Every compact convex subset of matrices is the Clarke Jacobian of some Lipschitzian mapping

Marián Fabian

Czech Academy of Sciences Institute of Mathematics Žitná 25 115 67 Praha 1 Czech Republic fabian/at/math/dot/Cas/dot/Cz

David Bartl

Silesian University in Opava School of Business Administration in Karviná Department of Informatics and Mathematics Univerzitní náměstí 1934/3, 733 40 Karviná Czech Republic david/dot/bartl/at/post/dot/Cz

Outline of the talk

- Introduction: basic concepts, the question and our answer
- Five lemmas: ray-fish, ray-fish colony, ray-fish colony for a line segment, ray-fish colony for a polygonal chain, and corona
- Finale: the main result and its proof

Introduction

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a Lipschitzian mapping; that is, a mapping such that $\|f(x) - f(y)\| \le L \|x - y\|$ for every $x, y \in \mathbb{R}^n$

for some constant L > 0, where the norms $\|\cdot\|$ are Euclidean.

The Euclidean vector space \mathbb{R}^n and \mathbb{R}^m of dimension n and m, respectively, is identified with the space $\mathbb{R}^{n \times 1}$ and $\mathbb{R}^{m \times 1}$, respectively, by convention. Therefore, a vector $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^m$ is understood as column vector of n and m, respectively, real numbers.

Every matrix $A \in \mathbb{R}^{m \times n}$ induces a linear mapping $L_A : \mathbb{R}^n \to \mathbb{R}^m$ by $L_A : x \mapsto Ax$ for $x \in \mathbb{R}^n$

and every linear mapping $L: \mathbb{R}^n \to \mathbb{R}^m$ is induced by a matrix $A_L \in \mathbb{R}^{m \times n}$ so that $L(x) = A_L x$ for $x \in \mathbb{R}^n$

This is the reason why we shall identify each matrix $A \in \mathbb{R}^{m \times n}$ with the respective linear mapping which it induces, and vice versa.

By **Rademacher's Theorem**, the given Lipschitzian mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ is Gâteaux (therefore: Fréchet) differentiable almost everywhere with respect to the *n*-dimensional Lebesgue measure on \mathbb{R}^n .

That is, the Jacobian matrix

$$f(x) = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \dots & \frac{\partial f_m(x)}{\partial x_n} \end{pmatrix}$$

is defined for almost all $x \in \mathbb{R}^n$.

The Jacobian matrix Jf(x) is identified with the Gâteaux derivative, which is the linear mapping $f'(x): \mathbb{R}^n \to \mathbb{R}^m$.

The **Bouligand Jacobian** of a Lipschitzian mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ at a point $x_0 \in \mathbb{R}^n$ is the set

$$\partial_{\mathrm{B}} f(x_0) = \left\{ M \in \mathbb{R}^{m \times n} : \exists (x_k)_{k=1}^{\infty} \subset \mathbb{R}^n : \lim_{k \to \infty} x_k = x_0 \right\},$$

function *f* is differentiable at each x_k

and
$$\lim_{k\to\infty} Jf(x_k) = M$$

Since the set $\partial_B f(x_0)$ is a collection of matrices, it is identified with the collection of the corresponding linear mappings from \mathbb{R}^n to \mathbb{R}^m .

The **Clarke Jacobian** of a Lipschitzian mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ at a point $x_0 \in \mathbb{R}^n$ is the set

$$\partial f(x_0) = \operatorname{co} \partial_{\mathrm{B}} f(x_0)$$

It is easy to see that the Clarke Jacobian $\partial f(x_0)$ is:

- non-empty
- compact (that is closed & bounded)
- convex

The Clarke Jacobian $\partial f(x_0)$ is also seen as

a collection of linear mappings from \mathbb{R}^n to \mathbb{R}^m .

Introduction: The Question

Given a non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices, is this set the Clarke Jacobian of some Lipschitzian mapping $g: \mathbb{R}^n \to \mathbb{R}^m$ at some point $x_0 \in \mathbb{R}^n$?

In other words, characterize those non-empty compact convex sets $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices that are Clarke Jacobians of some Lipschitzian mappings.

