Every compact convex subset of matrices

 is the Clarke Jacobian of some Lipschitzian mappingMarián Fabian
Czech Academy of Sciences
Institute of Mathematics
Žitná 25
11567 Praha 1
Czech Republic
fabian/at/math/dot Cas $_{\text {/dot Cz }}$

David Bartl
Silesian University in Opava
School of Business Administration in Karviná
Department of Informatics and Mathematics
Univerzitní náměstí 1934/3,
73340 Karviná
Czech Republic
david/dortbart/at/Post/dotCZ

Outline of the talk

- Introduction: basic concepts, the question and our answer
- Five lemmas: ray-fish, ray-fish colony, ray-fish colony for a line segment, ray-fish colony for a polygonal chain, and corona
- Finale: the main result and its proof

Introduction

Introduction: Basic concepts

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a Lipschitzian mapping; that is, a mapping such that

$$
\|f(x)-f(y)\| \leq L\|x-y\| \quad \text { for every } \quad x, y \in \mathbb{R}^{n}
$$

for some constant $L>0$, where the norms $\|\cdot\|$ are Euclidean.

The Euclidean vector space \mathbb{R}^{n} and \mathbb{R}^{m} of dimension n and m, respectively, is identified with the space $\mathbb{R}^{n \times 1}$ and $\mathbb{R}^{m \times 1}$, respectively, by convention. Therefore, a vector $x \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{m}$ is understood as column vector of n and m, respectively, real numbers.

Introduction: Basic concepts

Every matrix $A \in \mathbb{R}^{m \times n}$ induces a linear mapping $L_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
L_{A}: x \mapsto A x \quad \text { for } \quad x \in \mathbb{R}^{n}
$$

and every linear mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is induced by a matrix $A_{L} \in \mathbb{R}^{m \times n}$ so that

$$
L(x)=A_{L} x \quad \text { for } \quad x \in \mathbb{R}^{n}
$$

This is the reason why we shall identify each matrix $A \in \mathbb{R}^{m \times n}$ with the respective linear mapping which it induces, and vice versa.

Introduction: Basic concepts

By Rademacher's Theorem, the given Lipschitzian mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is Gâteaux (therefore: Fréchet) differentiable almost everywhere with respect to the n-dimensional Lebesgue measure on \mathbb{R}^{n}.

That is, the Jacobian matrix

$$
\mathrm{J} f(x)=\left(\begin{array}{cccc}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \frac{\partial f_{1}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{1}(x)}{\partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial f_{m}(x)}{\partial x_{1}} & \frac{\partial f_{m}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{m}(x)}{\partial x_{n}}
\end{array}\right)
$$

is defined for almost all $x \in \mathbb{R}^{n}$.
The Jacobian matrix $\mathrm{J} f(x)$ is identified with the Gâteaux derivative, which is the linear mapping $f^{\prime}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Introduction: Basic concepts

The Bouligand Jacobian of a Lipschitzian mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at a point $x_{0} \in \mathbb{R}^{n}$ is the set

$$
\partial_{\mathrm{B}} f\left(x_{0}\right)=\left\{M \in \mathbb{R}^{m \times n}: \exists\left(x_{k}\right)_{k=1}^{\infty} \subset \mathbb{R}^{n}: \lim _{k \rightarrow \infty} x_{k}=x_{0},\right.
$$

function f is differentiable at each x_{k}

$$
\text { and } \left.\lim _{k \rightarrow \infty} I f\left(x_{k}\right)=M\right\}
$$

Since the set $\partial_{\mathrm{B}} f\left(x_{0}\right)$ is a collection of matrices, it is identified with the collection of the corresponding linear mappings from \mathbb{R}^{n} to \mathbb{R}^{m}.

Introduction: Basic concepts

The Clarke Jacobian of a Lipschitzian mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at a point $x_{0} \in \mathbb{R}^{n}$ is the set

$$
\partial f\left(x_{0}\right)=\operatorname{co} \partial_{\mathrm{B}} f\left(x_{0}\right)
$$

It is easy to see that the Clarke Jacobian $\partial f\left(x_{0}\right)$ is:

- non-empty
- compact (that is closed \& bounded)
- convex

The Clarke Jacobian $\partial f\left(x_{0}\right)$ is also seen as a collection of linear mappings from \mathbb{R}^{n} to \mathbb{R}^{m}.

Introduction: The Question

Given a non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices, is this set the Clarke Jacobian of some Lipschitzian mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at some point $x_{0} \in \mathbb{R}^{n}$?

In other words, characterize those non-empty compact convex sets $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices that are Clarke Jacobians of some Lipschitzian mappings.

Introduction: Our Answer

Given a non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices, there exists a Lipschitzian mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\partial g(0)=\mathcal{P}
$$

We actually prove more...

