Smooth approximation of d.c.functions

Lyudmila Polyakova

Saint Petersburg University, Saint Petersburg, Russia

05.05.2021

Variational Analysis and Optimisation Webinars

(日) (周) (王) (王)

Let us formulate some definitions and statements of Convex Analysis.

A set $X \subset \mathbb{R}^n$ is called convex, if for all $x_1 \in X$ and $x_2 \in X$ the next formula

$$\lambda x_1 + (1 - \lambda) x_2 \in X \quad \forall \lambda \in [0, 1] \subset \mathbb{R},$$

hold.

We assume that the empty set \emptyset is convex by definition. The sum of two convex sets $X_1, X_2 \subset \mathbb{R}^n$ is called the set

$$X = X_1 + X_2 = \{x_1 + x_2 \mid x_1 \in X_1, x_2 \in X_2\}.$$

Sometimes the set $X = X_1 + X_2$ is called the algebraic sum of two convex sets X_1 and X_2 or the Minkowski sum. By writing $X_1 - X_2$ we will understand the set $X_1 + (-X_2)$. If the set $X \subset \mathbb{R}^n$ is convex and $\alpha X, \alpha \in \mathbb{R}$, then

$$\alpha X = \{ y \in \mathbb{R}^n \mid y = \alpha x, \ x \in X \}.$$

(D) (A) (A)

Let $K \subset \mathbb{R}^n$ be a convex cone.

$$K^* = \{g \in \mathbb{R}^n \mid \langle g, x \rangle \ge 0 \quad \forall x \in K\}$$

is called the conjugate cone to K. Let $X \subset \mathbb{R}^n$ be a closed and convex set, a point $x \in X$. A set

$$N(X,x) = \left\{ g \in \mathbb{R}^n \mid \langle g, z - x \rangle \leqslant 0 \quad \forall z \in X
ight\}$$

is called the normal cone to the set X at x. The normal cone is a closed convex cone.

(D) (A) (A)

A closed convex set is called smooth if for each boundary point there is only one support hyperplane.

Theorem 1.

If at every boundary point of a closed convex set a normal cone consists of a single ray then this set is smooth.

This is an obvious property of a smooth set.

(日) (周) (王) (王)

Let a set $X \subset \mathbb{R}^n$ be closed and convex and X does not coincide with \mathbb{R}^n .

Fix $\varepsilon > 0$. Form a closed convex set

$$X(\varepsilon) = X + \varepsilon B_1(0_n),$$

where

$$B_r(a) = \{x \in \mathbb{R}^n \mid ||x - a|| \le r\},\$$

 $||x|| = \sqrt{\langle x, x \rangle}.$

イロン イヨン イヨン イヨン

At this picture you can see that the rectangle vertices are smoothed out.

Fig. 1. The family of sets X_{ε} .

イロン イヨン イヨン イヨン

Theorem 2.

The following statements take place.

- For every ε > 0 a normal cone to the set X(ε) consists of a single ray at each boundary point z₀ ∈ bd (X(ε)).
- For every $\varepsilon > 0$ the set $X(\varepsilon)$ is smooth.
- The next inclusion

$$N(X(\varepsilon), z_0) \subset N(X, x_0)$$

holds, where $x_0 = \arg\min_{x \in X} ||x - z_0||$.

(ロ) (部) (注) (注)

Let $X \subset \mathbb{R}^n$ be an unbounded closed convex set. Consider a multivalued mapping

$$X(\cdot):(0,+\infty)\to 2^{\mathbb{R}^n}.$$

Theorem 3.

This multivalued mapping is Kuratowski continuous.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem 4.

Let $X \subset \mathbb{R}^n$ be a compact convex set. Then

$$\rho_H(X(\varepsilon), X) \to 0, \text{ if } \varepsilon \to +0,$$

where $\rho_H(X(\varepsilon), X)$ is the Hausdorff metric,

$$\rho_H(A,B) = \max\left\{\sup_{a\in A}\inf_{b\in B}||a-b||, \sup_{b\in B}\inf_{a\in A}||a-b||\right\}.$$

イロト イヨト イヨト イヨト

Convex functions

Let
$$f : \mathbb{R}^n \to \mathbb{R} \bigcup \{+\infty\} \bigcup \{-\infty\}$$
.
The set

dom
$$f = \{x \in \mathbb{R}^n \mid f(x) < +\infty\}.$$

is called the effective domain of a function f. The set

epi
$$f = \{[x, \mu] \in \mathbb{R}^n \times \mathbb{R} \mid f(x) \leq \mu\}$$

is called the epigraph of f.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A function f is called a convex if epi f is convex. A convex function f is said to be proper if its epigraph is non-empty and contains no vertical lines.

For proper convex functions it is possible to give another definition which equivalent to the above.

A function $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is called convex if $f(\lambda_1 x_1 + \lambda_2 x_2) \leqslant \lambda_1 f(x_1) + \lambda_2 f(x_2) \quad \forall x_1, x_2 \in \mathbb{R}^n,$ $\lambda_1, \lambda_2 \ge 0, \ \lambda_1 + \lambda_2 = 1.$

Let f be a convex function.

If $x \in \text{int dom} f$, then f is continuous at x.

Let f be a convex function. If the partial derivatives of f with respect to each variable exist at a point $x \in \text{int dom} f$ then f is differentiable at x.