Given a non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices, there exists a Lipschitzian mapping $g: \mathbb{R}^n \to \mathbb{R}^m$ such that

 $\partial g(0) = \mathcal{P}$

We actually prove more...

Consider a linear subspace $\{0\} \subsetneq W \subset \mathbb{R}^n$

In the following, we identify every matrix $M \in \mathbb{R}^{m \times n}$ and the linear mapping $L_M : \mathbb{R}^n \to \mathbb{R}^m$, defined by $L_M : x \mapsto Mx$ for $x \in \mathbb{R}^n$, which it induces; that is, we use the same symbol "*M*" for both the matrix *M* and the mapping L_M .

By $M_{|W}$ we denote the linear mapping $M = L_M$ restricted onto the subspace W, that is the mapping

$$M_{|W}: W \longrightarrow \mathbb{R}^m$$

$$M_{|W}: x \mapsto Mx$$
 for $x \in W$

Consider the linear subspace $\{0\} \subseteq W \subset \mathbb{R}^n$.

Consider also the given non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices.

By $\mathcal{P}_{|W}$ we denote the collection of the restricted linear mappings

$$\mathcal{P}_{|W} = \left\{ M_{|W} : M \in \mathcal{P} \right\}$$

where

$$M_{|W}: W \longrightarrow \mathbb{R}^{m}$$
$$M_{|W}: x \longmapsto Mx \quad \text{for } x \in W \quad \text{for every } M \in \mathcal{P}$$

Consider the linear subspace $\{0\} \subseteq W \subset \mathbb{R}^n$.

Consider also a Lipschitzian mapping $g: \mathbb{R}^n \to \mathbb{R}^m$.

By $g_{|W}$ we denote the restriction of g onto W, that is the mapping $g_{|W}: W \to \mathbb{R}^m$ $g_{|W}: x \mapsto g(x)$

Recall that we identify the Clarke Jacobian $\partial g(0) \subset \mathbb{R}^{m \times n}$ with the respective collection of the linear mappings $M: \mathbb{R}^n \to \mathbb{R}^m$ for $M \in \partial g(0)$.

Therefore, we can define the Clarke Jacobian $\partial g_{|W}(0)$ accordingly.

Let $\mathcal{P} \subset \mathbb{R}^{m \times n}$ be a non-empty compact convex set of matrices.

Then there exists a Lipschitzian mapping $g: \mathbb{R}^n \to \mathbb{R}^m$, with g(0) = 0, such that, for every linear subspace $\{0\} \subsetneq W \subset \mathbb{R}^n$, the Clarke Jacobian

 $\partial g_{|W}(0) = \mathcal{P}_{|W}$

Five Lemmas

The Ray-Fish Construction: Introduction I

We define that a mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ is **finitely piecewise affine** if there are finitely many pairwise disjoint non-empty open sets $\Omega_1, ..., \Omega_k \subset \mathbb{R}^n$ such that $\mathbb{R}^n \setminus \bigcup_{i=1}^k \Omega_i$ is Lebesgue negligible and there are matrices $M_1, ..., M_k \in \mathbb{R}^{m \times n}$ and constant vectors $c_1, ..., c_k \in \mathbb{R}^m$ such that

$$f(x) = \begin{cases} M_1 x + c_1, & \text{if } x \in \Omega_1 \\ M_2 x + c_2, & \text{if } x \in \Omega_2 \\ \dots & \dots \\ M_k x + c_k, & \text{if } x \in \Omega_k \end{cases}$$

Observe that this mapping *f* is also Lipschitzian with the Lipschitz constant $\max\{\|M_1\|, \|M_2\|, \dots, \|M_k\|\}$ and that its derivative $f'(x) = M_i$ for $x \in \Omega_i$ for $i = 1, 2, \dots, k$.

The Ray-Fish Construction: Introduction II

Recall that the **rank** of a matrix $A \in \mathbb{R}^{m \times n}$ is

the maximum number of the rows of A that are linearly independent.

Now, consider two matrices $P, Q \in \mathbb{R}^{m \times n}$ with rank(P - Q) = 1.

Observe then that the set

$$H_{PQ} = \{ x \in \mathbb{R}^n : Px = Qx \}$$

is a hyperplane.