Introduction: Our Answer II

Consider a linear subspace $\{0\} \subsetneq W \subset \mathbb{R}^{n}$

In the following, we identify every matrix $M \in \mathbb{R}^{m \times n}$ and the linear mapping $L_{M}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, defined by $L_{M}: x \mapsto M x$ for $x \in \mathbb{R}^{n}$, which it induces; that is, we use the same symbol " M " for both the matrix M and the mapping L_{M}.

By $M_{\mid W}$ we denote the linear mapping $M=L_{M}$ restricted onto the subspace W, that is the mapping

$$
\begin{aligned}
& M_{\mid W}: W \rightarrow \mathbb{R}^{m} \\
& M_{\mid W}: x \mapsto M x \quad \text { for } \quad x \in W
\end{aligned}
$$

Introduction: Our Answer II

Consider the linear subspace $\{0\} \subsetneq W \subset \mathbb{R}^{n}$.
Consider also the given non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices.
By $\mathcal{P}_{\mid W}$ we denote the collection of the restricted linear mappings

$$
\mathcal{P}_{\mid W}=\left\{M_{\mid W}: M \in \mathcal{P}\right\}
$$

where

$$
\begin{aligned}
& M_{\mid W}: W \rightarrow \mathbb{R}^{m} \\
& M_{\mid W}: x \mapsto M x \quad \text { for } \quad x \in W \quad \text { for every } \quad M \in \mathcal{P}
\end{aligned}
$$

Introduction: Our Answer II

Consider the linear subspace $\{0\} \subsetneq W \subset \mathbb{R}^{n}$.
Consider also a Lipschitzian mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
By $g_{\mid W}$ we denote the restriction of g onto W, that is the mapping

$$
\begin{aligned}
& g_{\mid W}: W \rightarrow \mathbb{R}^{m} \\
& g_{\mid W}: x \mapsto g(x)
\end{aligned}
$$

Recall that we identify the Clarke Jacobian $\partial g(0) \subset \mathbb{R}^{m \times n}$ with the respective collection of the linear mappings $M: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ for $M \in \partial g(0)$.

Therefore, we can define the Clarke Jacobian $\partial g_{\mid W}(0)$ accordingly.

Introduction: Our Answer II

Let $\mathcal{P} \subset \mathbb{R}^{m \times n}$ be a non-empty compact convex set of matrices.

Then there exists a Lipschitzian mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, with $g(0)=0$, such that, for every linear subspace $\{0\} \subsetneq W \subset \mathbb{R}^{n}$, the Clarke Jacobian

$$
\partial g_{\mid W}(0)=\mathcal{P}_{\mid W}
$$

Five Lemmas

The Ray-Fish Construction: Introduction I

We define that a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is finitely piecewise affine if there are finitely many pairwise disjoint non-empty open sets $\Omega_{1}, \ldots, \Omega_{k} \subset \mathbb{R}^{n}$ such that $\mathbb{R}^{n} \backslash \mathrm{U}_{i=1}^{k} \Omega_{i}$ is Lebesgue negligible and there are matrices $M_{1}, \ldots, M_{k} \in \mathbb{R}^{m \times n}$ and constant vectors $c_{1}, \ldots, c_{k} \in \mathbb{R}^{m}$ such that

$$
f(x)=\left\{\begin{array}{lc}
M_{1} x+c_{1}, & \text { if } x \in \Omega_{1} \\
M_{2} x+c_{2}, & \text { if } x \in \Omega_{2} \\
\ldots & \ldots \\
M_{k} x+c_{k}, & \text { if } x \in \Omega_{k}
\end{array}\right.
$$

Observe that this mapping f is also Lipschitzian with the Lipschitz constant $\max \left\{\left\|M_{1}\right\|,\left\|M_{2}\right\|, \ldots,\left\|M_{k}\right\|\right\}$ and that its derivative $f^{\prime}(x)=M_{i}$ for $x \in \Omega_{i}$

$$
\text { for } i=1,2, \ldots, k .
$$

The Ray-Fish Construction: Introduction II

Recall that the rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the maximum number of the rows of A that are linearly independent.

Now, consider two matrices $P, Q \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(P-Q)=1$.

Observe then that the set

$$
H_{P Q}=\left\{x \in \mathbb{R}^{n}: P x=Q x\right\}
$$

is a hyperplane.
We call it the hyperplane of the continuous contact of the matrices P and Q.

The Ray-Fish Construction: An Exercise

Consider two matrices $P, Q \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(P-Q)=1$.
Then there exists a row vector $u^{T} \in \mathbb{R}^{1 \times n}$ such that

$$
H_{P Q}=\left\{x \in \mathbb{R}^{n}: u^{\mathrm{T}} x=0\right\}
$$

Define the mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
f(x)= \begin{cases}P x, & \text { if } u^{\mathrm{T}} x \leq 0 \\ Q x, & \text { if } u^{\mathrm{T}} x \geq 0\end{cases}
$$

and observe that f is Lipschitzian and piecewise linear.

