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Nonlinear optimization

Problem

min
x∈C

f (x)

where f : Rn → R and C ⊆ Rn. (Often both convex, but non-convex
becoming more common.)

Applications:

I Economics/finance:
I Portfolio and risk optimization.
I Planning/production.

I Engineering:
I Control.
I Circuit/structural design.
I Signal/image processing.

I Statistics and machine learning:
I Data fitting: classification, regression, matrix completion.
I Design of experiments.
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Numerical methods for nonlinear optimization

I The Early Era: pre–1980s
I First-order methods: gradient descent, Frank-Wolfe, perceptron.

I The Medium Scale Era: 1980s–2000s
I Interior-point & other second order methods
I Conic programming (second-order cone, semidefinite)
I Strong theory & industry ready software packages with great

accuracy
I Elaborate algorithms (involving matrix inversion) for generic problems

I The Large Scale Era: 2000s–now
I Lots of data =⇒ large-scale problems
I Goal: modest accuracy & cheap O(n) iterations
I Resurgence of first-order methods
I Simple algorithms (matrix inversion-free).

Disclaimer: this does not include progress on discrete optimization
methods.
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Gradient descent and extensions

Consider the problem
f ∗ := min

x∈Rn
f (x).

I Gradient descent: f differentiable

xk+1 = xk − tk∇f (xk).

I Proximal gradient: f = g + h, g differentiable

xk+1 = arg min
x∈Rn

{
g(xk) + 〈∇g(xk), x − xk〉+

t2
k

2
‖x − xk‖2

2 + h(x)

}
.

I Stochastic gradient descent: f (x) = E[g(x ; ξ)], ξ ∼ P

xk+1 = xk − tk∇xg(xk , ξk), ξk ∼ P.
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Coordinate descent in Rn

Several key problems have n being very large. In which case, we run
coordinate descent (CD) [Beck and Tetruashvili, 2013, Nesterov, 2012]:

I Given xk , do the following: (cyclic CD)

Set yk,0 = xk

for j ∈ {1, . . . , n}
yk,j = yk,j−1 − tk,jej e

>
j ∇f (yk,j−1)︸ ︷︷ ︸

=∂j f (yk,j−1)

Set xk+1 = yk,n.

(We can also randomly pick the index j =⇒ randomized CD).
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Optimization on manifolds

Manifold domains

min
x∈M

f (x), where M is a manifold.

(Informally) M is “locally flat” but (possibly) globally curved set of
dimension n on which we can do calculus.

I Think about Earth: looks flat from local perspective, but globally
curved.

Smooth n-Manifold (Formal): topological space M that’s

I Locally Euclidean and Smooth: Every point x ∈ M has
neighborhood U homeomorphic to open set in Rn.
I This means locally flat

I Smooth Compatibility : Local Euclidean homeomorphisms are
smoothly compatible.
I Technical, but allows us to do calculus.
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Local flatness of manifolds
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Modelling via manifolds

Question
What is the benefit of modelling the domain as a manifold?

Answer:

1. Some domains have structural symmetry and/or invariance, and
manifolds are primed to capture various geometric aspects of the
domain.

2. Some problems are non-convex, but modelling the domain as a
manifold M and endowing M with an appropriate Riemannian
metric makes them geodesically convex (defined later).

Nam Ho-Nguyen Tangent Subspace Descent on Riemannian Manifolds



10/31

Modelling via manifolds

Manifolds arise in several important applications.

I Principal component analysis. Suppose we have points
u1, . . . , uK ∈ Rn with zero mean. Find a p-dimensional subspace
of Rn to project the points onto which preserves the variance (as
much as possible):

max
X∈M

1

K

∑
k∈[K ]

‖XX>uk‖2
2, M := St(p, n) =

{
X ∈ Rn×p : X>X = Ip

}
.

Advantages: manifold optimization algorithms implicitly handle the
X>X = Ip constraints by exploiting the structure of the Stiefel
manifold domain.
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Modelling via manifolds

Manifolds arise in several important applications.