We call it **the hyperplane of the continuous contact** of the matrices *P* and *Q*.

The Ray-Fish Construction: An Exercise

Consider two matrices $P, Q \in \mathbb{R}^{m \times n}$ with rank(P - Q) = 1. Then there exists a row vector $u^T \in \mathbb{R}^{1 \times n}$ such that

$$H_{PQ} = \{ x \in \mathbb{R}^n : u^{\mathrm{T}}x = 0 \}$$

Define the mapping
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 by
 $f(x) = \begin{cases} Px, & \text{if } u^T x \leq 0 \\ Qx, & \text{if } u^T x \geq 0 \end{cases}$

and observe that f is Lipschitzian

and piecewise linear.

The Ray-Fish Construction: Ray-Fish Lemma 1

Let $\alpha > 0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with $rank(P - Q) \leq 1$.

Then there exists a finitely piecewise affine Lipschitzian mapping $f_{\alpha,PQ}: \mathbb{R}^n \to \mathbb{R}^m$ such that

- $f_{\alpha,PQ}(x) = Px$ for all $x \in \mathbb{R}^n \setminus \mathbb{B}_n$, where \mathbb{B}_n denotes the closed unit ball in \mathbb{R}^n ,
- $f'_{\alpha,PQ}(x) = Q$ for all $x \in \Omega_{\alpha,PQ}$, where $\Omega_{\alpha,PQ} \subset \mathbb{B}_n$ is a non-empty open set,

• and

 $\mathrm{dist}\big(f_{\alpha,PQ}'(x),\,\{P,Q\}\big)<\alpha$

whenever $f_{\alpha,PQ}$ is differentiable at $x \in \mathbb{R}^n$.

Let $\alpha > 0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with $rank(P - Q) \leq 1$.

- If rank(P-Q) = 0, then P = Q and the mapping $f_{\alpha,PQ}(x) \coloneqq Px$ works.
- Consider that rank(P Q) = 1 in the following therefore.

Consider the contact hyperplane $H_{PQ} = \{x \in \mathbb{R}^n : Px = Qx\}$. Let \mathbb{S}^{n-1} denote the unit sphere in \mathbb{R}^n . Pick a vector $u \in \mathbb{S}^{n-1}$ such that $u \perp H_{PQ}$. Notice that $H_{PQ} = \{x \in \mathbb{R}^n : u^Tx = 0\}$.

Let $\alpha > 0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with rank(P - Q) = 1.

Consider any $\delta \in (0, 1)$ and define $H_{\delta, PQ} \coloneqq \{x \in \mathbb{R}^n : u^T x = -\delta\}.$

Choose any points $r_{0,1}, r_{0,2} \dots, r_{0,n} \in H_{PQ} \cap \mathbb{S}^{n-1}$ such that their convex hull

 $co\{r_{0,1}, r_{0,2}, \dots, r_{0,n}\}$ is a regular (n-1)-dimensional simplex.

Let $r_{\delta,j} \in H_{\delta,PQ} \cap \mathbb{S}^{n-1}$ be the unique point such that $\lambda r_{\delta,j} + (1 - \lambda)u = \mu r_{0,j}$ for some $\lambda, \mu \in (0, 1)$ for j = 1, 2, ..., n.

If n = 1, then let $u \coloneqq 1$, $r_{0,1} \coloneqq 0$ and $r_{\delta,q} \coloneqq -\delta$.

Let $\alpha > 0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with rank(P - Q) = 1.

Define

$$f_{\alpha,PQ}(x) = \begin{cases}
Px, & \text{if } x \in \mathbb{R}^n \setminus \operatorname{co}\{r_{\delta,1}, \dots, r_{\delta,n}, u\} \supset \mathbb{R}^n \setminus \mathbb{B}_n \\
Qx - \delta(P - Q)u, & \text{if } x \in \operatorname{co}\{r_{\delta,1}, \dots, r_{\delta,n}, 0\} \\
M_{\delta,j}x - \delta(P - Q)u, & \text{if } x \in \operatorname{co}\{r_{\delta,1}, \dots, r_{\delta,j-1}, u, r_{\delta,j+1}, \dots, r_{\delta,n}\}
\end{cases}$$

where the matrices

 $M_{\delta,1}, M_{\delta,2}, \dots, M_{\delta,n}$ are

to be found so that the mapping

 $f_{\alpha,PQ}$ is well-defined, hence continuous and Lipschitzian.

