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Outline of the talk

 Introduction: basic concepts, the question and our answer

* Five lemmas: ray-fish, ray-fish colony, ray-fish colony for a line segment,

ray-fish colony for a polygonal chain, and corona

* Finale: the main result and its proof



Introduction



Introduction: Basic concepts

Let f:R"™ — R™ be a Lipschitzian mapping; that is, a mapping such that
If(x) = fFWI < Lllx — vyl forevery x,y € R"

for some constant L > 0, where the norms ||-|| are Euclidean.

The Euclidean vector space R" and R™ of dimension n and m, respectively,
is identified with the space R™1! and R™*!, respectively, by convention.
Therefore, a vector x € R™ and z € R™ Is understood as column vector

of n and m, respectively, real numbers.



Introduction: Basic concepts

Every matrix A € R™*" induces a linear mapping L,: R™ - R™ by

Ly:x — Ax for x e R"

and every linear mapping L:R™ - R™ is induced by a matrix 4; € R™*" so that

L(x) =A;x for x € R"

This is the reason why we shall identify each matrix A € R™*" with the respective

linear mapping which it induces, and vice versa.



Introduction: Basic concepts

By Rademacher’s Theorem, the given Lipschitzian mapping f:R"™ - R™ is
Gateaux (therefore: Fréchet) differentiable almost everywhere with respect to

the n-dimensional Lebesgue measure on R".

That Is, the Jacobian matrix

dafs(x) df1(x) df1(x)

0x4 ox,  0xy,
Jf(x) = : : :
0fm(x) 0fp(x) 0 fn (x)
0x4 ox,  0x, /

IS defined for almost all x € R".
The Jacobian matrix Jf(x) is identified with the Gateaux derivative,

which is the linear mapping f'(x): R®™ - R™.



Introduction: Basic concepts

The Bouligand Jacobian of a Lipschitzian mapping f: R™ - R™

at a point x, € R" Is the set

Ogf(xy) = {M € R™ ™ : J(xy)peq © R™: l}im Xy = Xg,
function f is differentiable at each x;

and lim Jf () = M |

Since the set dgf(x,) is a collection of matrices, it is identified with

the collection of the corresponding linear mappings from R" to R™.



Introduction: Basic concepts

The Clarke Jacobian of a Lipschitzian mapping f:R" - R™

at a point x, € R" Is the set

df (xo) = codgf(xp)

It is easy to see that the Clarke Jacobian df (x,) is:
* non-empty
« compact (that is closed & bounded)

* convex

The Clarke Jacobian df (x,) is also seen as

a collection of linear mappings from R" to R™.



Introduction: The Question

Given a hon-empty compact convex set P c R™*" of matrices,
IS this set the Clarke Jacobian of some Lipschitzian mapping g: R" - R™

at some point x, € R" ?

In other words, characterize those non-empty compact convex sets P c R"™*"

of matrices that are Clarke Jacobians of some Lipschitzian mappings.



Introduction: Our Answer

Given a hon-empty compact convex set P c R™*" of matrices,

there exists a Lipschitzian mapping g: R" - R™ such that

dg(0) =P

We actually prove more...



Introduction: Our Answer Il

Consider a linear subspace {0} < W c R"

In the following, we identify every matrix M € R™*"™ and the linear mapping
Ly: R" - R™, defined by L,;:x —» Mx for x € R", which it induces; that is,

we use the same symbol “M” for both the matrix M and the mapping L,,.

By M,,, we denote the linear mapping M = L) restricted onto the subspace W,

that is the mapping
Mpy: W — R™

My:x — Mx for xeWw



Introduction: Our Answer Il

Consider the linear subspace {0} ¢ W c R".
Consider also the given non-empty compact convex set P ¢ R™ "™ of matrices.

By Pw we denote the collection of the restricted linear mappings
Pw={Mw:MeP]}
where
Mpyy: W — R™

My:x — Mx for xeWw forevery M e P



Introduction: Our Answer Il
Consider the linear subspace {0} ¢ W c R".
Consider also a Lipschitzian mapping g: R" - R™,.

By gw we denote the restriction of g onto W, thatis the mapping

Jw:X F— g(x)

Recall that we identify the Clarke Jacobian dg(0) ¢ R™" with the respective
collection of the linear mappings M:R™ - R™ for M € dg(0).

Therefore, we can define the Clarke Jacobian dg,,(0) accordingly.



Introduction: Our Answer Il

Let P c R™™ be a non-empty compact convex set of matrices.