The Ray-Fish Construction: Ray-Fish Lemma 1

Let $\alpha>0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with $\operatorname{rank}(P-Q) \leq 1$.

Then there exists a finitely piecewise affine Lipschitzian mapping $f_{\alpha, P Q}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

- $f_{\alpha, P Q}(x)=P x$ for all $x \in \mathbb{R}^{n} \backslash \mathbb{B}_{n}$, where \mathbb{B}_{n} denotes the closed unit ball in \mathbb{R}^{n},
- $f_{\alpha, P Q}^{\prime}(x)=Q$ for all $x \in \Omega_{\alpha, P Q}$, where $\Omega_{\alpha, P Q} \subset \mathbb{B}_{n}$ is a non-empty open set,
- and

$$
\operatorname{dist}\left(f_{\alpha, P Q}^{\prime}(x),\{P, Q\}\right)<\alpha
$$

whenever $f_{\alpha, P Q}$ is differentiable at $x \in \mathbb{R}^{n}$.

The Ray-Fish Construction

Let $\alpha>0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with $\operatorname{rank}(P-Q) \leq 1$.

- If $\operatorname{rank}(P-Q)=0$, then $P=Q$ and the mapping $f_{\alpha, P Q}(x):=P x$ works.
- Consider that $\operatorname{rank}(P-Q)=1$ in the following therefore.

Consider the contact hyperplane $H_{P Q}=\left\{x \in \mathbb{R}^{n}: P x=Q x\right\}$.
Let \mathbb{S}^{n-1} denote the unit sphere in \mathbb{R}^{n}.
Pick a vector $u \in \mathbb{S}^{n-1}$ such that $u \perp H_{P Q}$.
Notice that $H_{P Q}=\left\{x \in \mathbb{R}^{n}: u^{\mathrm{T}} x=0\right\}$.

The Ray-Fish Construction

Let $\alpha>0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with $\operatorname{rank}(P-Q)=1$.

Consider any $\delta \in(0,1)$ and define $H_{\delta, P Q}:=\left\{x \in \mathbb{R}^{n}: u^{\mathrm{T}} x=-\delta\right\}$.
Choose any points $r_{0,1}, r_{0,2} \ldots, r_{0, n} \in H_{P Q} \cap \mathbb{S}^{n-1}$ such that their convex hull $\operatorname{co}\left\{r_{0,1}, r_{0,2}, \ldots, r_{0, n}\right\}$ is a regular $(n-1)$-dimensional simplex.

Let $r_{\delta, j} \in H_{\delta, P Q} \cap \mathbb{S}^{n-1}$ be the unique point such that $\lambda r_{\delta, j}+(1-\lambda) u=\mu r_{0, j}$ for some $\lambda, \mu \in(0,1)$ for $j=1,2, \ldots, n$.

The Ray-Fish Construction

Let $\alpha>0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with $\operatorname{rank}(P-Q)=1$.
Define
$f_{\alpha, P Q}(x)=\left\{\begin{array}{cl}P x, & \text { if } x \in \mathbb{R}^{n} \backslash \operatorname{co}\left\{r_{\delta, 1}, \ldots, r_{\delta, n}, u\right\} \supset \mathbb{R}^{n} \backslash \mathbb{B}_{n} \\ Q x-\delta(P-Q) u, & \text { if } x \in \operatorname{co}\left\{r_{\delta, 1}, \ldots, r_{\delta, n}, 0\right\} \\ M_{\delta, j} x-\delta(P-Q) u, & \text { if } x \in \operatorname{co}\left\{r_{\delta, 1}, \ldots, r_{\delta, j-1}, u, r_{\delta, j+1}, \ldots, r_{\delta, n}\right\}\end{array}\right.$,
where the matrices
$M_{\delta, 1}, M_{\delta, 2}, \ldots, M_{\delta, n}$ are
to be found so that the mapping
$f_{\alpha, P Q}$ is well-defined, hence
continuous and Lipschitzian.

The Ray-Fish Construction

Let $\alpha>0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with $\operatorname{rank}(P-Q)=1$.
A few elementary calculations show that

$$
M_{\delta, j} \rightarrow P \quad \text { as } \quad \delta \downarrow 0
$$

Find $\delta \in(0,1)$ so small that
$\left\|M_{\delta, j}-P\right\|<\alpha \quad$ for $\quad j=1, \ldots, n$

We are done thus.