Let $\alpha > 0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with rank(P - Q) = 1.

A few elementary calculations show that

 $M_{\delta,i} \longrightarrow P$ as $\delta \downarrow 0$

Find $\delta \in (0, 1)$ so small that $\|M_{\delta,j} - P\| < \alpha$ for j = 1, ..., n

We are done thus.

Ray-Fish

Source: https://commons.wikimedia.org/wiki/File:Rays_(32199123686).jpg

Ray-Fish

Source: https://commons.wikimedia.org/wiki/File:Rays_(32088560952).jpg

The Ray-Fish

Let $\alpha > 0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with rank(P - Q) = 1.

Notice that:

- $f'_{\alpha,PQ}(x) \in \{Q, P, M_{\delta,1}, M_{\delta,2}\}$ whenever $f_{\alpha,PQ}$ is differentiable at $x \in \mathbb{R}^n$
- $\partial f_{\alpha,PQ}(0) = \operatorname{co}\{Q, M_{\delta,1}, M_{\delta,2}\}$
- for any subspace $\{0\} \subseteq W \subset \mathbb{R}^n$,

$$\partial (f_{\alpha,PQ})_{|W}(0) =$$

= co { $Q_{|W}, (M_{\delta,1})_{|W}, (M_{\delta,2})_{|W}$

The Ray-Fish

The Recursive Ray-Fish Construction: Ray-Fish Colony Lemma 2

Let $\beta > 0$ and let $Q_0, \dots, Q_k \in \mathbb{R}^{m \times n}$ be with $\operatorname{rank}(Q_j - Q_{j+1}) \leq 1$ for $j = 0, \dots, k-1$.

Then there exists a Lipschitzian mapping $g_{\beta,Q_0\dots Q_k}: \mathbb{R}^n \to \mathbb{R}^m$ such that it is finitely piecewise affine and

•
$$g_{\beta,Q_0\dots Q_k}(x) = Q_0 x$$
 for all $x \in \mathbb{R}^n \setminus \mathbb{B}_n$,

• $g'_{\beta,Q_0\dots Q_k}(x) = Q_k$ for all x from a non-empty open set $\Omega_{\beta,Q_0\dots Q_k} \subset \mathbb{B}_n$,

• and

$$\operatorname{dist}\left(g_{\beta,Q_{0}\ldots Q_{k}}^{\prime}(x), \{Q_{0},\ldots,Q_{k}\}\right) < \beta$$

whenever $g_{\beta,Q_0\dots Q_k}$ is differentiable at $x \in \mathbb{R}^n$.

 $P \coloneqq Q_0$ $Q \coloneqq Q_1$

... and so on ...

 $P \coloneqq Q_{k-1}$ $Q \coloneqq Q_k$

The Recursive Ray-Fish Construction: Ray-Fish Colony Lemma 2

Let $\beta > 0$ and let $Q_0, \dots, Q_k \in \mathbb{R}^{m \times n}$ be with rank $(Q_j - Q_{j+1}) \le 1$ for $j = 0, \dots, k-1$.

Recall that, as we immerse into the (shifted and scaled) open sets

 $\Omega_{\alpha,Q_0Q_1}, \Omega_{\alpha,Q_1Q_2}, \dots, \Omega_{\alpha,Q_{k-1}Q_k}, \text{ we}$ encounter all the derivatives Q_0, Q_1, \dots, Q_k .

Recall also that the matrices " $M_{\delta,...}$ " tend to the matrices $Q_0, Q_1, ..., Q_k$ as $\delta \downarrow 0$.

The Recursive Ray-Fish Construction: Ray-Fish Colony Lemma 2

Let $\beta > 0$ and let $Q_0, \dots, Q_k \in \mathbb{R}^{m \times n}$ be with rank $(Q_j - Q_{j+1}) \le 1$ for $j = 0, \dots, k-1$.