A proper convex function is called essentially smooth if it satisfies the following three conditions:

- The set X = int (dom f) is not empty;
- f is differentiable at each $x \in X$;
- if x_1, x_2, \ldots is a sequence in X converging to a boundary point x of X, then

$$\lim_{i\to+\infty}|f'(x_i)|=+\infty.$$

Any smooth convex function on \mathbb{R}^n will be essentially smooth, as the set of sequences satisfying the last condition is empty.

The conjugate of a function f is

$$f^*(v) = \sup_{x \in \mathbb{R}^n} \{ \langle x, v \rangle - f(x) \}, \ v \in \mathbb{R}^n.$$

Obviously, that the equality

$$f^*(v) = \sup_{x \in \text{dom } f} \{ \langle x, v \rangle - f(x) \}, v \in \mathbb{R}^n,$$

is true.

Note some properties of conjugate functions.

- f^* is closed and convex (even when f is not).
- The Fenchel inequality is true:

$$f(x) + f^*(v) \ge \langle x, v \rangle \ \forall x \in \mathbb{R}^n, \ \forall v \in \mathbb{R}^n.$$

• A proper convex closed function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex if and only if when

$$f(x) = (f^*)^*(x), \quad x \in \mathbb{R}^n.$$

In this case dom $f^* \neq \emptyset$.

(日) (周) (王) (王)

A convex function may be nonsmooth.

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex and $x \in \text{dom } f$. The set

$$\partial f(x) = \{ v \in \mathbb{R}^n \mid f(z) - f(x) \ge \langle v, z - x \rangle \quad \forall z \in \mathbb{R}^n \}$$

is called the subdifferential of f at x.

A vector $v \in \partial f(x)$ is called a subgradient of f at x.

The subdifferential generalizes the derivative to functions which are not differentiable. If f is convex and differentiable, then its gradient at x is a subgradient.

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper convex function, $x_0 \in \text{dom } f$, $\partial f(x_0) \neq \emptyset$. Then $\partial f(x_0)$ is convex and closed.

For a convex function there is a close connection between the subdifferential and its directional derivative.

If a point $x_0 \in \text{int} (\text{dom } f)$, the set $\partial f(x_0)$ is bounded, then in this case f'(x,g) is finite for each $g \in \mathbb{R}^n$ and

$$f'(x_0,g) = \max_{v \in \partial f(x_0)} \langle v,g \rangle.$$

Let f be a finite convex function on \mathbb{R}^n . Then a multivalued mapping

$$\partial f: \mathbb{R}^n \to 2^{\mathbb{R}'}$$

is upper semicontinuous.

Here $2^{\mathbb{R}^n}$ is a family of subsets of \mathbb{R}^n .

A point $x^* \in \mathbb{R}^n$ is a minimizer of a convex function f if and only if f is subdifferentiable at x and

$$0\in\partial f(x^*)$$

Any local minimum of convex function is also a global minimum of it.

Let $f_1, f_2 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper convex functions. A function

$$f(x) = \inf_{\substack{x_1 + x_2 = x \\ x_1, x_2 \in \mathbb{R}^n}} \{f_1(x_1) + f_2(x_2)\} = \inf_{x_1 \in \mathbb{R}^n} \{f_1(x_1) + f_2(x - x_1)\}$$

is called the infimal convolution of two functions f_1, f_2 and is denoted by

$$f(x)=(f_1\oplus f_2)(x).$$

The infimal convolution f is convex on \mathbb{R}^n .

The infimal convolution can also be defined in terms of addition of epigraphs f_1 and f_2 :

$$(f_1 \oplus f_2)(x) = \inf \left\{ \mu \in \mathbb{R} \mid (x, \mu) \in [\text{ epi } f_1 + \text{epi } f_2] \right\}.$$

Note some properties of convex functions obtained in the result of the infimal convolution. Let f_1 and f_2 be convex functions, then

dom
$$(f_1 \oplus f_2) = \text{dom } f_1 + \text{dom } f_2$$
.

Let f_1 and f_2 be closed convex functions in \mathbb{R}^n . Then

$$(f_1 \oplus f_2)^* = f_1^* + f_2^*. \tag{1}$$

If ri (dom f_1) \cap ri (dom f_2) $\neq \emptyset$, then

$$(f_1 + f_2)^* = f_1^* \oplus f_2^*.$$

Let f_1 and f_2 be closed convex functions on \mathbb{R}^n , and

```
ri (dom f_1) \cap ri (dom f_2) \neq \emptyset,
```

then, if f_1 is essentially smooth, then $f_1 \oplus f_2$ is also essentially smooth.

If functions f_1 and f_2 is not identically equal $+\infty$ and the infimal convolution $f_1 \oplus f_2$ is exact at a point $x = x_1 + x_2$, then

$$\partial(f_1\oplus f_2)(x)=\partial f_1(x_1)\cap \partial f_2(x_2).$$

Let
$$f_1$$
 be a continuous convex function on \mathbb{R}^n and $f_2(x) = \frac{1}{2} \langle Mx, x \rangle$, where M be a definite positive matrix. The function

$$f(x)=(f_1\oplus f_2)(x)=\inf_{y\in\mathbb{R}^n}\left\{f_1(y)+rac{1}{2}\langle M(x-y),(x-y)
angle
ight\}.$$

is called the Moreau-Yosida regularization.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Example 1.