Ray-Fish

Source: https://commons.wikimedia.org/wiki/File:Rays_(32199123686).jpg

Ray-Fish

Source: https://commons.wikimedia.org/wiki/File:Rays_(32088560952).jpg

The Ray-Fish

The Ray-Fish Construction

Let $\alpha>0$ and let $P, Q \in \mathbb{R}^{m \times n}$ be two matrices with $\operatorname{rank}(P-Q)=1$.

Notice that:

- $f_{\alpha, P Q}^{\prime}(x) \in\left\{Q, P, M_{\delta, 1}, M_{\delta, 2}\right\}$ whenever
$f_{\alpha, P Q}$ is differentiable at $x \in \mathbb{R}^{n}$
- $\partial f_{\alpha, P Q}(0)=\operatorname{co}\left\{Q, M_{\delta, 1}, M_{\delta, 2}\right\}$
- for any subspace $\{0\} \subsetneq W \subset \mathbb{R}^{n}$,

$$
\begin{aligned}
& \partial\left(f_{\alpha, P Q}\right)_{\mid W}(0)= \\
& \quad=\operatorname{co}\left\{Q_{\mid W},\left(M_{\delta, 1}\right)_{\mid W^{\prime}}\left(M_{\delta, 2}\right)_{\mid W}\right\}
\end{aligned}
$$

The Ray-Fish

The Recursive Ray-Fish Construction: Ray-Fish Colony Lemma 2

Let $\beta>0$ and let $Q_{0}, \ldots, Q_{k} \in \mathbb{R}^{m \times n}$ be with $\operatorname{rank}\left(Q_{j}-Q_{j+1}\right) \leq 1$ for $j=0, \ldots, k-1$.

Then there exists a Lipschitzian mapping $g_{\beta, Q_{0} \ldots Q_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that it is finitely piecewise affine and

- $g_{\beta, Q_{0} \ldots Q_{k}}(x)=Q_{0} x$ for all $x \in \mathbb{R}^{n} \backslash \mathbb{B}_{n}$,
- $g_{\beta, Q_{0} \ldots Q_{k}}^{\prime}(x)=Q_{k}$ for all x from a non-empty open set $\Omega_{\beta, Q_{0} \ldots Q_{k}} \subset \mathbb{B}_{n}$,
- and

$$
\operatorname{dist}\left(g_{\beta, Q_{0} \ldots Q_{k}}^{\prime}(x),\left\{Q_{0}, \ldots, Q_{k}\right\}\right)<\beta
$$

whenever $g_{\beta, Q_{0} \ldots Q_{k}}$ is differentiable at $x \in \mathbb{R}^{n}$.

The Recursive Ray-Fish Construction

$$
\begin{aligned}
& P:=Q_{0} \\
& Q:=Q_{1}
\end{aligned}
$$

The Recursive Ray-Fish

Construction

$$
\begin{aligned}
P & :=Q_{1} \\
Q & :=Q_{2}
\end{aligned}
$$

The Recursive Ray-Fish

Construction

$$
\begin{aligned}
P & :=Q_{2} \\
Q & :=Q_{3}
\end{aligned}
$$

The Recursive Ray-Fish Construction

... and so on ...

The Recursive Ray-Fish

Construction

$$
\begin{aligned}
& P:=Q_{k-1} \\
& Q:=Q_{k}
\end{aligned}
$$

The Recursive Ray-Fish Construction:

 The Result:

The Recursive Ray-Fish Construction: Ray-Fish Colony Lemma 2

Let $\beta>0$ and let $Q_{0}, \ldots, Q_{k} \in \mathbb{R}^{m \times n}$ be with $\operatorname{rank}\left(Q_{j}-Q_{j+1}\right) \leq 1$ for $j=0, \ldots, k-1$.

Recall that, as we immerse into
the (shifted and scaled) open sets
$\Omega_{\alpha, Q_{0} Q_{1}}, \Omega_{\alpha, Q_{1} Q_{2}}, \ldots, \Omega_{\alpha, Q_{k-1} Q_{k}}$, we
encounter all the derivatives $Q_{0}, Q_{1}, \ldots, Q_{k}$.

Recall also that the matrices " $M_{\delta, \ldots \text {... }}$ tend to the matrices $Q_{0}, Q_{1}, \ldots, Q_{k}$ as $\delta \downarrow 0$.

The Recursive Ray-Fish Construction: Ray-Fish Colony Lemma 2

Let $\beta>0$ and let $Q_{0}, \ldots, Q_{k} \in \mathbb{R}^{m \times n}$ be with $\operatorname{rank}\left(Q_{j}-Q_{j+1}\right) \leq 1$ for $j=0, \ldots, k-1$.