Since the matrices " $M_{\delta,...}$ " tend to the matrices $Q_0, Q_1, ..., Q_k$ as $\delta \downarrow 0$, it follows that

$$\operatorname{dist}\left(g_{\beta,Q_0\dots Q_k}'(x), \{Q_0,\dots,Q_k\}\right) < \beta$$

whenever $g_{\beta,Q_0\dots Q_k}$ is differentiable at $x \in \mathbb{R}^n$.

Notice that here we have

 $\Omega_{\beta,Q_0...Q_k} \coloneqq \text{the (very small, shifted and scaled) } \Omega_{\alpha,Q_{k-1}Q_k}$

Until now, we have considered matrices $P, Q \in \mathbb{R}^{m \times n}$ or $Q_0, Q_1, \dots, Q_k \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(P-Q) \leq 1$ or $\operatorname{rank}(Q_j - Q_{j+1}) \leq 1$ for $j = 0, 1, \dots, k-1$.

It is now our purpose to construct the "ray-fish colony" mapping of analogous properties for general matrices $A, B \in \mathbb{R}^{m \times n}$.

Consider two matrices $U, V \in \mathbb{R}^{m \times n}$ consisting of rows $u_1, \ldots, u_m \in \mathbb{R}^{1 \times n}$ and $v_1, \ldots, v_m \in \mathbb{R}^{1 \times n}$, respectively.

Let T_{UV}^{i} denote the $m \times n$ matrix consisting of the first (m - i) rows u_1, \dots, u_{m-i} of matrix U and of the last i rows v_{m-1+1}, \dots, v_m of matrix V for $i = 0, 1, \dots, m$:

$$T_{UV}^{i} = \begin{pmatrix} \cdots & u_{1} & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & u_{m-i} & \cdots \\ \cdots & v_{m-i+1} & \cdots \\ \cdots & v_{m-i+2} & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & v_{m} & \cdots \end{pmatrix} \qquad T_{UV}^{i+1} = \begin{pmatrix} \cdots & u_{1} & \cdots \\ \cdots & u_{m-i} & \cdots \\ \cdots & u_{m-i+1} & \cdots \\ \cdots & v_{m-i+2} & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & v_{m} & \cdots \end{pmatrix}$$

Observe that

$$\operatorname{rank}(T_{UV}^{i} - T_{UV}^{i+1}) \le 1$$
 for $i = 0, ..., m - 1$

Consider two matrices $U, V \in \mathbb{R}^{m \times n}$:

$$U = \begin{pmatrix} \cdots & u_{1} & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & u_{m-i+1} & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & u_{m} & \cdots \end{pmatrix} \qquad T_{UV}^{i} = \begin{pmatrix} \cdots & u_{1} & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & u_{m-i} & \cdots \\ \cdots & v_{m-i+1} & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & v_{m} & \cdots \end{pmatrix} \qquad V = \begin{pmatrix} \cdots & v_{1} & \cdots \\ \cdots & v_{m-i} & \cdots \\ \cdots & v_{m-i+1} & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & v_{m} & \cdots \end{pmatrix}$$

Observe also that

$$T_{UV}^0 = U$$
 and $T_{UV}^m = V$

and

$$\max\{\|T_{UV}^{i} - U\|, \|T_{UV}^{i} - V\|\} \le \|U - V\| \quad \text{for} \quad i = 0, 1, \dots, m$$

Consider any matrices $A, B \in \mathbb{R}^{m \times n}$.

Recall that the line segment between the matrices A and B is the convex hull

$$[A,B] \coloneqq \operatorname{co}\{A,B\}$$

Considering a positive natural number ℓ ,

divide the line segment by $(\ell - 1)$ points $S_1, \dots, S_{\ell-1}$ equidistantly:

Notice that

$$dist\left(T_{S_{j}S_{j+1}}^{i}, [A, B]\right) \le \max\left\{\left\|T_{S_{j}S_{j+1}}^{i} - S_{j}\right\|, \left\|T_{S_{j}S_{j+1}}^{i} - S_{j+1}\right\|\right\} \le$$

$$\leq \|S_j - S_{j+1}\| = \frac{1}{\ell} \|A - B\| \downarrow 0$$
 as $\ell \to \infty$

By applying the Ray-Fish Colony Construction, we obtain:

Ray-Fish Colony for a Line Segment: Lemma 3

Let $\gamma > 0$ and let $A, B \in \mathbb{R}^{m \times n}$ be any matrices.

