Variational Analysis and Optimisation Webinars - March 31, 2021

Characterizing quasiconvexity of the pointwise infimum of a family of arbitrary translations of quasiconvex functions *

Yboon García Ramos garcia yv@up.edu.pe

*Join work with:

- Fabián Flores, Departamento de Ingeniería Matemática, Universidad de Concepción.
- Nicolas Hadjisavvas, Department of Product and Systems Design Engineering, University of the Aegean.

Introduction

The Framework:

X: real Banach space, X^* : continuous dual, $\langle \cdot, \cdot \rangle$ the pairing between X and X^* . For $f: X \to \mathbb{R} \cup \{+\infty\}$,

• dom $f = \{x \in X : f(x) < +\infty\}$ (domain).

- $\operatorname{epi}(f) = \{(x, \alpha) \in X \times \mathbb{R} : f(x) \le \alpha\}$ (epigraph).
- For any $\lambda \in \mathbb{R}$

 $[f \le \lambda] \doteq \{x \in X : f(x) \le \lambda\}$ (sublevel set at height λ) $[f < \lambda] \doteq \{x \in X : f(x) < \lambda\}$ (strict sublevel set at height λ)

 $f \operatorname{convex} \Leftrightarrow \operatorname{Epi}(f)$ is convex.

f quasiconvex $\Leftrightarrow S_{\lambda}$ is convex, $\forall \lambda \in \mathbb{R}$.

- If f, g convex $\Rightarrow f + g$ convex.
- ▶ If f, g quasiconvex $\Rightarrow f + g$ is not in general quasiconvex.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Example

 $f(x)=x^2,\,g(x)=-x^3\Rightarrow (f+g)(x)=x^2-x^3.$

 $f \operatorname{convex} \Leftrightarrow \operatorname{Epi}(f)$ is convex.

f quasiconvex $\Leftrightarrow S_{\lambda}$ is convex, $\forall \lambda \in \mathbb{R}$.

- If f, g convex $\Rightarrow f + g$ convex.
- If f, g quasiconvex $\Rightarrow f + g$ is not in general quasiconvex.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Example

$$f(x)=x^2,\,g(x)=-x^3\Rightarrow (f+g)(x)=x^2-x^3.$$

Characterization subdifferential

- ► f convex: (classical) Subdifferential f is a lcs convex $\Leftrightarrow \partial f$ maximal monotone.
- ► *f* lsc: Clarke-Rockafellar subdifferential:

 $\partial f(x) = \{x^* \in X : f^{\uparrow}(x, u) \ge \langle x^*, u \rangle, \forall u \in X\}, x \in \text{domf.}[6]$

f quasiconvex lcs $\Leftrightarrow \partial f$ quasimonotone. [3]

T: X ⇒ X* monotone, x* ∈ X* ⇒ T + x* monotone.
[3] T: X ⇒ X* quasimonotone ⇒

 $[\forall x^* \in X^*, T + x^* \text{ quasimonotone } \Leftrightarrow T \text{ monotone.}]$

Characterization subdifferential

► f convex: (classical) Subdifferential f is a lcs convex $\Leftrightarrow \partial f$ maximal monotone.

► *f* lsc: Clarke-Rockafellar subdifferential:

 $\partial f(x) = \{x^* \in X : f^{\uparrow}(x, u) \ge \langle x^*, u \rangle, \forall \ u \in X\}, \ x \in \text{domf.}[\mathbf{6}]$

f quasiconvex lcs $\Leftrightarrow \partial f$ quasimonotone. [3]

- $T: X \rightrightarrows X^*$ monotone, $x^* \in X^* \Rightarrow T + x^*$ monotone.
- [3] $T: X \rightrightarrows X^*$ quasimonotone \Rightarrow

 $[\forall x^* \in X^*, T + x^* \text{ quasimonotone } \Leftrightarrow T \text{ monotone.}]$

How do we preserve quasi-convexity under summation?

