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Introduction



The Framework:

X : real Banach space, X∗ : continuous dual, 〈·, ·〉 the pairing
between X and X∗. For f : X → R ∪ {+∞},
• dom f = {x ∈ X : f(x) < +∞} (domain ).
• epi (f) = {(x, α) ∈ X × R : f(x) ≤ α} (epigraph ).
• For any λ ∈ R

[f ≤ λ] .= {x ∈ X : f(x) ≤ λ} (sublevel set at height λ)
[f < λ]

.
= {x ∈ X : f(x) < λ} (strict sublevel set at height λ)



Motivation: convex functions vs quasiconvex functions

f convex⇔ Epi(f) is convex.

f quasiconvex⇔ Sλ is convex, ∀λ ∈ R.

I If f, g convex⇒ f + g convex.
I If f, g quasiconvex⇒ f + g is not in general quasiconvex.

Example
f(x) = x2, g(x) = −x3 ⇒ (f + g)(x) = x2 − x3.
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Motivation: convex functions vs quasiconvex functions

Characterization subdifferential

I f convex: (classical) Subdifferential
f is a lcs convex⇔ ∂f maximal monotone.

I f lsc: Clarke-Rockafellar subdifferential:

∂f(x) = {x∗ ∈ X : f↑(x, u) ≥ 〈x∗, u〉,∀ u ∈ X
}
, x ∈ domf.[6]

f quasiconvex lcs⇔ ∂f quasimonotone. [3]

I T : X ⇒ X∗ monotone, x∗ ∈ X∗ ⇒ T + x∗ monotone.
I [3] T : X ⇒ X∗ quasimonotone⇒

[∀x∗ ∈ X∗, T + x∗ quasimonotone ⇔ T monotone.]
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How do we preserve quasi-convexity under summation?

A natural case: f : X → R ∪ {+∞} quasiconvex and g : R→ R
nondecreasing.

[g ◦ f ≤ λ] , is convex ∀λ ∈ R

so, g ◦ f quasiconvex and it is easy to show that f + g ◦ f is
quasiconvex.

g ◦ f + f is quasiconvex.

in other cases?



Quasiconvex and quasimonotone families



Definition
A family A of operators Ti : X ⇒ X∗, i ∈ I, will be called a
quasimonotone family, if the operator T with graph
Gr T =

⋃
i∈I

Gr Ti is quasimonotone.

Two operators T1, T2 will be called a quasimonotone pair if {T1, T2} is
a quasimonotone family.

Definition
A family of functions fi : X → R ∪ {+∞}, i ∈ I, is called a
quasiconvex family if for every i, j ∈ I and every x, y ∈ X, z ∈ ]x, y[,
the following implication holds:

fi(x) < fi(z)⇒ fj(z) ≤ fj(y).

Two functions f1, f2 will be called a quasiconvex pair, if {f1, f2} is a
quasiconvex family.
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First result

Our first main result relates quasiconvexity of a pair of functions to
quasi- monotonicity of the pair of subdifferentials.

Theorem
Let f1, f2 : X → R ∪ {+∞} be lsc functions. Then {f1, f2} is a
quasiconvex pair if and only if {∂f1, ∂f2} is a quasimonotone pair.
Tools:

[[2, Corollary 4.3]]
Let f : X → R ∪ {+∞} be a lsc function, and a, b ∈ X with f(a) < f(b). Then there
exist c ∈ [a, b[ and sequences xn → c and x∗n ∈ ∂f(xn), such that f (xn)→ f(c) and
〈x∗n, x− xn〉 > 0, for every x = c+ t (b− a) with t > 0.

[[1, Theorem 2.1]]
Let f : X → R ∪ {+∞} be a lsc function. The following are equivalent:

(i) f is quasiconvex;

(ii) ∃ x∗ ∈ ∂f(x) : 〈x∗, y − x〉 > 0⇒ f(z) ≤ f(y), ∀z ∈ [x, y].



How big is the class of quasiconvex pairs of lsc functions

Candidates:
Type 1: f1 and f2 are quasiconvex, and there is a proportionality

between the subdifferentials: ∂fi(x) ⊆ R+∂fj(x),∀x ∈ X,
i 6= j,i = 1 or i = 2.

Type 2: f1 and f2 are nondecreasing transformations of a same
quasiconvex function; that is, there exists a quasiconvex
function g and nondecreasing functions h1, h2 such that
f1 = h1 ◦ g and f2 = h2 ◦ g.

Type 3: f1,f2 quasiconvex with argmin f1 ∩ argmin f2 6= ∅.



Examples:

Type 3
• X = R2;
- f1(x1, x2) = min

{
100x21 + x22, 1

}
;

- f2(x1, x2) = min
{
x21 + 100x22, 1

}
.

- argmin f1 = argmin f2 = {0}.
- f = f1 + f2: f (0.8, 0) = f (0, 0.8) = 1.64; f (0.4, 0.4) = 2
⇒ f is not quasiconvex.

Neither Type 1 nor Type 2
• X = R;

f1(x) =

{
x2, x < 1,
1, x ≥ 1

; f2(x) = f1 (−x).