Then there exists a finitely piecewise affine Lipschitzian mapping $h_{\gamma,[A,B]}: \mathbb{R}^n \to \mathbb{R}^m$ such that

- $h_{\gamma,[A,B]}(x) = Ax$ for all $x \in \mathbb{R}^n \setminus \mathbb{B}_n$,
- $h'_{\gamma,[A,B]}(x) = B$ for all x from a non-empty open set $\Omega_{\gamma,[A,B]} \subset \mathbb{B}_n$,
- and

$$dist(h'_{\gamma,[A,B]}(x), [A,B]) < \gamma$$

whenever $h_{\gamma,[A,B]}$ is differentiable at $x \in \mathbb{R}^n$.

The Ray-Fish Colony for a Polygonal Chain

Consider any matrices $B_0, B_1, ..., B_N \in \mathbb{R}^{m \times n}$.

Recall that the polygonal chain $[B_0, B_1, \dots, B_N]$ is a curve which consists

of the line segments connecting the consecutive vertices, that is the union of the convex hulls

$$[B_0, B_1, \dots, B_N] \coloneqq \operatorname{co}\{B_0, B_1\} \cup \operatorname{co}\{B_1, B_2\} \cup \dots \cup \operatorname{co}\{B_{N-1}, B_N\}$$

The Ray-Fish Colony for a Polygonal Chain

Given the matrices $B_0, B_1, \dots, B_N \in \mathbb{R}^{m \times n}$, consider a positive natural ℓ ,

• divide each of the line segments $[B_0, B_1]$, $[B_1, B_2]$, ..., $[B_{N-1}, B_N]$

by $(\ell - 1)$ points $S_1^1, ..., S_{\ell-1}^1, S_1^2, ..., S_{\ell-1}^2, ..., S_1^N, ..., S_{\ell-1}^N$, equidistantly,

• consider also the intervening transitional matrices:

$$B_{0} = S_{0}^{1} = T_{S_{0}^{1}S_{1}^{1}}^{0}, \dots, T_{S_{0}^{1}S_{1}^{1}}^{m} = S_{1}^{1} = T_{S_{1}^{1}S_{2}^{1}}^{0}, \dots, T_{S_{1}^{1}S_{2}^{1}}^{m} = S_{2}^{1} = T_{S_{2}^{1}S_{3}^{1}}^{0}, \dots, T_{S_{\ell-1}^{1}S_{\ell}^{1}}^{m} = S_{\ell}^{1} = B_{1}$$

$$B_{1} = S_{0}^{2} = T_{S_{0}^{2}S_{1}^{2}}^{0}, \dots, T_{S_{0}^{2}S_{1}^{2}}^{m} = S_{1}^{2} = T_{S_{1}^{2}S_{2}^{2}}^{0}, \dots, T_{S_{1}^{2}S_{2}^{2}}^{m} = S_{2}^{2} = T_{S_{2}^{2}S_{3}^{2}}^{0}, \dots, T_{S_{\ell-1}^{2}S_{\ell}^{2}}^{m} = S_{\ell}^{2} = B_{2}$$

$$B_{N-1} = S_0^N = T_{S_0^N S_1^N}^0, \dots, T_{S_0^N S_1^N}^m = S_1^N = T_{S_1^N S_2^N}^0, \dots, T_{S_1^N S_2^N}^m = S_2^N = T_{S_2^N S_3^N}^0, \dots, T_{S_{\ell-1}^N S_\ell^N}^m = S_\ell^N = B_N$$

. . .

• and rename this long cortege of matrices to $Q_0, \ldots, Q_{\ell m N}$.

The Ray-Fish Colony for a Polygonal Chain

We then have:

dist
$$(Q_j, [B_0, B_1, \dots, B_N]) \le \frac{1}{\ell} \max\{\|B_0 - B_1\|, \dots, \|B_{N-1} - B_N\|\} \downarrow 0$$
 as $\ell \to \infty$

Notice also that

$$\operatorname{rank}(Q_j - Q_{j+1}) \le 1$$
 for $j = 0, ..., \ell mN - 1$

By applying the Ray-Fish Colony Construction, we obtain:

The Ray-Fish Colony for a Polygonal Chain: Lemma 4

Let $\gamma > 0$ and let $B_0, B_1, \dots, B_N \in \mathbb{R}^{m \times n}$ be any matrices.

