila Polyakova Smooth approximation of d.c.functions



Definitions and elementary properties
Smooth approximation of a convex set

Smooth approximation of convex functions
Difference of convex functions (D.c. functions)

Smooth approximation of d.c. functions

, ,
Fig.5. The functions f *2 and f *1 .
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Calculate f *1 and f *2 . We have

f *1 (v) =

⎧⎨⎩
2v

√
v

3
√

3
, v ≥ 0,

+∞, v < 0,
, f *2 (v) =

⎧⎨⎩
+∞, v > 0,

−
2v
√︀

|v |
3
√

3
, v ≤ 0,

v ∈ R.

Therefore,

f o(v) =

⎧⎨⎩
+∞, v > 0,

0, v = 0,
−∞, v < 0.
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The function f o is finite only in a single point v* = 0. Find
subdifferentials of functions f *1 and f *2 at the point v*

𝜕f *1 (0) = (−∞, 0] ⊂ R, 𝜕f *2 (0) = [0,+∞) ⊂ R.

It is obvious that 𝜕f *1 (0) ∩ 𝜕f *2 (0) = 0.
Note the fact that if we calculate the function conjugate to the
function f , then f *(v) = +∞ ∀v ∈ R.

From (4) and (5) it follows:
1) if dom f *2 ̸⊂ dom f *1 , the function f are unbounded from below,
2) if dom f *1 ̸⊂ dom f *2 , then the function f unbounded from above.
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Note that in the points not belonging to the set dom f *1 , we face
with the case +∞−∞, therefore, under minimizing the function f
on Rn, we define the function f o on the complement of the set
dom f *1 to the whole space by the value +∞.
Namely, put

f o−(v) =

{︂
f o(v), v ∈ dom f *1 ,
+∞, v ̸∈ dom f *1 .

.
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Theorem 11.
Let a point x* ∈ Rn be a global minimizer of the function f on
Rn, then any subgradient v* ∈ 𝜕f2(x*) is a global minimizer of the
function f o− on Rn.

Theorem 12.
Let a point x* ∈ Rn be Clark’s stationary point of the function f
on Rn. Then, if there is a global minimizer

v* ∈ 𝜕f1(x*) ∩ 𝜕f2(x*),

of the function f o− on Rn, then the point x* is a global
minimizer of the function f on Rn.
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Corollary 3.

If there is a global minimizer x* ∈ Rn of the function f on Rn then
there is a point v* ∈ Rn, which is a global minimizer of the
function f o− on Rn. In this case the relation

min
x∈Rn

f (x) = min
v∈Rn

f o−(v)

is valid.
If the function f achieves at some point x* ∈ Rn its global
minimum on Rn, then dom f *2 ⊂ dom f *1 .
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Let f1, f2 be convex functions on Rn and

f (x) = f1(x) − f2(x), x ∈ Rn.

Fix 𝜀 > 0 and form functions

f𝜀(x) = f1𝜀(x) − f2𝜀(x),

where

f1𝜀(x) = (f1�t𝜀) (x), f2𝜀(x) = (f2�t𝜀) (x),

t𝜀(x) =

{︂
−
√︀

𝜀2 − ||x ||2, ||x || ≤ 𝜀,
+∞, ||x || > 𝜀,

x ∈ Rn.

The function f𝜀 is continuous differentiable on Rn.
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Theorem 13.
If a point x* ∈ Rn is a stationary point of the function f𝜀 on Rn

(f ′1𝜀(x*) = f ′2𝜀(x*)), then at the point

z* = x* − 𝜀√︀
1 + ||f ′1𝜀(x*)||2

f ′1𝜀(x*)

the next intersection

𝜕f1(x*) ∩ 𝜕f2(x*) ̸= ∅

holds and

f (z*) = f𝜀(x*), f ′1𝜀(x*) ∈ 𝜕f1(z*) ∩ 𝜕f2(z*).
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Theorem 14.
Let a point x* be a global minimizer of f𝜀 on Rn, then the point

z* = x* − 𝜀√︀
1 + ||f ′1𝜀(x*)||2

f ′1𝜀(x*)

is a global minimizer of f on Rn and

f (z*) = f𝜀(x*),

f ′1𝜀(x*) ∈ 𝜕f2(z*) ⊂ 𝜕f1(z*).
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Theorem 15.
Let a point z* be a global minimizer of the function f on Rn. Then
the point

x*v = z* +
𝜀√︀

1 + ||v ||2
v

is also a global minimizer of the function f𝜀 on Rn for each
v ∈ 𝜕f2(z*) and

f (z*) = f𝜀(x*v ),

v = f ′1𝜀(x*v ) = f ′2𝜀(x*v ) ∀v ∈ 𝜕f2(z*) ⊂ 𝜕f1(z*).
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Thank you for your attention
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