Let $X_1 \subset \mathbb{R}^n$ and $X_2 \subset \mathbb{R}^n$ be convex sets and $f_1(x) = \delta(X_1, x), f_2(x) = \delta(X_2, x)$ be the indicator functions of X_1 and X_2 , then

$$f(x) = (f_1 \oplus f_2)(x) = \delta(X_1 + X_2)(x).$$

For example, if

$$X_1 = \operatorname{co}\left\{ \left(egin{array}{c} 1 \\ 0 \end{array}
ight), \left(egin{array}{c} -1 \\ 0 \end{array}
ight)
ight\} \subset \mathbb{R}^2, \ X_2 = \operatorname{co}\left\{ \left(egin{array}{c} 0 \\ 1 \end{array}
ight), \left(egin{array}{c} 0 \\ -1 \end{array}
ight)
ight\} \subset \mathbb{R}^2,$$

then

$$\delta(X_1, x) = \begin{cases} 0, & x \in X_1, \\ +\infty, & x \notin X_1, \end{cases}, \quad \delta(X_2, x) = \begin{cases} 0, & x \in X_2, \\ +\infty, & x \notin X_2, \end{cases}$$
$$X_1 + X_2 = \operatorname{co} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\} \subset \mathbb{R}^2,$$
$$\delta(X_1 + X_2, x) = \begin{cases} 0, & x \in X_1 + X_2, \\ +\infty, & x \notin X_1 + X_2. \end{cases}$$

イロト イヨト イヨト イヨト

æ

Example 2.

Let $X \subset \mathbb{R}^n$ be a convex set, $f_1(x) = \delta(X, x)$ be the indicator function, f_2 be a convex function, then

$$f(x) = (f_1 \oplus f_2)(x) = \inf_{x_1 \in X} f_2(x - x_1).$$

Let

$$X= ext{co}~\{-1,1\}\subset \mathbb{R}, \quad f_1(x)=\delta(X,\,x), \quad f_2(x)=x^2, \; x\in \mathbb{R}.$$

Then

$$f(x) = (f_1 \oplus f_2)(x) = \left\{egin{array}{cc} (1+x)^2, & x < -1, \ 0, & |x| \leqslant 1, \ (1-x)^2, & x > 1. \end{array}
ight.$$

イロン イヨン イヨン イヨン

Fix $\varepsilon > 0$. Denote a function

$$t_{arepsilon}(x) = \left\{egin{array}{c} -\sqrt{arepsilon^2 - \langle x,x
angle}, & ||x|| \leqslant arepsilon, \ +\infty, & ||x|| > arepsilon, & x \in \mathbb{R}^n. \end{array}
ight.$$

We have

$$t^*_{arepsilon}(\mathbf{v})=arepsilon\sqrt{1+\langle\mathbf{v},\mathbf{v}
angle},\quad\mathbf{v}\in\mathbb{R}^n,\quadarepsilon>0.$$

The function t_{ε} is determined only in a ball of radius ε with the center at the zero point.

・ロト ・ 同ト ・ ヨト ・ ヨト

This function is essentially smooth, i.e., it is differentiable in each internal point $x \in$ int dom t_{ε} , and, if x_1, x_2, \ldots is a sequence of elements from int dom t_{ε} converging to the point $x \notin$ int dom $t_{2\varepsilon}$, then

$$\lim_{i\to+\infty}|f'(x_i)|=+\infty.$$

Therefore, the effective domain of the function t_{ε}^* is the whole space \mathbb{R}^n .

Smooth approximation of convex functions

Consider a convex function $f : \mathbb{R}^n \to \mathbb{R}$ and a closed convex set $D \subset \mathbb{R}^n$. Denote by

$$X = ext{epi } f = \left\{ [x, \mu] \in \mathbb{R}^n imes \mathbb{R} \mid \ \mu \geq f(x), \quad x \in D
ight\}.$$

Construct a family of convex closed sets $Z_{\varepsilon} \subset \mathbb{R}^{n+1}$

$$Z_{\varepsilon} = X + \varepsilon B_1(0_{n+1}) \subset \mathbb{R}^{n+1}, \quad \varepsilon > 0,$$

a family of convex closed sets $D_{arepsilon} \subset \mathbb{R}^n$

$$D_{\varepsilon} = D + \varepsilon B_1(0_n) \subset \mathbb{R}^n,$$

and a family of convex functions

$$f_{arepsilon}(x) = \left\{ egin{array}{c} \inf \mu, & [x,\mu] \in Z_arepsilon \ +\infty, & ext{at other cases.} \end{array}
ight.$$

Here

$$B_{\varepsilon}(0_n) = \{ x \in \mathbb{R}^n \mid ||x|| \leq \varepsilon \}, \quad B_{\varepsilon}(0_{n+1}) = \{ x \in \mathbb{R}^{n+1} \mid ||x|| \leq \varepsilon \}.$$

We have

dom
$$f_{\varepsilon} = D_{\varepsilon}$$
,

and for each fixed $\varepsilon > 0$ the graph of the function f_{ε} is the lower envelope of the corresponding sets X_{ε} .