A natural case: $f: X \to \mathbb{R} \cup \{+\infty\}$ quasiconvex and $g: \mathbb{R} \to \mathbb{R}$ nondecreasing.

 $[g \circ f \leq \lambda]$, is convex $\forall \lambda \in \mathbb{R}$

so, $g \circ f$ quasiconvex and it is easy to show that $f + g \circ f$ is quasiconvex.

 $g \circ f + f$ is quasiconvex.

(日) (日) (日) (日) (日) (日) (日)

in other cases?

Quasiconvex and quasimonotone families

Definition

A family A of operators $T_i : X \rightrightarrows X^*$, $i \in I$, will be called a quasimonotone family, if the operator T with graph

 $\operatorname{Gr} T = \bigcup \operatorname{Gr} T_i$ is quasimonotone.

$$i \in I$$

Two operators T_1 , T_2 will be called a quasimonotone pair if $\{T_1, T_2\}$ is a quasimonotone family.

Definition

A family of functions $f_i : X \to \mathbb{R} \cup \{+\infty\}, i \in I$, is called a *quasiconvex family* if for every $i, j \in I$ and every $x, y \in X, z \in]x, y[$, the following implication holds:

$$f_i(x) < f_i(z) \Rightarrow f_j(z) \le f_j(y).$$

(日) (日) (日) (日) (日) (日) (日)

Two functions f_1, f_2 will be called a *quasiconvex pair*, if $\{f_1, f_2\}$ is a quasiconvex family.

Definition

A family A of operators $T_i : X \rightrightarrows X^*$, $i \in I$, will be called a quasimonotone family, if the operator T with graph

Gr
$$T = \bigcup$$
 Gr T_i is quasimonotone.

$$i \in I$$

Two operators T_1 , T_2 will be called a quasimonotone pair if $\{T_1, T_2\}$ is a quasimonotone family.

Definition

A family of functions $f_i : X \to \mathbb{R} \cup \{+\infty\}$, $i \in I$, is called a *quasiconvex family* if for every $i, j \in I$ and every $x, y \in X, z \in]x, y[$, the following implication holds:

$$f_i(x) < f_i(z) \Rightarrow f_j(z) \le f_j(y).$$

Two functions f_1, f_2 will be called a *quasiconvex pair*, if $\{f_1, f_2\}$ is a quasiconvex family.

A D F A 同 F A E F A E F A Q A

First result

Our first main result relates quasiconvexity of a pair of functions to quasi- monotonicity of the pair of subdifferentials.

Theorem

Let $f_1, f_2 : X \to \mathbb{R} \cup \{+\infty\}$ be lsc functions. Then $\{f_1, f_2\}$ is a quasiconvex pair if and only if $\{\partial f_1, \partial f_2\}$ is a quasimonotone pair. Tools:

[[2, Corollary 4.3]]

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a lsc function, and $a, b \in X$ with f(a) < f(b). Then there exist $c \in [a, b]$ and sequences $x_n \to c$ and $x_n^* \in \partial f(x_n)$, such that $f(x_n) \to f(c)$ and $\langle x_n^*, x - x_n \rangle > 0$, for every x = c + t (b - a) with t > 0.

(ロ) (同) (三) (三) (三) (○) (○)

[[1, Theorem 2.1]] Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a lsc function. The following are equivalent:

(i) f is quasiconvex;

 $(ii) \ \exists \ x^* \in \partial f(x): \langle x^*, y-x\rangle > 0 \Rightarrow f(z) \leq f(y), \forall z \in [x,y].$

How big is the class of quasiconvex pairs of lsc functions

Candidates:

- Type 1: f_1 and f_2 are quasiconvex, and there is a proportionality between the subdifferentials: $\partial f_i(x) \subseteq \mathbb{R}_+ \partial f_j(x), \forall x \in X$, $i \neq j, i = 1 \text{ or } i = 2$.
- Type 2: f_1 and f_2 are nondecreasing transformations of a same quasiconvex function; that is, there exists a quasiconvex function g and nondecreasing functions h_1 , h_2 such that $f_1 = h_1 \circ g$ and $f_2 = h_2 \circ g$.