Since the matrices " $M_{\delta, \ldots \text {..." tend }}$
to the matrices $Q_{0}, Q_{1}, \ldots, Q_{k}$ as $\delta \downarrow 0$,
it follows that
$\operatorname{dist}\left(g_{\beta, Q_{0} \ldots Q_{k}}^{\prime}(x),\left\{Q_{0}, \ldots, Q_{k}\right\}\right)<\beta$
whenever $g_{\beta, Q_{0} \ldots Q_{k}}$ is differentiable at $x \in \mathbb{R}^{n}$.

Notice that here we have
$\Omega_{\beta, Q_{0} \ldots Q_{k}}:=$ the (very small, shifted and scaled) $\Omega_{\alpha, Q_{k-1} Q_{k}}$

The Ray-Fish Colony for a Line Segment

Until now, we have considered matrices $P, Q \in \mathbb{R}^{m \times n}$ or $Q_{0}, Q_{1}, \ldots, Q_{k} \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(P-Q) \leq 1$ or $\operatorname{rank}\left(Q_{j}-Q_{j+1}\right) \leq 1$ for $j=0,1, \ldots, k-1$.

It is now our purpose to construct the "ray-fish colony" mapping of analogous properties for general matrices $A, B \in \mathbb{R}^{m \times n}$.

The Ray-Fish Colony for a Line Segment

Consider two matrices $U, V \in \mathbb{R}^{m \times n}$ consisting of rows
$u_{1}, \ldots, u_{m} \in \mathbb{R}^{1 \times n}$ and $v_{1}, \ldots, v_{m} \in \mathbb{R}^{1 \times n}$, respectively.

Let $T_{U V}^{i}$ denote the $m \times n$ matrix consisting of the first $(m-i)$ rows u_{1}, \ldots, u_{m-i} of matrix U and of the last i rows v_{m-1+1}, \ldots, v_{m} of matrix V for $i=0,1, \ldots, m$:

Observe that

$$
T_{U V}^{i}=\left(\begin{array}{ccc}
\cdots & u_{1} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & u_{m-i} & \cdots \\
\cdots & v_{m-i+1} & \cdots \\
\cdots & v_{m-i+2} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & v_{m} & \cdots
\end{array}\right) \quad T_{U V}^{i+1}=\left(\begin{array}{ccc}
\cdots & u_{1} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & u_{m-i} & \cdots \\
\cdots & u_{m-i+1} & \cdots \\
\cdots & v_{m-i+2} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & v_{m} & \cdots
\end{array}\right)
$$

$$
\operatorname{rank}\left(T_{U V}^{i}-T_{U V}^{i+1}\right) \leq 1 \quad \text { for } \quad i=0, \ldots, m-1
$$

The Ray-Fish Colony for a Line Segment

Consider two matrices $U, V \in \mathbb{R}^{m \times n}$:

$$
U=\left(\begin{array}{ccc}
\cdots & u_{1} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & u_{m-i} & \cdots \\
\cdots & u_{m-i+1} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & u_{m} & \cdots
\end{array}\right) \quad T_{U V}^{i}=\left(\begin{array}{ccc}
\cdots & u_{1} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & u_{m-i} & \cdots \\
\cdots & v_{m-i+1} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & v_{m} & \cdots
\end{array}\right) \quad V=\left(\begin{array}{ccc}
\cdots & v_{1} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & v_{m-i} & \cdots \\
\cdots & v_{m-i+1} & \cdots \\
\cdots & \vdots & \cdots \\
\cdots & v_{m} & \cdots
\end{array}\right)
$$

Observe also that

$$
T_{U V}^{0}=U \quad \text { and } \quad T_{U V}^{m}=V
$$

and

$$
\max \left\{\left\|T_{U V}^{i}-U\right\|,\left\|T_{U V}^{i}-V\right\|\right\} \leq\|U-V\| \quad \text { for } \quad i=0,1, \ldots, m
$$

The Ray-Fish Colony for a Line Segment

Consider any matrices $A, B \in \mathbb{R}^{m \times n}$.
Recall that the line segment between the matrices A and B is the convex hull

$$
[A, B]:=\operatorname{co}\{A, B\}
$$

Considering a positive natural number ℓ, divide the line segment by $(\ell-1)$ points $S_{1}, \ldots, S_{\ell-1}$ equidistantly:

The Ray-Fish Colony for a Line Segment

Notice that

$$
\begin{aligned}
\operatorname{dist}\left(T_{S_{j} S_{j+1}}^{i},[A, B]\right) & \leq \max \left\{\left\|T_{S_{j} S_{j+1}}^{i}-S_{j}\right\|,\left\|T_{S_{j} S_{j+1}}^{i}-S_{j+1}\right\|\right\} \leq \\
& \leq\left\|S_{j}-S_{j+1}\right\|=\frac{1}{\ell}\|A-B\| \downarrow 0 \quad \text { as } \quad \ell \rightarrow \infty
\end{aligned}
$$