Then there exists a Lipschitzian mapping $h_{\gamma,[B_0,B_1,...,B_N]}: \mathbb{R}^n \to \mathbb{R}^m$ such that it is finitely piecewise affine and

•
$$h_{\gamma,[B_0,B_1,\ldots,B_N]}(x) = B_0 x$$
 for all $x \in \mathbb{R}^n \setminus \mathbb{B}_n$,

• $h'_{\gamma,[B_0,B_1,...,B_N]}(x) = B_N$ for all x from a non-empty open set $\Omega_{\gamma,[B_0,B_1,...,B_N]} \subset \mathbb{B}_n$,

• and

$$\operatorname{dist}\left(h_{\gamma,[B_{0},B_{1},\ldots,B_{N}]}'(x),\,[B_{0},B_{1},\ldots,B_{N}]\right) < \gamma$$

whenever $h_{\gamma,[B_0,B_1,...,B_N]}$ is differentiable at $x \in \mathbb{R}^n$.

The Corona Construction

For a $\gamma > 0$ and for $B_0, B_1, \dots, B_N \in \mathbb{R}^{m \times n}$, we have constructed (recursively) the Ray-Fish Colony $h_{\gamma, [B_0, B_1, \dots, B_N]} : \mathbb{R}^n \to \mathbb{R}^m$ for the polygonal chain $[B_0, B_1, \dots, B_N]$.

The non-empty open set $\Omega_{\gamma,[B_0,B_1,...,B_N]} \subset \mathbb{B}_n$ is very small:

Now, make many copies of this ray-fish colony

 $h_{\gamma,[B_0,B_1,...,B_N]}$, shift them and place them beyond the sphere of radius 3, say, in such a way that each ray emanating from the origin passes through at least one of the (shifted) open sets $\Omega_{\gamma,[B_0,B_1,...,B_N]}$, the colonies being pairwise disjoint.

The Corona Construction

Plenty (finitely many) of copies of the

ray-fish colony "•" = $h_{\gamma,[B_0,B_1,...,B_N]}$ are placed into a spherical shell

 $T(\rho, P) = \{ x \in \mathbb{R}^n : \rho \le ||x|| \le P \}$

in such a way that

- the colonies are pairwise disjoint, and
- each ray emanating from the origin passes through at least one of the (shifted) tiny open set "•" = Ω_{γ,[B₀,B₁,...,B_N]}

for $0 < \rho < P < +\infty$.

We thus obtain:

Ray-Fish Corona Construction for a Polygonal Chain: Lemma 5

Let $\delta > 0$ and let $B_0, B_1, \dots, B_N \in \mathbb{R}^{m \times n}$ be any matrices. Then there exist numbers $0 < \rho_{\delta, [B_0, B_1, \dots, B_N]} < P_{\delta, [B_0, B_1, \dots, B_N]} < +\infty$ and a finitely piecewise affine Lipschitzian mapping $\varphi_{\delta, [B_0, B_1, \dots, B_N]} : \mathbb{R}^n \to \mathbb{R}^m$ such that

- $\varphi_{\delta,[B_0,B_1,...,B_N]}(x) = B_0 x$ for all $x \in \mathbb{R}^n \setminus T(\rho_{\delta,[B_0,B_1,...,B_N]}, P_{\delta,[B_0,B_1,...,B_N]})$,
- for every subspace {0} ⊈ W ⊂ ℝⁿ, there are a w ∈ W and a λ > 0 such that the ball B(w, λ) ⊂ T(ρ_{δ,[B₀,B₁,...,B_N]}, P_{δ,[B₀,B₁,...,B_N]}) and φ'_{δ,[B₀,B₁,...,B_N]}(x) = B_N for all x ∈ W ∩ B(w, λ),
 and

$$\operatorname{dist}(\varphi_{\delta,[B_0,B_1,\ldots,B_N]}'(x), [B_0,B_1,\ldots,B_N]) < \delta$$

whenever $\varphi_{\delta,[B_0,B_1,...,B_N]}$ is differentiable at $x \in \mathbb{R}^n$.