1

Fix a positive number $\varepsilon > 0$. Let $z \in D$. Consider a family of convex functions $\{\varphi_{\varepsilon}(x, z)\}$

$$\varphi_{\varepsilon}(x,z) = f(z) + t_{\varepsilon}(x,z),$$

where

$$t_{arepsilon}(x,z) = \left\{egin{array}{c} -\sqrt{arepsilon^2 - ||x-z||^2}, & x\in B_arepsilon(z),\ +\infty, & ext{at other cases} \end{array}
ight.$$

Here

$$B_{\varepsilon}(z) = \epsilon B_1(z) = \{x \in \mathbb{R}^n \mid ||x - z|| \leqslant \varepsilon \} \subset D_{\varepsilon}.$$

It is obvious that

dom
$$\varphi_{\varepsilon}(\cdot, z) = B_{\varepsilon}(z), \quad \bigcup_{z \in D} B_{\varepsilon}(z) = D_{\varepsilon}.$$

イロン イヨン イヨン イヨン

Denote $H_{\varepsilon}(z) = {\operatorname{epi}} \ \varphi_{\varepsilon}(\cdot,z) \subset \mathbb{R}^{n+1}.$ Consider also functions

$$\varphi_{\varepsilon}(x) = \inf_{z \in D} \varphi_{\varepsilon}(x, z)$$

and its epigraphs $H_{\varepsilon} = epi \varphi_{\varepsilon}$. From the construction of the function f_{ε} we have

Lemma 1.

The next equality

$$f_{\varepsilon}(x) = (f \oplus t_{\varepsilon})(x)$$

holds where

$$t_{\varepsilon}(x) = \begin{cases} -\sqrt{\varepsilon^2 - ||x||^2}, & ||x|| \leq \varepsilon, \\ +\infty, & \text{at other points.} \end{cases}$$

(D) (A) (A)

Note the fact that the function t_{ε} is an essentially smooth function for every fixed positive ε .

Consider the function $f_{\varepsilon}(x) = (f \oplus t_{\varepsilon})(x)$.

As the function f_{ε} is a closed proper convex function then the Fenchel inequality

$$f_arepsilon^*(v)=f^*(v)+t_arepsilon(v),\quad v\in\mathbb{R}^n$$

holds.

Example 3.

Let

$$f(x) = \max\left\{-2x-6, -\frac{1}{2}x-3, 2x-8
ight\}, \quad x\in\mathbb{R}.$$

Or

$$f(x) = \begin{cases} -2x - 6 & x \in (-\infty, -2), \\ -\frac{1}{2}x - 3 & x \in [-2, 2), \\ 2x - 8, & x \in [2, +\infty). \end{cases}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Fig.2. The functions f(x).

イロン イヨン イヨン イヨン

臣

Consider two variants.

1. Let the set *D* be the Euclidean space \mathbb{R} . Then the set of minimizers of this function consists of a single point $x^* = 2$ and f(2) = -4. Fix an arbitrary positive $\varepsilon > 0$. Then (see Fig.1)
$$f_{\varepsilon}(x) = \begin{cases} -2x - 6 - \sqrt{5}\varepsilon, & x \in \left(-\infty, -2 - \frac{2\sqrt{5}\varepsilon}{5}\right), \\ -2 - \sqrt{\varepsilon^2 - (x+2)^2}, & x \in \left[-2 - \frac{2\sqrt{5}\varepsilon}{5}, -2 - \frac{\sqrt{5}\varepsilon}{5}\right), \\ -\frac{1}{2}x - 3 - \frac{\sqrt{5}\varepsilon}{2}, & x \in \left[-2 - \frac{\sqrt{5}\varepsilon}{5}, 2 - \frac{\sqrt{5}\varepsilon}{5}\right), \\ -4 - \sqrt{\varepsilon^2 - (x-2)^2} & x \in \left[2 - \frac{\sqrt{5}\varepsilon}{5}, 2 + \frac{2\sqrt{5}\varepsilon}{5}\right), \\ 2x - 8 - \sqrt{5}\varepsilon & x \in \left[2 + \frac{2\sqrt{5}\varepsilon}{5}, +\infty\right). \end{cases}$$

・ロン ・回 と ・ ヨン ・ ヨン

Fig.3. The family functions $f_{\varepsilon}(x)$.

<ロ> (四) (四) (日) (日) (日)

The function f_{ε} is continuously differentiable on $\mathbb R$ and

$$f_{\varepsilon}'(x) = \begin{cases} -2, & x \in \left(-\infty, -2 - \frac{2\sqrt{5}\varepsilon}{5}\right), \\ \frac{x+2}{\sqrt{\varepsilon^2 - (x+2)^2}}, & x \in \left[-2 - \frac{2\sqrt{5}\varepsilon}{5}, -2 - \frac{\sqrt{5}\varepsilon}{5}\right), \\ -\frac{1}{2}, & x \in \left[-2 - \frac{\sqrt{5}\varepsilon}{5}, 2 - \frac{\sqrt{5}\varepsilon}{5}\right), \\ \frac{x-2}{\sqrt{\varepsilon^2 - (x-2)^2}} & x \in \left[2 - \frac{\sqrt{5}\varepsilon}{5}, 2 + \frac{2\sqrt{5}\varepsilon}{5}\right), \\ 2 & x \in \left[2 + \frac{2\sqrt{5}\varepsilon}{5}, +\infty\right). \end{cases}$$