(日) (日) (日) (日) (日) (日) (日)

Type 3: f_1, f_2 quasiconvex with argmin $f_1 \cap \operatorname{argmin} f_2 \neq \emptyset$.

Examples:

Туре 3

- $X = \mathbb{R}^2$;
- $-f_1(x_1, x_2) = \min\left\{100x_1^2 + x_2^2, 1\right\};$
- $f_2(x_1, x_2) = \min \{x_1^2 + 100x_2^2, 1\}.$
- argmin f_1 = argmin $f_2 = \{0\}$.
- $f = f_1 + f_2$: f(0.8, 0) = f(0, 0.8) = 1.64; f(0.4, 0.4) = 2

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \Rightarrow *f* is not quasiconvex.

Neither Type 1 nor Type 2

•
$$X = \mathbb{R}$$
;
 $f_1(x) = \begin{cases} x^2, x < 1, \\ 1, x \ge 1 \end{cases}$; $f_2(x) = f_1(-x)$.
 $\partial f_1 \cup \partial f_2$ is quasimonotone;
Neither $\mathbb{R}_+ \partial f_1(x) \subseteq \mathbb{R}_+ \partial f_2(x)$, $\forall x \in \text{Dom } \partial f_2$, nor
 $\mathbb{R}_+ \partial f_2(x) \subseteq \mathbb{R}_+ \partial f_1(x)$, $\forall x \in \text{Dom } \partial f_1$ hold.
 $f_1 + f_2$ is quasiconvex.

Characterizations of quasiconvexity of the minimum of any vertical translation of two quasiconvex functions.

Theorem

Assume that the functions f_1 , f_2 are quasiconvex. Then, the following assertions are equivalent:

* Equivalences (a) - (e) are true in any vector space

Example

Here, $\operatorname{argmin} f_1 \cap \operatorname{argmin} f_2 = \emptyset$. Simply consider $f_1(x) = \min\{0, x\}$ and $f_2(x) = \max\{0, x\}$. The subdifferentials are a quasimonotone pair, whereas one function has no minima, the other does have minima. It is obvious that $f_1 + f_2$ and $\min\{f_1, f_2\}$ are quasiconvex.

Example

Consider the functions f_1, f_2 defined on \mathbb{R}^2 by

$$f_1(x_1, x_2) = \begin{cases} \max \{ \arctan x_1, 0 \} & \text{if} \quad -1 \le x_2 \le +1 \\ \frac{\pi}{2} & \text{if} \quad x_2 < -1 \\ x_2 - 1 + \frac{\pi}{2} & \text{if} \quad x_2 > 1 \end{cases}$$

$$f_2(x_1, x_2) = \begin{cases} \max \{ -\arctan x_1, 0 \} & \text{if} \quad -1 \le x_2 \le +1 \\ -x_2 - 1 + \frac{\pi}{2} & \text{if} \quad x_2 < -1 \\ \frac{\pi}{2} & \text{if} \quad x_2 > 1 \end{cases}$$

One may check that the union of any two sublevel sets is convex, so the functions are a quasiconvex pair $\Rightarrow \min\{f_1, f_2\}$ is quasiconvex.

Some consequences for the sum of quasiconvex functions

Let
$$J \doteq \{1, 2, ..., m\}$$
.

Theorem Let $\{f_i : i \in J\}$ be a quasiconvex family. Then $f_1 + f_2 + \cdots + f_m$ and $\min\{f_1, f_2, \cdots, f_n\}$ are quasiconvex.