Then there exists a Lipschitzian mapping g: R®™ — R™, with g(0) = 0, such that,

for every linear subspace {0} € W c R", the Clarke Jacobian

a9|W(0) = Pw



Five Lemmas



The Ray-Fish Construction: Introduction |

We define that a mapping f:R"™ - R™ is finitely piecewise affine if there are
finitely many pairwise disjoint non-empty open sets 4, ...,Q; € R" such that
R™\ U, Q; is Lebesgue negligible and there are matrices Mj, ..., M; € R™*"
and constant vectors cq, ...,c; € R™ such that

erx + ¢4, if x € (4

f(x)=<M2x+C2’ if x € Q,

kka + Cr, if x € 'Q‘k

Observe that this mapping f is also Lipschitzian with the Lipschitz constant

max{||M ||, |M,]|, ..., |IMi ||} and that its derivative f'(x) = M; for x € Q;

for i=1,2,..



The Ray-Fish Construction: Introduction Il

Recall that the rank of a matrix 4 € R™*" |s

the maximum number of the rows of A that are linearly independent.
Now, consider two matrices P,Q € R™*" with rank(P — Q) = 1.

Observe then that the set
HPQ={xERn:Px=QX}
IS a hyperplane.

We call it the hyperplane of the continuous contact of the matrices P and Q.



The Ray-Fish Construction: An Exercise

Consider two matrices P,Q € R™" with rank(P — Q) = 1.
Then there exists a row vector u! € R*" suych that

Hpg ={x e R":u'x =0}

Define the mapping f:R" - R™ by
Px, ifu'x<0
f6) = Ox, if ulx>0

and observe that f is Lipschitzian

and piecewise linear. £(x) = Px




The Ray-Fish Construction: Ray-Fish Lemma 1

Let «a >0 andlet P,Q € R™™ be two matrices with rank(P — Q) < 1.

Then there exists a finitely piecewise affine Lipschitzian mapping f, pg: R" - R™

such that

* fapo(x) = Px forall x € R"\ B,,, where B, denotes the closed unit ball in R",
* fapo(x) =Q forall x € Q,po, Where Q,po € B, is anon-empty open set,

e and

diSt(fc;,PQ (x), {P, Q}) <a

whenever f, po Is differentiable at x € R".



The Ray-Fish Construction
Let «a >0 andlet P,Q € R™™ be two matrices with rank(P — Q) < 1.
* If rank(P — Q) =0, then P =Q andthe mapping f,po(x) := Px works.

« Consider that rank(P — Q) = 1 in the following therefore.

Consider the contact hyperplane Hp, = {x € R" : Px = Qx }.

c

Let S"~1 denote the unit sphere in R™.

Pick a vector u € S™™! such that u L Hp,. .

Notice that Hpy = {x € R" : u'x = 0}.
Sn_l



The Ray-Fish Construction

Let « > 0 andlet P,Q € R™™ be two matrices with rank(P — Q) = 1.

Consider any 6 € (0,1) and define Hgspo :={x € R": ulx = —-61.
Choose any points 744,72 ..., Ton € Hpp N S™~1 such that their convex hull

co{T9 1,702, -, Ton} IS aregular (n — 1)-dimensional simplex.

Let rs5; € Hspp NS™ ! be the unique point

such that Ars; + (1 — D)u = ury; for some Yo 1 ro, Hpo

ALue((0,1) for j=1,2,..,n. 0

s rs2 Hs po

If n=1, thenlet u:=1, ry, =0 and rs, = —4.



The Ray-Fish Construction

Let « > 0 andlet P,Q € R™™ be two matrices with rank(P — Q) = 1.

Define ( _
Px, if x e R"\ CO{T'&l, s T8 u} D R"\ B,
fapo(x) =1 Qx—6(P —Q)u, if x € CO{T&l, v TS 1 O}
LM&jx —o6(P — Q)u, if x € cofrs 4, w78 =1, U TS 41, i T
u
where the matrices
fapo(x) = Px
M6,17M5,27"'7M5,n are p
to be found so that the mapping
fapo 1S Well-defined, hence °

. - - . ra'l T6'2
continuous and Lipschitzian.



The Ray-Fish Construction
Let « > 0 andlet P,Q € R™™ be two matrices with rank(P — Q) = 1.

A few elementary calculations show that
Ms; — P as 6010

Find § € (0,1) so small that

||M5,j—P|| <a for j=1,..,n

We are done thus.