The Ray-Fish Colony for a Line Segment

Rename this cortege of matrices

to

$$
\begin{array}{cccccccccccc}
Q_{0} & Q_{1} & \ldots & Q_{m-1} & Q_{m} & \ldots & Q_{2 m} & \ldots & \ldots & \ldots & Q_{(\ell-1) m} & \ldots
\end{array} Q_{\ell m}
$$

Recall that

$$
\operatorname{dist}\left(Q_{j},[A, B]\right) \leq \frac{1}{\ell}\|A-B\| \downarrow 0 \quad \text { as } \quad \ell \rightarrow \infty
$$

and notice that

$$
\operatorname{rank}\left(Q_{j}-Q_{j+1}\right) \leq 1 \quad \text { for } \quad j=0, \ldots, \ell m-1
$$

By applying the Ray-Fish Colony Construction, we obtain:

Ray-Fish Colony for a Line Segment: Lemma 3

Let $\gamma>0$ and let $A, B \in \mathbb{R}^{m \times n}$ be any matrices.

Then there exists a finitely piecewise affine Lipschitzian mapping $h_{\gamma,[A, B]}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

- $h_{\gamma,[A, B]}(x)=A x$ for all $x \in \mathbb{R}^{n} \backslash \mathbb{B}_{n}$,
- $h_{\gamma,[A, B]}^{\prime}(x)=B$ for all x from a non-empty open set $\Omega_{\gamma,[A, B]} \subset \mathbb{B}_{n}$,
- and

$$
\operatorname{dist}\left(h_{\gamma,[A, B]}^{\prime}(x),[A, B]\right)<\gamma
$$

whenever $h_{\gamma,[A, B]}$ is differentiable at $x \in \mathbb{R}^{n}$.

The Ray-Fish Colony for a Polygonal Chain

Consider any matrices $B_{0}, B_{1}, \ldots, B_{N} \in \mathbb{R}^{m \times n}$.
Recall that the polygonal chain $\left[B_{0}, B_{1}, \ldots, B_{N}\right]$ is a curve which consists of the line segments connecting the consecutive vertices, that is the union of the convex hulls

$$
\left[B_{0}, B_{1}, \ldots, B_{N}\right]:=\operatorname{co}\left\{B_{0}, B_{1}\right\} \cup \operatorname{co}\left\{B_{1}, B_{2}\right\} \cup \cdots \cup \operatorname{co}\left\{B_{N-1}, B_{N}\right\}
$$

The Ray-Fish Colony for a Polygonal Chain

Given the matrices $B_{0}, B_{1}, \ldots, B_{N} \in \mathbb{R}^{m \times n}$, consider a positive natural ℓ,

- divide each of the line segments $\left[B_{0}, B_{1}\right],\left[B_{1}, B_{2}\right], \ldots,\left[B_{N-1}, B_{N}\right]$ by $(\ell-1)$ points $S_{1}^{1}, \ldots, S_{\ell-1}^{1}, S_{1}^{2}, \ldots, S_{\ell-1}^{2}, \ldots, S_{1}^{N}, \ldots, S_{\ell-1}^{N}$, equidistantly,
- consider also the intervening transitional matrices:

$$
\begin{aligned}
& B_{0}=S_{0}^{1}=T_{S_{0}^{1} S_{1}^{1}}^{0}, \ldots, T_{S_{0}^{1} S_{1}^{1}}^{m}=S_{1}^{1}=T_{S_{1}^{1} S_{2}^{1}}^{0}, \ldots, T_{S_{1}^{1} S_{2}^{1}}^{m}=S_{2}^{1}=T_{S_{2}^{1} S_{3}^{1}}^{0}, \ldots, T_{S_{\ell-1}^{1} S_{\ell}^{1}}^{m}=S_{\ell}^{1}=B_{1} \\
& B_{1}=S_{0}^{2}=T_{S_{0}^{2} S_{1}^{2}}^{0}, \ldots, T_{S_{0}^{2} S_{1}^{2}}^{m}=S_{1}^{2}=T_{S_{1}^{2} S_{2}^{2}, \ldots, T_{S_{1}^{2} S_{2}^{2}}^{m}=S_{2}^{2}=T_{S_{2}^{2} S_{3}^{2}}^{0}, \ldots, T_{S_{\ell-1}^{2} S_{\ell}^{2}}^{m}=S_{\ell}^{2}=B_{2}}
\end{aligned}
$$

$$
B_{N-1}=S_{0}^{N}=T_{S_{0}^{N} S_{1}^{N}}^{0}, \ldots, T_{S_{0}^{N} S_{1}^{N}}^{m}=S_{1}^{N}=T_{S_{1}^{N} S_{2}^{N}}^{0}, \ldots, T_{S_{1}^{N} S_{2}^{N}}^{m}=S_{2}^{N}=T_{S_{2}^{N} S_{3}^{N}, \ldots,}^{0} T_{S_{\ell-1}^{N} S_{\ell}^{N}}^{m}=S_{\ell}^{N}=B_{N}
$$

- and rename this long cortege of matrices to $Q_{0}, \ldots, Q_{\ell m N}$.