イロン イヨン イヨン イヨン

æ

Hence
$$f_{\varepsilon}'(2) = 0$$
 and $f_{\varepsilon}(2) = -4 - \varepsilon$. We have

$$f^*(v) = \begin{cases} -2v+2, & v \in \left[-2, -\frac{1}{2}\right), \\ 2v+4, & v \in \left[-\frac{1}{2}, 2\right], \\ +\infty, & \text{at other points.} \end{cases}$$

・ロン ・回 と ・ ヨン ・ ヨン

2. Consider the case when the set D is the segment [-3, 0]. Then consider the function

$$ilde{f}(x)=\max\left\{-2x-6,-rac{1}{2}x-3
ight\},\quad x\in[-3,1]\subset\mathbb{R}.$$

$$\tilde{f}(x) = \begin{cases} +\infty, & x \in (-\infty, -2), \\ -2x - 6, & x \in \left[-2, -\frac{1}{2}\right), \\ -\frac{1}{2}x - 3, & x \in \left[-\frac{1}{2}, 0\right], \\ +\infty, & x \in \left(-\frac{1}{2}, +\infty\right). \end{cases}$$

Then $D_{\varepsilon} = [-3 - \varepsilon, \varepsilon]$ (see Fig.4.) and

・ロト ・回ト ・ヨト ・ヨト

$$\tilde{f}_{\varepsilon}(x) = \begin{cases} +\infty, & x \in (-\infty, -3 - \varepsilon), \\ -\sqrt{\varepsilon^2 - (x + 3)^2}, & x \in \left[-3 - \varepsilon, -3 - \frac{2\sqrt{5}\varepsilon}{5} \right), \\ -2x - 6 - \sqrt{5}\varepsilon & x \in \left[-3 - \frac{2\sqrt{5}\varepsilon}{5}, -2 - \frac{2\sqrt{5}\varepsilon}{5} \right), \\ -2 - \sqrt{\varepsilon^2 - (x + 2)^2}, & x \in \left[-2 - \frac{2\sqrt{5}\varepsilon}{5}, -2 - \frac{\sqrt{5}\varepsilon}{5} \right), \\ -\frac{1}{2}x - 3 - \frac{\sqrt{5}\varepsilon}{2}, & x \in \left[-2 - \frac{\sqrt{5}\varepsilon}{5}, -2 - \frac{\sqrt{5}\varepsilon}{5} \right), \\ -3 - \sqrt{\varepsilon^2 - x^2}, & x \in \left[-2 - \frac{\sqrt{5}\varepsilon}{5}, -\frac{\sqrt{5}\varepsilon}{4} \right), \\ +\infty, & x \in (\varepsilon, +\infty). \end{cases}$$

The function \tilde{f}_{ε} is differentiable for all $x \in (-3 - \varepsilon, \varepsilon)$ and $\tilde{f}'_{\varepsilon}(0) = 0$. As

$$ilde{f}_arepsilon(0)=-3-arepsilon, \quad ilde{f}_arepsilon(-3-arepsilon)=0, \quad f_arepsilon(arepsilon)=-3,$$

then

$$\min_{x\in D_{\varepsilon}}f_{\varepsilon}(x)=-3-\varepsilon.$$

イロト イヨト イヨト イヨト

э

Fig.4. The family $\tilde{f}_{\varepsilon}(x)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Theorem 4.

For the function f_{ε} the following statements

dom
$$f_{\varepsilon} = \text{dom } f_1 + B_{\varepsilon}(0_n)$$
, epi $f_{\varepsilon} = \text{epi } f_1 + B_{\varepsilon}(0_{n+1})$,

hold.

Theorem 5.

For any fixed $\varepsilon > 0$ the function f_{ε} is continuously differentiable at each interior point of D_{ε} .

Corollary 1.

The set epi f_{ε} is smooth for any positive ε

(ロ) (部) (注) (注)

Theorem 6.

• For any fixed point x_0 there exists a unique point $z_0 \in D$ for which

$$\varphi_{\varepsilon}(x_0) = f(z_0) + t_{\varepsilon}(x_0, z_0).$$

イロト イヨト イヨト イヨト

Corollary 2.

For any fixed $\varepsilon > 0$

$$f_{\varepsilon}(x) = \varphi_{\varepsilon}(x).$$

Theorem 7.

Let a point $x_0 \in \text{ int} D_{\varepsilon}$. Then there exists a unique point $z_0 \in D$ for which

 $f_{\varepsilon}'(x_0) \in \partial f(z_0).$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Note some properties of functions conjugate to the functions f and f_{ε} . Let f be a closed proper convex function on \mathbb{R}^n . A set

dom
$$\partial f = \{x \in \mathbb{R}^n \mid \partial f(x) \neq \emptyset\}$$

and

range
$$\partial f = \bigcup_{x \in \mathbb{R}^n} \partial f(x)$$

are called respectively the effective set and the image of ∂f . It is known, that

$$\mathsf{ri}(\mathsf{dom} \ f^*) \subset \mathsf{range} \ \partial f \subset \mathsf{dom} \ f^*.$$

Take

$$v \in \mathsf{range} \ \partial f_{\varepsilon} \subset \mathsf{dom} f_{\varepsilon}^*.$$

Then there exists a point $x \in \text{dom} f_{\varepsilon}$ for which $v \in \partial f_{\varepsilon}(x)$, therefore,

$$f_{\varepsilon}(x) + f_{\varepsilon}^{*}(v) = \langle x, v \rangle.$$

Consider the point $\bar{x} = [x, f_{\varepsilon}(x)]$. Find

$$ar{z} = \arg \min_{ar{z} \in X_{arepsilon}} ||ar{z} - ar{x}|| = [z, f(z)],$$

Therefore

$$f_{\varepsilon}'(x)\in\partial f(z), \quad ar{x}=ar{z}+arepsilon\mu(x)[f_{arepsilon}'(x),-1], \; x=z+arepsilon\mu(v)f_{arepsilon}'(x).$$

where

$$\mu(x) = \frac{1}{\sqrt{1+||f_{\varepsilon}'(x)||^2}}.$$

Theorem 8.