Given a non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices, it is our purpose to construct a Lipschitzian mapping $g: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\partial g(0) = \mathcal{P}$$

actually

 $\partial g_{|W}(0) = \mathcal{P}_{|W}$ for every linear subspace $\{0\} \not\subseteq W \subset \mathbb{R}^n$

The non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices is separable.

Therefore, there exists a countable sequence

 $B_0,B_1,B_2,B_3,B_4,B_5,\ldots\in\mathcal{P}$

such that the convex hull

 $co\{B_0, B_1, B_2, B_3, B_4, B_5, ...\}$

of the set is dense in \mathcal{P} .

(Remark: If already

 $co\{B_0, B_1, ..., B_N\}$ is

dense in \mathcal{P} , then

consider $B_0, B_1, ..., B_N, B_0, B_1, ..., B_N, B_0, B_1, ..., B_N, ...)$

Given the non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices and having the countably infinite sequence $B_0, B_1, B_2, B_3, B_4, B_5, ... \in \mathcal{P}$, consider the longer and longer polygonal chains

 $[B_0, B_1]$ $[B_0, B_1, B_2]$ $[B_0, B_1, B_2, B_3]$ $[B_0, B_1, B_2, B_3, B_4]$ $[B_0, B_1, B_2, B_3, B_4, B_5]$

and so on

Given the non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices and having polygonal chains $[B_0, B_1, \dots, B_N]$ for each $N \in \mathbb{N}$, consider also a decreasing sequence

$$\delta_1>\delta_2>\delta_3>\delta_4>\delta_5>\cdots>0$$

such that

$$\delta_N \downarrow 0$$
 as $N \to \infty$

Given the non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices, having polygonal chains $[B_0, B_1, \dots, B_N]$ for each $N \in \mathbb{N}$, and having also the decreasing sequence $\delta_N \downarrow 0$, with $N \in \mathbb{N}$, construct the Coronas for these polygonal chains with these "delta's":

 $\varphi_{\delta_1,[B_0,B_1]}$

 $\varphi_{\delta_2,[B_0,B_1,B_2]}$

 $\varphi_{\delta_3,[B_0,B_1,B_2,B_3]}$

 $\varphi_{\delta_4,[B_0,B_1,B_2,B_3,B_4]}$

 $\varphi_{\delta_5,[B_0,B_1,B_2,B_3,B_4,B_5]}$

and so on

Given the non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices,

- take the first corona $\varphi_{\delta_1,[B_0,B_1]}$,
- take the second corona $\varphi_{\delta_2,[B_0,B_1,B_2]}$ and shrink it to be inside the first one
- take the third corona $\varphi_{\delta_3,[B_0,B_1,B_2,B_3]}$ and shrink it to be inside the second one
- take the fourth corona $\varphi_{\delta_4,[B_0,B_1,B_2,B_3,B_4]}$ and shrink it to be inside the third one
- and so on

That is, the coronas tend to the origin.

We have thus obtained:

Finale: The Main Result: Theorem

Let $m, n \in \mathbb{N}$ and let $\mathcal{P} \subset \mathbb{R}^{m \times n}$ be any non-empty compact convex set of matrices.

Then there exists a countably piecewise affine Lipschitzian mapping $g: \mathbb{R}^n \to \mathbb{R}^m$, with g(0) = 0, such that, for every linear subspace $\{0\} \subseteq W \subset \mathbb{R}^n$, the Clarke Jacobian

$$\partial g_{|W}(0) = \mathcal{P}_{|W}$$

References

 D. Bartl, M. Fabian, Every compact convex subset of matrices is the Clarke Jacobian of some Lipschitzian mapping, Proceedings of the American Mathematical Society, in press.

• D. Bartl, M. Fabian, Can Pourciau's open mapping theorem be derived from Clarke's inverse mapping theorem easily?,

Journal of Mathematical Analysis and Applications 497(2) (2021) 124858.

Thank You for your attention