Ray-Fish

.
Source: https://commons.wikimedia.org/wiki/File:Rays (32199123686).jpg



Source: https://commons.wikimedia.org/wiki/File:Rays (32088560952).jpg



The Ray-Fish




The Ray-Fish Construction

Let « > 0 andlet P,Q € R™™ be two matrices with rank(P — Q) = 1.

Notice that:
* fapo(®) €{Q,P,Ms1,Ms,} whenever

fapo is differentiable at x € R™ )

¢ afa,pQ (0) — CO{Q, M5,1' Mé"z} fa,PQ(x) = Px

« for any subspace {0} € W c R",

a(fa,PQ)lw(O) — s 1 T2
o O (5, N4




The Ray-Fish




The Recursive Ray-Fish Construction: Ray-Fish Colony Lemma 2

Let >0 and let Qy, ..., Qx € R™" be with rank(Q; — Qj4,) < 1forj=0,..,k—1.

Then there exists a Lipschitzian mapping gg,,..0,: R"™ = R™ such that it is
finitely piecewise affine and

* 98,0,..0,(x) = Qox forall x e R"\ B,,

. g,ﬁ:Qo---Qk(x) = Qx forall x from a non-empty open set Qg o, € By,

e and

diSt(g,IB,QO_,_Qk(x)I {QOI "t Qk}) < :B

whenever gg ..o, IS differentiable at x € R™.



The Recursive Ray-Fish

Construction P = Qg

Q=0










The Recursive Ray-Fish
Construction

...and soon ...






The Recursive Ray-Fish
Construction:

The Result:

Qo




The Recursive Ray-Fish Construction: Ray-Fish Colony Lemma 2

Let >0 and let Qy, ..., Qx € R™" be with rank(Q; — Qj4,) < 1forj=0,..,k—1.

Recall that, as we immerse into

the (shifted and scaled) open sets

Q00017 a,01007 - La,@p—q 0 WE
encounter all the derivatives Q,, Q4, ..., Q.

Recall also that the matrices “Ms " tend

to the matrices Qy, Q4,...,Q; as 6 | 0.



The Recursive Ray-Fish Construction: Ray-Fish Colony Lemma 2

Let >0 and let Qy, ..., Qx € R™" be with rank(Q; — Qj4,) < 1forj=0,..,k—1.

Since the matrices "Ms " tend
to the matrices @y, Q4,...,Qx as 6 {0,

It follows that

dist(g.9,..0, ) {Qo, -, Q}) < B

whenever gg ..o, IS differentiable at x € R™.

Notice that here we have

Qp.0,..0, = the (very small, shifted and scaled) Q4 o, .0,



The Ray-Fish Colony for a Line Segment
Until now, we have considered matrices P,Q € R™" or Q,, Q4, ..., Q; € R™"™ with

rank(P—-—Q) <1 or rank(Qj — Qj+1) <1 for j=0,1,..,k—1.

It is now our purpose to construct the “ray-fish colony” mapping of analogous

properties for general matrices A, B € R™*™,



The Ray-Fish Colony for a Line Segment

Consider two matrices U,V € R™*™ consisting of rows

Uy, o, Uy, € R and vy, ..., v, € R, respectively.

Let T}, denote the m x n matrix consisting of the first (m —i) rows uq, ..., Upy_;

of matrix U and of the last i rows v,,_14+1, ...,V Ofmatrix V for i =0,1,...,m:

SR -

um—i cee coe um—i
Toy =1 VUm-i+1 Tipt =1 Um—i+1
Um-i+2 " " Um—it2

Y R

Observe that rank(TISV _ T(l]-II}l) < 1 for [ = O, e, M — 1



The Ray-Fish Colony for a Line Segment

Consider two matrices U,V € R™*":

Observe also that

and

max{”T{}V - U

i
Tyy =

Ty = U

and

Tty = V|} < lU =V

Ty =V




The Ray-Fish Colony for a Line Segment

Consider any matrices A,B € R™*™,

Recall that the line segment between the matrices A and B is the convex hull
|A, B] := co{A, B}

Considering a positive natural number ¢,

divide the line segment by (£ —1) points S, ...,S,_; equidistantly:

1 m-—1 1 m-—1 1 m-—1 1 m-—1
Tsys, oo Tsys, Is;s, .. Tss, Ts,s, .. wTsy ysony Tsuisy oo Ts, s,
[ ] [ ) [ ] [ ] [ ] [ ] [ ] [ ] [ ) [ ] [ ] [ ] [ ]