If the set D is compact and convex, then

$$\min_{x\in D} f(x) = \min_{x\in D_{\varepsilon}} f_{\varepsilon}(x) + \varepsilon.$$

Let *M* be the set of minimizers of *f* on *D*, and M_{ε} be the set of minimizers of f_{ε} on D_{ε} .

The case when these sets are empty is not excluded.

Theorem 9.

- The next equality $M = M_{\varepsilon}$ holds.
- 2 If M is not empty set, then

$$f_{\varepsilon}(z^*) = f(z^*) - \varepsilon \quad \forall z^* \in M.$$

Difference of convex functions

Let $f_1, f_2: \mathbb{R}^n \to \mathbb{R}$ be finite convex functions on \mathbb{R}^n and

$$f(x) = f_1(x) - f_2(x).$$

The function f is a quasidifferentiable function.

イロト イポト イヨト イヨト

Quasidifferentiable functions

Let a function f be defined on \mathbb{R}^n and be directionally differentiable at a point $x \in \mathbb{R}^n$ and its directional derivative f'(x,g) can be represented in the form

$$f'(x,g) = \lim_{\lambda \downarrow 0} \frac{f(x + \lambda g) - f(x)}{\lambda} = \max_{v \in \underline{\partial} f(x)} \langle v, g \rangle + \min_{w \in \overline{\partial} f(x)} \langle w, g \rangle.$$

Here $\underline{\partial} f(x) \subset \mathbb{R}^n$, $\overline{\partial} f(x) \subset \mathbb{R}^n$ are convex compact sets in \mathbb{R}^n .

イロト イロト イヨト イヨト

The function f is called a quasidifferentiable at a point $x \in \mathbb{R}^n$. A pair of sets $\mathcal{D}f(x) = [\underline{\partial}f(x), \overline{\partial}f(x)]$ is called a quasidifferential of a quasidifferentiable function f at x.

The set $\underline{\partial} f(x) \subset \mathbb{R}^n$ is called a subdifferential of f at x, the set $\overline{\partial} f(x) \subset \mathbb{R}^n$ is called a superdifferential of f at x.

Differentiable, convex, concave functions, maximum functions are quasidifferentiable functions.

As the function f is quasidifferentiable on \mathbb{R}^n and

$$\mathcal{D}f(x) = [\partial f_1(x), -\partial f_2(x)]$$

is its quasidifferential at a point $x \in \mathbb{R}^n$, where $\partial f_i(x)$ are the subdifferentials of convex functions $f_i(x)$, i = 1, 2, at the point $x \in \mathbb{R}^n$ in the sense of Convex Analysis.

(日) (同) (三) (三)

Let's consider the optimization problem: find

 $\inf_{x\in\mathbb{R}^n}f(x).$

The following necessary optimality conditions for the function f on \mathbb{R}^n hold.

Theorem 10.

For a point $x^* \in \mathbb{R}^n$ to be a minimizer of the function f on \mathbb{R}^n , it is necessary, that

$$\partial f_2(x^*) \subset \partial f_1(x^*).$$
 (2)

For a point $x^* \in \mathbb{R}^n$ to be a maximizer of the function f on \mathbb{R}^n , it is necessary, that

$$\partial f_1(x^*) \subset \partial f_2(x^*).$$
 (3)

If the inclusion

$$\partial f_2(x^*) \subset \operatorname{int} \partial f_1(x^*)$$

holds at the point $x^* \in \mathbb{R}^n$ then this point is a strict local minimizer of the function f on \mathbb{R}^n .

If the inclusion

```
\partial f_1(x^*) \subset \operatorname{int} \partial f_2(x^*)
```

is satisfied at the point $x^* \in \mathbb{R}^n$ then this point is a strict local maximizer of the function f on \mathbb{R}^n .

A point x^* is called an *inf* – stationary point of f if inclusion (2) holds. A point x^{**} is called a *sup* – stationary point of f if inclusion (3) holds. We say that a point x^* is Clark's stationary point of function f on

 \mathbb{R}^n , if the next condition

$$\partial f_1(x^*) \bigcap \partial f_2(x^*) \neq \emptyset$$

holds. It is obvious that $\inf -$ and sup-stationary points of the function f on \mathbb{R}^n are also Clark's stationary points of f on \mathbb{R}^n .

(D) (A) (A)

Lemma 2.