I Low rank matrix approximation for recommender systems. We
have n customers and k products. Matrix U ∈ Rn×k captures
ratings, but we only see a few. How can predict unobserved ratings?

min
X∈M

∑
(i,j)∈Ω⊂[n]×[k]

(Uij − Xij)
2, M :=

X ∈ Rn×k :

X = C>P

C ∈ Rm×n

P ∈ Rm×k


The hypothesis is that each customer i has an attribute vector
ci ∈ Rm, each product j has an attribute vector pj ∈ Rm, then the
rating is

uij = c>i pj .
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Modelling via manifolds

Manifolds arise in several important applications:

I Gaussian Fisher-Rao distance. The family of non-degenerate
zero-mean Gaussians N(0,Σ) can be parametrized by positive
definite matrices Σ ∈ Sn++. The Fisher-Rao distance is

d(Σ0,Σ1) =
1√
2

∥∥∥log (Σ
−1/2
1 Σ0Σ

−1/2
1

)∥∥∥
F
.

This has been used in statistical estimation and information
geometry.
The Fisher-Rao distance is non-convex in the Euclidean geometry,
but becomes geodesically convex when Sn++ is endowed with its
intrinsic metric.
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First-order methods on manifolds

Concept General manifold M M = Rn

directions from x ∈ M tangent space TxM ∼= Rn TxM ≡ Rn

gradients of f ∇f (x) ∈ TxM ∇f (x) ∈ Rn

Riemannian metric 〈·, ·〉x for each TxM usual inner product

comparing TxM vs TyM Γy
x : TxM → TyM Γy

x = In

Movement in a direction v ∈ TxM 7→ Expx(v) ∈ M Expx(v) = x + v

distance x , y = Expx(v) d(x , y) = ‖v‖x =
√
〈v , v〉x d(x , y) = ‖v‖2

A function f : M → R is
geodesically convex if
t 7→ f (Expx(tv)) is convex in R
for any x ∈ M, v ∈ TxM.
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Example: positive definite matrices

Consider M = Sn++ [Sra and Hosseini, 2015].

I Tangent space: For X ∈ M,
TXM = Sn.

I Riemannian metric: Given X ∈ TXM
and V1,V2 ∈ TXM, define

〈V1,V2〉X = Tr(V1X
−1V2X

−1).

I Parallel transport: Given X ,Y ∈ M
and V ∈ TXM,

ΓY
X (V ) = (YX−1)1/2V (X−1Y )1/2 ∈ TYM.

I Exponential map: Given X ∈ M,
V ∈ TXM,

ExpX (V ) = X 1/2 Expm(X−1/2VX−1/2)X 1/2.
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Riemannian Gradient Descent

Consider unconstrained optimization on smooth n-manifold

min
x∈M

f (x)

with f : M → R differentiable.

Riemannian Gradient Descent:

xk+1 = Expxk (−tk∇f (xk))

(xk+1 = xk − tk∇f (xk) Euclidean)

Convergence Rates [Zhang and Sra, 2016]: Under suitable conditions
on M and adaption of L-Lipschitz ∇f , if tk = 1

L then

I mini=0,...,k ‖∇f (xi )‖xi = O
(

1√
k

)
...

I but if f geodesically convex ⇒ f (xk)− f ∗ = O
(

1
k

)
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Subspace descent

Consider the extension of CD to subspace descent:

I Pick subspaces {Sj}j∈[m] such that Span
(⋃

j∈[m] Sj
)

= Rn.

I Given xk , do the following:

Set yk,0 = xk

for j ∈ {1, . . . ,m}
yk,j = yk,j−1 − tjPSj∇f (yk,j−1)

Set xk+1 = yk,m

(Randomized version established by Frongillo and Reid [2015].)
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Tangent subspace descent

Generalization: subspaces of Rn =⇒ subspaces of TxM. We call this
tangent subspace descent (TSD).

Set yk,0 = xk

for j ∈ {1, . . . ,m}
Pick a subspace Sk,j ⊂ Tyk,j−1

M

yk,j = Expyk,j−1

(
−tjPSk,j

∇f (yk,j−1)
)

Set xk+1 = yk,m

I In Rn, the subspaces remain the same.

I On a general M, Sk,1, . . . ,Sk,m belong to different vector spaces
Tyk,0

M, . . . ,Tyk,m−1
M.