Another characterization:

Proposition

Let f_1, f_2 be functions on X. Then $\{f_1, f_2\}$ is a quasiconvex pair, iff for every pair of nondecreasing functions h_1, h_2 , the function $h_1 \circ f_1 + h_2 \circ f_2$ is quasiconvex.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Some consequences for the sum of quasiconvex functions

Let
$$J \doteq \{1, 2, \dots, m\}$$
.
Theorem
Let $\{f_i : i \in J\}$ be a quasiconvex family. Then
 $f_1 + f_2 + \dots + f_m$ and $\min\{f_1, f_2, \dots, f_n\}$ are quasiconvex.

Another characterization:

Proposition

Let f_1, f_2 be functions on X. Then $\{f_1, f_2\}$ is a quasiconvex pair, iff for every pair of nondecreasing functions h_1, h_2 , the function $h_1 \circ f_1 + h_2 \circ f_2$ is quasiconvex.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark

The result that the sum of two convex functions is convex, and so quasiconvex, cannot be re-obtained with our results $\odot.$ But

We show that our class of functions, for which the sum of quasiconvex functions is quasiconvex, contains not trivial functions and

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

••••

Other properties that are preserved under summation in a quasiconvex family

f is semistrictly quasiconvex if

 $[x,y\in \mathrm{dom}\; f,f(x)\neq f(y)] \Rightarrow \big[f(tx+(1-t)y)<\max\big\{f(x),f(y)\big\}, \forall\; t\in]0,1[.]\big]$

The sum of two semistrictly quasiconvex functions is not necessarily semistrictly quasiconvex.

Example

 $f_1(x) = x$ and $f_2(x) = \min\{-x, -\frac{x}{2}\}.$

 f_1, f_2 : semistrictly quasiconvex, but their sum is not.

Proposition

Let f_1, f_2, \ldots, f_m be lsc and semistrictly quasiconvex (and so quasiconvex) functions. If $\{f_i : i \in J\}$ is a quasiconvex family, then the sum $f_1 + f_2 + \cdots + f_m$ is also semistrictly quasiconvex.

The C-family

 $C \subseteq \mathbb{R}^n$ $C^{\infty} \doteq \{v \in \mathbb{R}^n : \exists t_k \to +\infty, \exists x_k \in C, \frac{x_k}{t_k} \to v\}.$ (asymptotic cone).

Definition ([[10], [9]])

It is said that f belongs to C if for all $x \in \text{dom } f$ and all $v \in (\text{dom } f)^{\infty}$, $v \neq 0$, one has either

(i)
$$0 \le t \mapsto f(x + tv)$$
 is nonincreasing, or

(*ii*)
$$\lim_{t \to +\infty} f(x + tv) = +\infty.$$

Remark: f convex or coercive then $f \in C$;

Proposition

Let f_1, f_2, \ldots, f_m be lsc functions on X, such that

 $\{f_i: i \in J\}$ is a quasiconvex family.

If $f_i \in \mathcal{C}$ for all $i \in J$, then $f_1 + f_2 + \cdots + f_m \in \mathcal{C}$.

Q-subdifferential ([14])

$$\begin{split} &f:\mathbb{R}^n\to\mathbb{R},\\ &\partial^Q f(x)=\left\{(v,t)\in\mathbb{R}^{n+1}:\langle v,x\rangle\geq t \text{ and } f(y)\geq f(x) \text{ if } \langle v,y\rangle\geq t\right\}. \end{split}$$

Theorem ([14])

Let $f, g : \mathbb{R}^n \to \mathbb{R}$ For each $x \in \mathbb{R}^n$, assume that at least one of the following conditions is satisfied:

(i)
$$[f < f(x)] \subseteq [g < g(x)]$$

- $(ii) \ [g < g(x)] \subseteq [f < f(x)]$
- $(iii) \ \partial^Q f(x) \subseteq \partial^Q g(x)$

 $(iv) \ \partial^Q g(x) \subseteq \partial^Q f(x).$

Then f + g is quasiconvex.

Proposition

Let f, g be as in Theorem 8. Then $\{f, g\}$ is a quasiconvex pair, and so f + g and $\min\{f, g\}$ are quasiconvex.