Fix any point $x \in \mathbb{R}^n$, then

$$f_1(x) - f_2(x) \le f_2^*(v) - f_1^*(v) \qquad \forall v \in \partial f_1(x),$$
 (4)

$$f_1(x) - f_2(x) \ge f_2^*(v) - f_1^*(v) \qquad \forall v \in \partial f_2(x),$$
 (5)

$$f_1(x) - f_2(x) = f_2^*(v) - f_1^*(v) \qquad \forall v \in \partial f_1(x) \cap \partial f_2(x).$$
 (6)

・ロト ・四ト ・モト ・モト

臣

Denote by

$$f^o(v)=f_2^*(v)-f_1^*(v), \quad v\in\mathbb{R}^n.$$

If a point $v \notin \text{dom } f_1^* \cup \text{dom } f_2^*$, then we face with the case $+\infty -\infty$.

Therefore in different cases under considering of certain extremal properties, we will define this function on different depending on the situation

(日) (同) (三) (三)

1. If the point $x^* \in \mathbb{R}^n$ is Clark's stationary point of the function f on \mathbb{R}^n , then the equality

$$f(x^*) = f^o(v) \quad \forall v \in \partial f_1(x^*) \cap \partial f_2(x^*)$$

holds.

2. If the point $x^* \in \mathbb{R}^n$ is an inf-stationary point of the function f on \mathbb{R}^n , then the equality

$$f(x^*) = f^o(v^*) \quad \forall v^* \in \partial f_2(x^*) \tag{7}$$

holds.

3. If the point $x^* \in \mathbb{R}^n$ is sup-stationary point of the function f on \mathbb{R}^n , then the equality

$$f(x^*) = f^o(v^*) \quad \forall v^* \in \partial f_1(x^*) \tag{8}$$

holds.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example 4.

Consider a function

$$f(x) = f_1(x) - f_2(x) = |x_1| - |x_2|, \quad x = (x_1, x_2) \in \mathbb{R}^2.$$

However, it is Clark's stationary point of the function f on \mathbb{R}^2 . Define conjugate functions of f_1 and f_2 . We have

$$f_1^*(v) = \begin{cases} 0, & v \in \operatorname{co} \{(1,0), (-1,0)\}, \\ +\infty, & v \notin \operatorname{co} \{(1,0), (-1,0)\}, \end{cases}$$
$$f_2^*(v) = \begin{cases} 0, & v \in \operatorname{co} \{(0,1), (0,-1)\}, \\ +\infty, & v \notin \operatorname{co} \{(0,1), (0,-1)\}, \end{cases}$$

(日) (同) (三) (三)

As
$$\partial f_1(x^*) = \operatorname{co} \{(1,0), (-1,0)\}, \quad \partial f_2(x^*) = \operatorname{co} \{(0,1), (0,-1)\},$$

then

$$0_2 \in \partial f_1(x^*) \cap \partial f_2(x^*) = \mathsf{co} \ \{(1,0), (-1,0)\} \cap \mathsf{co} \ \{(0,1), (0,-1)\}.$$

Therefore $f(x^*) = 0 = f^o(0_2)$. From conditions (6) it follows that if the point x^* is Clarke's stationary point of the function f on \mathbb{R}^n , then the next relation

$$\partial f_1^*(v^*) \cap \partial f_2^*(v^*)
eq \emptyset \quad \forall v^* \in \partial f_1(x^*) \cap \partial f_2(x^*)$$

is valid

Example 5.

Consider the function

$$f_1(x) = \left\{egin{array}{cc} x^3, & x \geq 0, \ 0, & x < 0, \end{array}, \quad f_2(x) = \left\{egin{array}{cc} 0, & x \geq 0, \ -x^3, & x < 0, \end{array}
ight. x \in \mathbb{R}.$$

Note that the functions f_1 and f_2 are convex and continuously differentiable. Then $f(x) = x^3$. The function f has a unique stationary point $x^* = 0$ and

$$f_1'(x^*) = 0, \quad f_2'(x^*) = 0.$$

Fig.5. The functions f_1 and f_2 .

,

イロン イヨン イヨン イヨン

Fig.5. The functions f_2^* and f_1^* .

,

イロト イヨト イヨト イヨト

Calculate f_1^* and f_2^* . We have

$$f_1^*(v)=\left\{egin{array}{cc} rac{2v\sqrt{v}}{3\sqrt{3}}, & v\geq 0,\ +\infty, & v< 0,\ +\infty, & v< 0, \end{array}
ight., \ f_2^*(v)=\left\{egin{array}{cc} +\infty, & v>0,\ -rac{2v\sqrt{|v|}}{3\sqrt{3}}, & v\leq 0, \end{array}
ight.$$

Therefore,

$$f^{o}(v) = \left\{ egin{array}{cc} +\infty, & v > 0, \ 0, & v = 0, \ -\infty, & v < 0. \end{array}
ight.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The function f^o is finite only in a single point $v^* = 0$. Find subdifferentials of functions f_1^* and f_2^* at the point v^*

$$\partial f_1^*(0) = (-\infty, 0] \subset \mathbb{R}, \quad \partial f_2^*(0) = [0, +\infty) \subset \mathbb{R}.$$

It is obvious that $\partial f_1^*(0) \cap \partial f_2^*(0) = 0$. Note the fact that if we calculate the function conjugate to the function f, then $f^*(v) = +\infty \quad \forall v \in \mathbb{R}$.

From (4) and (5) it follows: 1) if dom $f_2^* \not\subset \text{dom } f_1^*$, the function f are unbounded from below, 2) if dom $f_1^* \not\subset \text{dom } f_2^*$, then the function f unbounded from above.