SO Sl SZ Sf—l Sf =B



The Ray-Fish Colony for a Line Segment

T51051 TSZZ)15T11 T51152 T52115T21 T51253 Tg—_z%{’ﬂ T5‘1€—15€ B
A=S, S1 S, Sp—1
Notice that

dist (T3;5;,,» (4,81) < max{ [Ty, =], [ 7555, = Spva |} <

1
s||5j—5j+1||=z||A—B|| l0 as £-



The Ray-Fish Colony for a Line Segment

Rename this cortege of matrices

T51051 Tgcrylszl T51152 TSrilS_zl T51253 ---TST—_;SVA T;€—15€ TSZ;:%%
. . . . . . . . . . . . .
A= 5, s, s, ' So1 S, =B
to
Q0 01 .. Qp-q Onm Qi Qe—1ym Qpmy
Recall that

1
dist(Q;, [4,B]) < ZIIA —B||l L0 as £-
and notice that
rank(Qj — Qj+1) <1 for j=0, ..., fm—1

By applying the Ray-Fish Colony Construction, we obtain:



Ray-Fish Colony for a Line Segment. Lemma 3

Let y > 0 andlet 4, B € R™*™ be any matrices.

Then there exists a finitely piecewise affine Lipschitzian mapping h, 4 5;: R -» R™
such that
* hyap)(x) = Ax forall x € R"\ B,

h]’,,[A,B] (x) = B forall x from a non-empty open set Q, 451 € B,

e and | ,
dlSt(hy’[ 4510, [A,B]) <vy

whenever h, 1, Is differentiable at x € R".



The Ray-Fish Colony for a Polygonal Chain

Consider any matrices By, B4, ..., By € R™*™,
Recall that the polygonal chain [B,, B, ..., By] Is a curve which consists

of the line segments connecting the consecutive vertices, that is the union

of the convex hulls
[Bo, Bll ...,BN] = CO{B(), Bl} U CO{Bl, Bz} U:--U CO{BN—l' BN}




The Ray-Fish Colony for a Polygonal Chain

Given the matrices By, B4, ..., By € R™ " consider a positive natural 2,
 divide each of the line segments [B,, B;], |By,B>], ..., |By—1, By]
by (¢ —1) points S},...,S;_4, S, ..,S7_4, ..., SN, ...,S) ,, equidistantly,

« consider also the intervening transitional matrices:

_ 0 m 0 m 0 m _ cl1 _
By = So = Tgag1 - Teigr = St = Tgrg1, o, Tglgr = 7 = Tgrga, ooy T 1 =55 = By

2 _ 70 m 0 m 0 m _ C2 _
By =S¢ = Tgag2, s Tgzg2 = ST = Tgagz, 0, T2 = S5 = Tgzga, ooy T2 2 =S; =By
— cN _ m —_— cN _

« and rename this long cortege of matrices to Qy, ..., Qsmn-



The Ray-Fish Colony for a Polygonal Chain

We then have:

1
dlSt(Q]) [BO)Bl) )BN]) = zmaX{HBO R Bl”l ey ”BN—l o BN”} ‘l’ 0

Notice also that
rank(Qj — Qj+1) <1 for j=0, ..., fmN — 1

By applying the Ray-Fish Colony Construction, we obtain:

das

f > o



The Ray-Fish Colony for a Polygonal Chain: Lemma 4

Let y > 0 andlet By, By, ..., By € R™" be any matrices.

Then there exists a Lipschitzian mapping h, g, 5,,.5y]: R = R™ such that it is
finitely piecewise affine and
* hyB,B,..Bn]J(X) = Box forall x € R"\ B,,

hy (Bo.B,,...y]X) = By forall x from a non-empty openset Qg g .5y € By,

* and
dist(h), (5 5. gy (*), [Bo, By, .., Byl) <

whenever h, g g . g, IS differentiable at x € R".



Ray-Fish Colony Construction
for a Polygonal Chain

rs1
Notice that the open set

Qy [B,.B,,..By] € Brn isthe very

last open set O rm-1
Sp-1BN

inside the very last ray-fish inside.

N




The Corona Construction

Fora y >0 and for By, By, ...,By € R™" we have constructed (recursively)

the Ray-Fish Colony h, 5 5. ..5,: R" = R™ for the polygonal chain [By, By, ..., By].

The non-empty open set Q, g 5....5y] © By IS very small:

Now, make many copies of this ray-fish colony
hy [B,.B,,.By]: Shift them and place them beyond

the sphere of radius 3, say, in such a way that each ray

emanating from the origin passes through at least one
of the (shifted) open sets Q, | 5,,..5y]> the colonies

being pairwise disjoint.