I How should we pick the subspaces?
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The problem of subspace selection

If we choose Sk,1, . . . ,Sk,m poorly, then we may not converge.

Theorem
There exists a subspace selection rule and constant ε > 0 such that
f (xk) > ε for all k .

Proof idea.

Take M = Rn, f (x) = 1
2‖x‖

2
2, Expx(v) = x + v . Choose ε = ‖x0‖2/4.

For k ≥ 1, choose

Sk,j = Span ({vk.j}) , ‖vk,j‖2 = 1, 〈vk,j , yk,j−1〉 =
√

(f (xk−1)− ε)/m,

and yk,j = yk,j−1 − 〈vk,j , yk,j−1〉vk,j .
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Subspace selection criterion

Lemma (Sufficient decrease leads to convergence)

Suppose there exists η, η′ > 0 such that the outer iterates {xk} satisfy

f (xk)− f (xk+1) ≥ η‖∇f (xk)‖2
xk or f (xk)− f (xk+1) ≥ η′.

Then under suitable regularity conditions on M and f

I mini=0,...,k ‖∇f (xi )‖xi = O
(

m√
k

)
.

I if f geodesically convex ⇒ f (xk)− f ∗ = O
(

m2

k

)
.

Lemma (Sufficient decrease)

For appropriately chosen step sizes, there exists C > 0 such that we have

f (xk)− f (xk+1) ≥ C
∑
j∈[m]

∥∥PSk,j
∇f (yk,j−1)

∥∥2

yk,j−1
.
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Key assumption

Assumption (When inner iterates are close, the subspaces are
close to orthogonal)

There exists r > 0, γ ∈ [0, 1] such that for any outer iterate k ≥ 1 the
subspaces {Sk,j}j∈[m] are chosen to generate the inner iterates yk,j ,
j ∈ [m] so that

there exists an orthogonal decomposition {Dk,j}j∈[m] of TxkM

such that

max
j∈[m]

d(xk , yk,j) < r =⇒
∥∥∥Γxk

yk,j−1
PSk,j

− PDk,j

∥∥∥
xk
≤ γ.

(We use the induced operator norm from 〈·, ·〉xk .)
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When does the assumption hold?

I When M = Rn and the subspace decomposition {Sj}j∈[m] is fixed
throughout.

I When M is a product manifolds M = M1 × · · · ×Mm. Then for
x = (x1, . . . , xm) ∈ M, TxM ∼= Tx1M1 ⊕ · · · ⊕ TxmMm. Take the
subspaces as

Sk,j = Ty j
k,j−1

M.

I For general M, fix an orthogonal decomposition {Dk
j }j∈[m] of TxkM,

and at step j of iteration k , we parallel transport it to Tyk,j−1
M:

Sk,j = Γ
yk,j−1
xk Dk

j .
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Convergence result

Lemma

Suppose the assumption holds. Then there exists η, η′ > 0 such that∑
j∈[m]

d(yk,j−1, yk,j) ≤ r =⇒ f (xk)− f (xk+1) ≥ η‖∇f (xk)‖2
xk

∑
j∈[m]

d(yk,j−1, yk,j) > r =⇒ f (xk)− f (xk+1) ≥ η′.

Theorem
Suppose the assumption holds, then under suitable regularity conditions
on M and f

I mini=0,...,k ‖∇f (xi )‖xi = O
(

m√
k

)
.

I if f geodesically convex ⇒ f (xk)− f ∗ = O
(

m2

k

)
.
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Orthogonal matrices

A non-trivial example where the assumption holds: orthogonal matrices
(see Edelman et al. [1998])

M := On =
{
Y ∈ Rn×n : Y>Y = YY> = In

}
TYM =

{
YA : A ∈ Rn×n, A = −A> ∈ Skewn

}
〈YA,YB〉Y = Tr(A>B)

ExpY (YA) = Y Expm(A).

Given YA ∈ TYM and Z = ExpY (YC ), parallel transport of YA from
TYM to TZM is

ΓZ
Y (YA) = Z Expm(C/2)>AExpm(C/2).
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Orthogonal matrices

Fix Xk = Yk,0. Then TXk
M = {XkA : A ∈ Skewn}.