The Ray-Fish Colony for a Polygonal Chain

We then have:

$$
\operatorname{dist}\left(Q_{j},\left[B_{0}, B_{1}, \ldots, B_{N}\right]\right) \leq \frac{1}{\ell} \max \left\{\left\|B_{0}-B_{1}\right\|, \ldots,\left\|B_{N-1}-B_{N}\right\|\right\} \downarrow 0 \quad \text { as } \quad \ell \rightarrow \infty
$$

Notice also that

$$
\operatorname{rank}\left(Q_{j}-Q_{j+1}\right) \leq 1 \quad \text { for } \quad j=0, \ldots, \ell m N-1
$$

By applying the Ray-Fish Colony Construction, we obtain:

The Ray-Fish Colony for a Polygonal Chain: Lemma 4

Let $\gamma>0$ and let $B_{0}, B_{1}, \ldots, B_{N} \in \mathbb{R}^{m \times n}$ be any matrices.
Then there exists a Lipschitzian mapping $h_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that it is finitely piecewise affine and

- $h_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}(x)=B_{0} x$ for all $x \in \mathbb{R}^{n} \backslash \mathbb{B}_{n}$,
- $h_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}^{\prime}(x)=B_{N}$ for all x from a non-empty open set $\Omega_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]} \subset \mathbb{B}_{n}$,
- and

$$
\operatorname{dist}\left(h_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}^{\prime}(x),\left[B_{0}, B_{1}, \ldots, B_{N}\right]\right)<\gamma
$$

whenever $h_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}$ is differentiable at $x \in \mathbb{R}^{n}$.

Ray-Fish Colony Construction

 for a Polygonal ChainNotice that the open set
$\Omega_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]} \subset \mathbb{B}_{n}$ is the very
last open set $\Omega_{\alpha, T_{S_{\ell-1} B_{N}}^{m-1}, B_{N}}$
inside the very last ray-fish inside.

The Corona Construction

For a $\gamma>0$ and for $B_{0}, B_{1}, \ldots, B_{N} \in \mathbb{R}^{m \times n}$, we have constructed (recursively) the Ray-Fish Colony $h_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ for the polygonal chain $\left[B_{0}, B_{1}, \ldots, B_{N}\right]$.

The non-empty open set $\Omega_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]} \subset \mathbb{B}_{n}$ is very small:
Now, make many copies of this ray-fish colony $h_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}$, shift them and place them beyond the sphere of radius 3 , say, in such a way that each ray emanating from the origin passes through at least one of the (shifted) open sets $\Omega_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}$, the colonies being pairwise disjoint.

The Corona Construction

The Corona Construction

Plenty (finitely many) of copies of the ray-fish colony " \circ " $=h_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}$ are placed into a spherical shell $T(\rho, P)=\left\{x \in \mathbb{R}^{n}: \rho \leq\|x\| \leq P\right\}$ in such a way that

- the colonies are pairwise disjoint, and
- each ray emanating from the origin passes through at least one of the (shifted) tiny open set " \cdot " $=\Omega_{\gamma,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}$ for $0<\rho<P<+\infty$.

We thus obtain:

Ray-Fish Corona Construction for a Polygonal Chain: Lemma 5

Let $\delta>0$ and let $B_{0}, B_{1}, \ldots, B_{N} \in \mathbb{R}^{m \times n}$ be any matrices.
Then there exist numbers $0<\rho_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}<P_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}<+\infty$ and a finitely piecewise affine Lipschitzian mapping $\varphi_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

- $\varphi_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}(x)=B_{0} x$ for all $x \in \mathbb{R}^{n} \backslash T\left(\rho_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}, P_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}\right)$,
- for every subspace $\{0\} \nsubseteq W \subset \mathbb{R}^{n}$, there are a $w \in W$ and a $\lambda>0$ such that the ball $B(w, \lambda) \subset T\left(\rho_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}, P_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}\right)$ and $\varphi_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}^{\prime}(x)=B_{N}$ for all $x \in W \cap B(w, \lambda)$,
- and

$$
\operatorname{dist}\left(\varphi_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}^{\prime}(x),\left[B_{0}, B_{1}, \ldots, B_{N}\right]\right)<\delta
$$

whenever $\varphi_{\delta,\left[B_{0}, B_{1}, \ldots, B_{N}\right]}$ is differentiable at $x \in \mathbb{R}^{n}$.