The Corona Construction




The Corona Construction

Plenty (finitely many) of copies of the

-

——————
E— -
-

~o

~

ray-fish colony “¢” = hy,[Bo,Bl,...,BN]

are placed into a spherical shell

T(p,P)={x€eR*:p<|x|]| <P} ,"I..'.

: / ' ,,,,,,, (
in such a way that .:.‘ Y
« the colonies are pairwise ' o aRe 000

disjoint, and

« each ray emanating from

the origin passes through @

at least one of the (shifted)

3 “n — . ‘ ”
tiny open set “" = Q. 5 5, . By ¢ ool .:: ..: .Q..

. 00090.09' 9895 ¢ 00 .99 -
- 9902902%"0 00¢°.-
~99%0e%0 0 00"
for0O<p<P<+4+®w. == 0 009"

We thus obtain:



Ray-Fish Corona Construction for a Polygonal Chain: Lemmab

Let § >0 andlet By, B4, ..., By € R™*™ be any matrices.

Then there exist numbers 0 < ps g 5,,.8x] < Ps[BB,,..By] < T and
a finitely piecewise affine Lipschitzian mapping ¢s s, 5,,..5,y]: R" = R™ such that

* ®5,By,By,...BN] (x) = Byx forall x € R™"\ T(p5,[BO,Bl,...,BN]» Pc?,[BO,Bl,...,BN])’

« for every subspace {0} £ W c R", therearea we W anda A > 0 such that
the ba” B(W, A) C T(IDS,[Bo;BL---;BN]’ P6»[BO:BL---»BN]) and
D5 [ByB,...8y]X) = By forall x € WnB(w,2),

* and _ ,
dist(@5 (5, 5,...5y]*X)s [Bo, By, ... By]) < 8

whenever ¢s (g, 5,8y IS differentiable at x € R".



Finale



Finale

Given a non-empty compact convex set P c R™*" of matrices,
It IS our purpose to construct a Lipschitzian mapping g: R*" - R™
such that

dg(0) =P
actually

dgw(0) = Py for every linear subspace {0} € W c R"



Finale

The non-empty compact convex set P c R™" of matrices is separable.
Therefore, there exists a countable sequence
By, By, By, B3, By, Bs, ... € P

such that the convex hull
co{B,, B1, By, B3, By, Bs, ... }

of the set Is dense in 2P.

(Remark: If already
co{By, By, ..., By} IS
dense in P, then

consider By, By, ..., By, By, B4, ..., By, Bg, B1, ..., By, --.)




Finale

Given the non-empty compact convex set P ¢ R™" of matrices and
having the countably infinite sequence B, By, B, B3, B4, B, ... € P,
consider the longer and longer polygonal chains
[Bo, Bl
[Bo, By, B ]
[Bo, By, Bz, B3]
[Bo, By, B2, B3, By
[Bo, By, B2, B3, By, Bs]

and so on



Finale

Given the non-empty compact convex set P ¢ R™" of matrices and
having polygonal chains |B,, B4, ..., By] foreach N € N,
consider also a decreasing sequence
0, >0,>63>8,>65>:->0
such that
oy 10 as N — oo



Finale

Given the non-empty compact convex set P ¢ R™*" of matrices,
having polygonal chains |B,, B4, ..., By] foreach N € N,
and having also the decreasing sequence dy | 0, with N € N,
construct the Coronas for these polygonal chains with these “delta’s”:
$651,[Bo,B1]
$6,,[Bo,B1,B2]
$65,[By,B1,B2,B3]
$654,[Bg,B1,B2,B3,B4]

P§<,[Bo,B1,B2,B3,B4,B5]

and so on



Finale

Given the non-empty compact convex set P ¢ R™*" of matrices,

* take the first corona s, 5, 5,]:

take the second corona s, [5,,5,,8,] @nd shrink it to be inside the first one

take the third corona ¢s, (5,5, 5,,8,] @nd shrink it to be inside the second one

take the fourth corona ¢s, (s, 5, 5,,8,,8,] @nd shrink it to be inside the third one

and so on

That is, the coronas tend to the origin.



Finale

We have thus obtained:



Finale: The Main Result: Theorem

Let m,n € N and let P c R™ " pbe any non-empty compact convex set of matrices.

Then there exists a countably piecewise affine Lipschitzian mapping g: R" — R™,
with g(0) = 0, such that, for every linear subspace {0} ¢ W c R",

the Clarke Jacobian
ang(O) = Pw
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