∂f1 ∪ ∂f2 is quasimonotone;
Neither R+∂f1(x) ⊆ R+∂f2(x), ∀ x ∈ Dom ∂f2, nor
R+∂f2(x) ⊆ R+∂f1(x), ∀x ∈ Dom ∂f1 hold.
f1 + f2 is quasiconvex.



Characterizations of quasiconvexity of the minimum of any vertical translation

of two quasiconvex functions.

Theorem
Assume that the functions f1, f2 are quasiconvex. Then, the
following assertions are equivalent:

(a) {f1, f2} is a quasiconvex pair.
(b) for every λ1, λ2 ∈ R, [f1 ≤ λ1] ∪ [f2 ≤ λ2] is convex.
(c) for every λ1, λ2 ∈ R, [f1 < λ1] ∪ [f2 < λ2] is convex.
(d) for every x ∈ X, [f1 < f1(x)] ∪ [f2 < f2(x)] is convex.
(e) for every α ∈ R, the function hα defined by

hα(x)
.
= min{f1(x) + α, f2(x)} is quasiconvex.

* Equivalences (a) − (e) are true in any vector space



Example
Here, argmin f1 ∩ argmin f2 = ∅. Simply consider f1(x) = min {0, x}
and f2(x) = max {0, x}. The subdifferentials are a quasimonotone
pair, whereas one function has no minima, the other does have
minima. It is obvious that f1 + f2 and min{f1, f2} are quasiconvex.

Example
Consider the functions f1, f2 defined on R2 by

f1 (x1, x2) =

 max {arctanx1, 0} if −1 ≤ x2 ≤ +1
π
2 if x2 < −1

x2 − 1 + π
2 if x2 > 1

f2(x1, x2) =

 max {− arctanx1, 0} if −1 ≤ x2 ≤ +1
−x2 − 1 + π

2 if x2 < −1
π
2 if x2 > 1

One may check that the union of any two sublevel sets is convex, so
the functions are a quasiconvex pair⇒ min{f1, f2} is quasiconvex.



Some consequences for the sum of quasiconvex functions

Let J .
= {1, 2, . . . ,m}.

Theorem
Let {fi : i ∈ J} be a quasiconvex family. Then
f1 + f2 + · · ·+ fm and min{f1, f2, · · · , fn} are quasiconvex.

Another characterization:

Proposition
Let f1, f2 be functions on X. Then {f1, f2} is a quasiconvex
pair, iff for every pair of nondecreasing functions h1, h2, the
function h1 ◦ f1 + h2 ◦ f2 is quasiconvex.
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Remark
The result that the sum of two convex functions is convex, and so
quasiconvex, cannot be re-obtained with our results /.
But

I We show that our class of functions, for which the sum of
quasiconvex functions is quasiconvex, contains not trivial
functions and

I · · ·



Other properties that are preserved under summation in a
quasiconvex family

f is semistrictly quasiconvex if

[x, y ∈ dom f, f(x) 6= f(y)]⇒
[
f(tx+ (1− t)y) < max

{
f(x), f(y)

}
, ∀ t ∈ ]0, 1[.

]
The sum of two semistrictly quasiconvex functions is not necessarily
semistrictly quasiconvex.

Example
f1 (x) = x and f2(x) = min

{
−x,−x2

}
.

f1, f2 : semistrictly quasiconvex, but their sum is not.

Proposition
Let f1, f2, . . . , fm be lsc and semistrictly quasiconvex (and so
quasiconvex) functions. If {fi : i ∈ J} is a quasiconvex family, then
the sum f1 + f2 + · · ·+ fm is also semistrictly quasiconvex.



The C-family

C ⊆ Rn

C∞
.
= {v ∈ Rn : ∃ tk → +∞, ∃ xk ∈ C,

xk
tk
→ v}. (asymptotic cone).

Definition ([[10], [9]])
It is said that f belongs to C if for all x ∈ dom f and all v ∈ (dom f)∞,
v 6= 0, one has either

(i) 0 ≤ t 7→ f(x+ tv) is nonincreasing, or

(ii) lim
t→+∞

f(x+ tv) = +∞.

Remark: f convex or coercive then f ∈ C;

Proposition
Let f1, f2, . . . , fm be lsc functions on X, such that

{fi : i ∈ J} is a quasiconvex family .

If fi ∈ C for all i ∈ J , then f1 + f2 + · · ·+ fm ∈ C.



Q-subdifferential ([14])

f : Rn → R,
∂Qf(x) =

{
(v, t) ∈ Rn+1 : 〈v, x〉 ≥ t and f(y) ≥ f(x) if 〈v, y〉 ≥ t

}
.

Theorem ([14])
Let f, g : Rn → R For each x ∈ Rn, assume that at least one of the
following conditions is satisfied:

(i) [f < f(x)] ⊆ [g < g(x)]

(ii) [g < g(x)] ⊆ [f < f(x)]

(iii) ∂Qf(x) ⊆ ∂Qg(x)

(iv) ∂Qg(x) ⊆ ∂Qf(x).

Then f + g is quasiconvex.

Proposition
Let f, g be as in Theorem 8. Then {f, g} is a quasiconvex pair, and so
f + g and min{f, g} are quasiconvex.
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