Finale

Finale

Given a non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices, it is our purpose to construct a Lipschitzian mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
such that

$$
\partial g(0)=\mathcal{P}
$$

actually

$$
\partial g_{\mid W}(0)=\mathcal{P}_{\mid W} \quad \text { for every linear subspace } \quad\{0\} \nsubseteq W \subset \mathbb{R}^{n}
$$

Finale

The non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices is separable.
Therefore, there exists a countable sequence

$$
B_{0}, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, \ldots \in \mathcal{P}
$$

such that the convex hull

$$
\operatorname{co}\left\{B_{0}, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, \ldots\right\}
$$

of the set is dense in \mathcal{P}.
(Remark: If already $\operatorname{co}\left\{B_{0}, B_{1}, \ldots, B_{N}\right\}$ is dense in \mathcal{P}, then

consider $\left.B_{0}, B_{1}, \ldots, B_{N}, B_{0}, B_{1}, \ldots, B_{N}, B_{0}, B_{1}, \ldots, B_{N}, \ldots\right)$

Finale

Given the non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices and having the countably infinite sequence $B_{0}, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, \ldots \in \mathcal{P}$, consider the longer and longer polygonal chains

$$
\begin{gathered}
{\left[B_{0}, B_{1}\right]} \\
{\left[B_{0}, B_{1}, B_{2}\right]} \\
{\left[B_{0}, B_{1}, B_{2}, B_{3}\right]} \\
{\left[B_{0}, B_{1}, B_{2}, B_{3}, B_{4}\right]} \\
{\left[B_{0}, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right]} \\
\text { and so on }
\end{gathered}
$$

Finale

Given the non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices and having polygonal chains $\left[B_{0}, B_{1}, \ldots, B_{N}\right]$ for each $N \in \mathbb{N}$, consider also a decreasing sequence

$$
\delta_{1}>\delta_{2}>\delta_{3}>\delta_{4}>\delta_{5}>\cdots>0
$$

such that

$$
\delta_{N} \downarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

Finale

Given the non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices, having polygonal chains $\left[B_{0}, B_{1}, \ldots, B_{N}\right]$ for each $N \in \mathbb{N}$, and having also the decreasing sequence $\delta_{N} \downarrow 0$, with $N \in \mathbb{N}$, construct the Coronas for these polygonal chains with these "delta's":

$$
\begin{gathered}
\varphi_{\delta_{1},\left[B_{0}, B_{1}\right]} \\
\varphi_{\delta_{2},\left[B_{0}, B_{1}, B_{2}\right]} \\
\varphi_{\delta_{3},\left[B_{0}, B_{1}, B_{2}, B_{3}\right]} \\
\varphi_{\delta_{4},\left[B_{0}, B_{1}, B_{2}, B_{3}, B_{4}\right]} \\
\varphi_{\delta_{5},\left[B_{0}, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right]} \\
\text { and so on }
\end{gathered}
$$

Finale

Given the non-empty compact convex set $\mathcal{P} \subset \mathbb{R}^{m \times n}$ of matrices,

- take the first corona $\varphi_{\delta_{1},\left[B_{0}, B_{1}\right]}$,
- take the second corona $\varphi_{\delta_{2},\left[B_{0}, B_{1}, B_{2}\right]}$ and shrink it to be inside the first one
- take the third corona $\varphi_{\delta_{3},\left[B_{0}, B_{1}, B_{2}, B_{3}\right]}$ and shrink it to be inside the second one
- take the fourth corona $\varphi_{\delta_{4},\left[B_{0}, B_{1}, B_{2}, B_{3}, B_{4}\right]}$ and shrink it to be inside the third one
- and so on

That is, the coronas tend to the origin.

Finale

We have thus obtained:

Finale: The Main Result: Theorem

Let $m, n \in \mathbb{N}$ and let $\mathcal{P} \subset \mathbb{R}^{m \times n}$ be any non-empty compact convex set of matrices.

Then there exists a countably piecewise affine Lipschitzian mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, with $g(0)=0$, such that, for every linear subspace $\{0\} \subsetneq W \subset \mathbb{R}^{n}$, the Clarke Jacobian

$$
\partial g_{\mid W}(0)=\mathcal{P}_{\mid W}
$$

References

- D. Bartl, M. Fabian, Every compact convex subset of matrices is the Clarke Jacobian of some Lipschitzian mapping,

Proceedings of the American Mathematical Society, in press.

- D. Bartl, M. Fabian, Can Pourciau's open mapping theorem be derived from Clarke's inverse mapping theorem easily?, Journal of Mathematical Analysis and Applications 497(2) (2021) 124858.

Thank You

 for your attention