Q-subdifferential ([14])

$$\begin{split} &f:\mathbb{R}^n\to\mathbb{R},\\ &\partial^Q f(x)=\left\{(v,t)\in\mathbb{R}^{n+1}:\langle v,x\rangle\geq t \text{ and } f(y)\geq f(x) \text{ if } \langle v,y\rangle\geq t\right\}. \end{split}$$

Theorem ([14])

Let $f, g : \mathbb{R}^n \to \mathbb{R}$ For each $x \in \mathbb{R}^n$, assume that at least one of the following conditions is satisfied:

(i)
$$[f < f(x)] \subseteq [g < g(x)]$$

- $(ii) \ [g < g(x)] \subseteq [f < f(x)]$
- $(iii) \ \partial^Q f(x) \subseteq \partial^Q g(x)$

 $(iv) \ \partial^Q g(x) \subseteq \partial^Q f(x).$

Then f + g is quasiconvex.

Proposition

Let f, g be as in Theorem 8. Then $\{f, g\}$ is a quasiconvex pair, and so f + g and $\min\{f, g\}$ are quasiconvex.

References:

- AUSSEL, D., Subdifferential properties of quasiconvex and pseudoconvex functions: a unified approach, *J. Optim. Theory Appl.* **97**, 29–45 (1998).
- AUSSEL, D.; CORVELLEC, J.-N; LASSONDE, M., Mean value property and subdifferential criteria for lower semicontinuous functions, *Trans. Amer. Math. Soc.* **347**, 4147–4161 (1995).

AUSSEL, D.; CORVELLEC, J.-N.; LASSONDE, M., Subdifferential characterization of quasiconvexity and convexity, *J. Convex Anal.*, **1** (1994), 195–201.

AUSSEL, D.; DANIILIDIS, A., Normal characterization of the main classes of quasiconvex functions, *Set-Valued Anal.*, **8**(2000), 219–236.

BORDE, J.; CROUZEIX, J.-P., Continuity properties of the normal cone to the level sets of a quasiconvex function, *J. Optim. Theory Appl.*, **66** (1990), 415–429.

CLARKE, F. H., *Optimization and nonsmooth analysis*. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons Inc., New York, 1983.

CROUZEIX, J.-P., *Contributions à l'etude des fonctions quasi-convexes*, Thèse d'Etat, Université de Clermont-Ferrand II, 1977, pp. 231.

FLORES-BAZÁN, F.; ECHEGARAY, W.; FLORES-BAZÁN, FERNADO; OCAÑA, E.: Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap, *J. Global Optim.*, **69** (2017) 823–845.

FLORES-BAZÁN, F.; HADJISAVVAS, N., Zero-scale asymptotic functions and quasiconvex optimization, *J. Convex Anal.*, **26** (2019) 1253–1274.

FLORES-BAZÁN, F.; HADJISAVVAS, N.; LARA, F.; MONTENEGRO, I.: First- and second- order asymptotic analysis with applications in quasiconvex optimization, *J. Optim. Theory Appl.*, **170** (2016) 372–393.

FLORES-BAZÁN, F.; HADJISAVVAS, N.; VERA, C., An optimal alternative theorem and applications to mathematical programming, *J. Global Optim.*, **37** (2007), 229–243,

FLORES-BAZÁN, F.; MASTROENI, G.; VERA, C., Proper or weak efficiency via saddle point conditions in cone-constrained nonconvex vector optimization problems, *J. Optim. Theory Appl.*, **181** (2019) 787–816.

HADJISAVVAS, N., The use of subdifferentials for studying generalized convex functions, *J. Stat. Manag. Syst.*, **5** (2002), 125–139.

SUZUKI, S., Quasiconvexity of sum of quasiconvex functions, *Lin. Nonlin. Analysis*, **3** (2017), 287-295.

TANAKA, T., Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions, *J. Optim. Theory Appl.*, **81** (1994), 355–377.

(ロ) (同) (三) (三) (三) (○) (○)