An orthonormal basis for TXk
M is{

1√
2
Xk(eie

>
l − ele

>
i ) : 1 ≤ i < l ≤ n

}
.

Let m = n(n − 1)/2, order the (i , l) indices as (i1, l1), . . . , (im, lm).

Subspace selection rule for On

Pick
Sk,j = Span

(
Yk,j−1(eij e

>
lj − elj e

>
ij )
)
⊂ TYk,j−1

M.
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Orthogonal matrices

Let Ck,j ∈ Skewn be such that ExpYk,j−1
(Yk,j−1Ck,j) = Xk . Parallel

transporting the subspaces

Sk,j = Span
(
Yk,j−1(eij e

>
lj − elj e

>
ij )
)
⊂ TYk,j−1

M

back to TXk
M we have a set{

Xk Expm(Ck,j/2)>(eij e
>
lj − elj e

>
ij ) Expm(Ck,j/2) : j ∈ [m]

}
.

To prove the assumption: show that when Ck,j are small, then the set
is “close” to the orthogonal decomposition{

Xk(eij e
>
lj − elj e

>
ij ) : j ∈ [m]

}
⊂ TXk

M.
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Randomized TSD

Pick a subspace decomposition {Sk(ξ)}ξ∈Ξ of TxkM

Sample Sk(ξ) at random, ξ ∼ P
Set xk+1 = Expxk

(
−tkPSk (ξ)∇f (xk)

)
.

Lemma (Randomized sufficient decrease)

For appropriately chosen step sizes, there exists C > 0 such that we have

f (xk)− E[f (xk+1) | xk ] ≥ C · E
[∥∥PSk (ξ)∇f (xk)

∥∥2

xk
| xk
]
.
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Convergence

Assumption

There exists η > 0 such that, for all x , we can construct a subspace
decomposition {Sx(ξ)}ξ∈Ξ and distribution ξ ∼ P which satisfies

Eξ∼P
[∥∥PSx (ξ)v

∥∥2

x

]
≥ η‖v‖2

x

for any v ∈ TxM.

Theorem
If the assumption holds, then under suitable regularity conditions on M
and f

I mini=0,...,k E [‖∇f (xi )‖xi ] = O
(

m√
k

)
.

I if f geodesically convex ⇒ E[f (xk)]− f ∗ = O
(

m2

k

)
.
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A randomized scheme for the Stiefel manifold

M := St(p, n) =
{
X ∈ Rn×p : X>X = Ip

}
TXM =

XA +
∑
l∈[p]

ble
>
l :

A = −A> ∈ Skewp

X>bl = 0 ∀l ∈ [p]

 .

Randomized selection rule
For TXM

With probability 1/(p(p − 1)): X (eie
>
l − ele

>
i )

With probability 1/(2p): (In − XX>)zle
>
l , zl ∼ N(0, In).

Theorem
With the above randomization scheme,

Eξ∼P
[∥∥PSx (ξ)v

∥∥2

x

]
≥ η‖v‖2

x , η = min

{
1

p(p − 1)
,

1

2p(n − p)

}
.
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Preliminary numerical study

We test deterministic TSD on linear optimization problems in On:

min
Y∈On

Tr(D>Y ).

We benchmarked against Riemannian gradient descent.

I We cycle through the basis
{
Y (eie

>
l − ele

>
i ) : 1 ≤ i < l ≤ n

}
.

I This allows efficient computation of the matrix exponential and
exact step size selection.

I Random instances were generated for n = 50, 100, 150, 200.
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Results
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Figure: Results for TSD (blue) vs GD (red). Horizontal axis: cycles elapsed as a

percentage of the largest number of cycles for that instance. Vertical axis: gap closed

as a percentage of the best objective value found across both algorithms.
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Conclusions and future work

Contributions:

I An analogy of coordinate descent to Riemannian manifolds:
tangent subspace descent.

I Counterexamples and sufficient conditions for subspace selection
rules.

I Convergence guarantees for geodesically convex and nonconvex
functions.

I Specific subspace selection rules for Stiefel manifolds.

Future work:

I Schemes for different types of manifolds.

I Proximal setting for composite (smooth + nonsmooth) problems.

I Finite-sum problems.

Paper: https://arxiv.org/abs/1912.10627.
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