Note that in the points not belonging to the set dom f_1^* , we face with the case $+\infty - \infty$, therefore, under minimizing the function f on \mathbb{R}^n , we define the function f^o on the complement of the set dom f_1^* to the whole space by the value $+\infty$. Namely, put

$$f^o_-(v) = \left\{ egin{array}{cc} f^o(v), & v \in {
m dom} \ f^*_1, \ +\infty, & v
ot\in {
m dom} \ f^*_1. \end{array}
ight.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem 11.

Let a point $x^* \in \mathbb{R}^n$ be a global minimizer of the function f on \mathbb{R}^n , then any subgradient $v^* \in \partial f_2(x^*)$ is a global minimizer of the function f_{-}^o on \mathbb{R}^n .

Theorem 12.

Let a point $x^* \in \mathbb{R}^n$ be Clark's stationary point of the function fon \mathbb{R}^n . Then, if there is a global minimizer

$$v^* \in \partial f_1(x^*) \cap \partial f_2(x^*),$$

of the function f_{-}^{o} on \mathbb{R}^{n} , then the point x^{*} is a global minimizer of the function f on \mathbb{R}^{n} .

Corollary 3.

If there is a global minimizer $x^* \in \mathbb{R}^n$ of the function f on \mathbb{R}^n then there is a point $v^* \in \mathbb{R}^n$, which is a global minimizer of the function f_{-}^o on \mathbb{R}^n . In this case the relation

$$\min_{x\in\mathbb{R}^n}f(x)=\min_{v\in\mathbb{R}^n}f^o_-(v)$$

is valid.

If the function f achieves at some point $x^* \in \mathbb{R}^n$ its global minimum on \mathbb{R}^n , then dom $f_2^* \subset \text{dom } f_1^*$.

Smooth approximation of d.c. functions

Let f_1, f_2 be convex functions on \mathbb{R}^n and

$$f(x) = f_1(x) - f_2(x), \quad x \in \mathbb{R}^n.$$

Fix $\varepsilon > 0$ and form functions

$$f_{\varepsilon}(x) = f_{1\varepsilon}(x) - f_{2\varepsilon}(x),$$

where

$$\begin{split} f_{1\varepsilon}(x) &= (f_1 \Box t_{\varepsilon})(x), \quad f_{2\varepsilon}(x) = (f_2 \Box t_{\varepsilon})(x), \\ t_{\varepsilon}(x) &= \begin{cases} -\sqrt{\varepsilon^2 - ||x||^2}, & ||x|| \le \varepsilon, \\ +\infty, & ||x|| > \varepsilon, \end{cases} \quad x \in \mathbb{R}^n. \end{split}$$

The function f_{ε} is continuous differentiable on \mathbb{R}^n , \mathcal{A}

Theorem 13.

If a point $x^* \in \mathbb{R}^n$ is a stationary point of the function f_{ε} on \mathbb{R}^n $(f'_{1\varepsilon}(x^*) = f'_{2\varepsilon}(x^*))$, then at the point

$$z^* = x^* - rac{arepsilon}{\sqrt{1+||f_{1arepsilon}'(x^*)||^2}}f_{1arepsilon}'(x^*)$$

the next intersection

$$\partial f_1(x^*) \cap \partial f_2(x^*) \neq \emptyset$$

holds and

$$f(z^*) = f_{\varepsilon}(x^*), \quad f_{1\varepsilon}'(x^*) \in \partial f_1(z^*) \cap \partial f_2(z^*).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・
Definitions and elementary properties Smooth approximation of a convex set Smooth approximation of convex functions Difference of convex functions (D.c. functions) Smooth approximation of d.c. functions

Theorem 14.

Let a point x^* be a global minimizer of f_{ε} on \mathbb{R}^n , then the point

$$z^* = x^* - rac{arepsilon}{\sqrt{1 + ||f_{1arepsilon}'(x^*)||^2}} f_{1arepsilon}'(x^*)$$

is a global minimizer of f on \mathbb{R}^n and

$$egin{aligned} &f(z^*)=f_arepsilon(x^*),\ &f_{1arepsilon}'(x^*)\in\partial f_2(z^*)\subset\partial f_1(z^*). \end{aligned}$$

イロト イヨト イヨト イヨト

Definitions and elementary properties Smooth approximation of a convex set Smooth approximation of convex functions Difference of convex functions (D.c. functions) Smooth approximation of d.c. functions

Theorem 15.

Let a point z^* be a global minimizer of the function f on \mathbb{R}^n . Then the point

$$x_{v}^{*}=z^{*}+rac{arepsilon}{\sqrt{1+||v||^{2}}}v$$

is also a global minimizer of the function $f_{arepsilon}$ on \mathbb{R}^n for each $v\in\partial f_2(z^*)$ and

$$f(z^*) = f_{\varepsilon}(x^*_{v}),$$

 $v = f'_{1\varepsilon}(x^*_{v}) = f'_{2\varepsilon}(x^*_{v}) \quad \forall v \in \partial f_2(z^*) \subset \partial f_1(z^*).$

イロト イヨト イヨト イヨト

Definitions and elementary properties Smooth approximation of a convex set Smooth approximation of convex functions Difference of convex functions (D.c. functions) Smooth approximation of d.c. functions

Thank you for your attention

イロン イヨン イヨン イヨン

臣