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Introduction



The Framework:

X : real Banach space, X* : continuous dual, (-, -) the pairing
between X and X*. For f : X — RU {400},

o dom f={xr e X: f(z) < +oo} (domain ).

o epi(f) ={(z,0) € X xR: f(z) < a} (epigraph).

e Forany A e R

[f <Al ={x € X : f(x) < A} (sublevel set at height \)
[f <Al ={x € X : f(x) < A} (strict sublevel set at height \)



Motivation: convex functions vs quasiconvex functions

f convex < Epi(f) is convex.

f quasiconvex < S, is convex, V A € R.




Motivation: convex functions vs quasiconvex functions

f convex < Epi(f) is convex.

f quasiconvex < S, is convex, V A € R.

» If f,g convex = f + g convex.
» If f, g quasiconvex = f + g is not in general quasiconvex.

Example
f@) =22, g(a) = —2* = (f +g)(x) = 2* — o5,



Motivation: convex functions vs quasiconvex functions

Characterization subdifferential

» f convex: (classical) Subdifferential
fis alcs convex < 9f maximal monotone.
» fIsc: Clarke-Rockafellar subdifferential:

of(x) ={z* € X : fM(z,u) > (*,u),Yuec X}, z € domf.[6]

f quasiconvex Ics < df quasimonotone. [3]




Motivation: convex functions vs quasiconvex functions

Characterization subdifferential

» f convex: (classical) Subdifferential
fis alcs convex < 9f maximal monotone.
» fIsc: Clarke-Rockafellar subdifferential:

of(x) ={z* € X : fM(z,u) > (*,u),Yuec X}, z € domf.[6]

f quasiconvex Ics < df quasimonotone. [3]

» T : X = X* monotone, x* € X* = T + xx monotone.
» [3] T : X = X* quasimonotone =

Vz* € X*, T + =* quasimonotone < T monotone.]



How do we preserve quasi-convexity under summation?

A natural case: f: X - RU {+o0o} quasiconvexand g : R — R
nondecreasing.

[go f < )], isconvex VA € R

S0, g o f quasiconvex and it is easy to show that f + go fis
quasiconvex.

go f+ fis quasiconvex.

in other cases?



Quasiconvex and quasimonotone families



Definition
A family A of operators T; : X = X*, i € I, will be called a
quasimonotone family, if the operator T" with graph
GrT = U Gr T, is quasimonotone.

i€l
Two operators T3, T will be called a quasimonotone pair if {71,T>} is
a quasimonotone family.




Definition
A family A of operators T; : X = X*, i € I, will be called a
quasimonotone family, if the operator T" with graph
GrT = U Gr T, is quasimonotone.

el
Two operators T3, T will be called a quasimonotone pair if {71,T>} is
a quasimonotone family.

Definition

A family of functions f; : X — RU {+o0}, i € I, is called a
quasiconvex family if for every i,j € I and every z,y € X, z € |z, y|,
the following implication holds:

fi(z) < fi(z) = fi(2) < f5(y).

Two functions fi, f> will be called a quasiconvex pair, if {f1, f2} is a
quasiconvex family.



First result

Our first main result relates quasiconvexity of a pair of functions to
quasi- monotonicity of the pair of subdifferentials.

Theorem

Let f1, fo : X = RU {400} be Isc functions. Then {f1, f2} is a
quasiconvex pair if and only if {0 f1,0f>} is a quasimonotone pair.
Tools:

[[2, Corollary 4.3]]

Let f : X — R U {+o0} be alsc function, and a,b € X with f(a) < f(b). Then there
exist ¢ € [a, b[ and sequences z, — cand z}, € df(zx ), such that f (zn) — f(c) and
(z},x —xn) >0, foreveryx = c+t(b—a)witht > 0.

[[1, Theorem 2.1]]
Let f : X — R U {+o0} be alsc function. The following are equivalent:
(i) f is quasiconvex;

(it) Fz* € of(x) : (x*,y—xz) > 0= f(2) < f(y),Vz € [z,y].



How big is the class of quasiconvex pairs of Isc functions

Candidates:

Type 1: f1 and f, are quasiconvex, and there is a proportionality
between the subdifferentials: df;(z) C R, 0f;(z)Vx € X,
i#ji=10ri=2.

Type 2: f1 and f, are nondecreasing transformations of a same
quasiconvex function; that is, there exists a quasiconvex
function g and nondecreasing functions h1, he such that
Ji=hiogand fa =hyog.

Type 3: f1,f2 quasiconvex with argmin f; N argmin fo # 0.



Examples:

Type 3

e X =R?;

- fi(z1,z2) = min {100I% + 3, 1} :

- fa(z1, 22) = min {27 + 10023, 1}.

- argmin f; = argmin fy = {0}.

-f=fi+ f2: £(0.8,0)= f(0,0.8) = 1.64; f(0.4,0.4) = 2
= f is not quasiconvex.

Neither Type 1 nor Type 2
o X =R; )
9 < ]" .
RO ={ IS0 A =)
df1 U 0 fs is quasimonotone;
Neither R;0f1(x) C Rydfa(x), ¥V & € Dom d fa, NOr

R4 0 f2(x) C RLOf1(z), Vo € Domdfy hold.
f1 + fo is quasiconvex.



Characterizations of quasiconvexity of the minimum of any vertical translation
of two quasiconvex functions.

Theorem
Assume that the functions f1, fo are quasiconvex. Then, the
following assertions are equivalent:
(a) {f1, f2} is a quasiconvex pair.
(b) forevery M\, Ay € R, [f1 < AM1] U [f2 < Ao is convex.
(c) forevery A1, 2 € R, [f1 < A1] U [fa < Ao] is convex.
(d) foreveryx € X, [fi1 < fi(z)]U[fa < fa(x)] is convex.
(e) forevery a € R, the function h,, defined by
ha(x) = min{ fi(z) + o, fo(z)} is quasiconvex.

* Equivalences (a) — (e) are true in any vector space



Example

Here, argmin f; Nargmin fo = (). Simply consider f;(z) = min {0, x}
and f»(z) = max {0, z}. The subdifferentials are a quasimonotone
pair, whereas one function has no minima, the other does have
minima. It is obvious that f; + f> and min{ f;, fo} are quasiconvex.

Example
Consider the functions f1, f, defined on R? by

max {arctanz1,0} if —1<zy <41
™

fl (£U17.T2): 5 if To < —1
I271+g if To > 1
max {—arctanz;,0} if —1<azy <41
folz1,20) = —2p -1+ 7% if o < —1
z if T > 1

2

One may check that the union of any two sublevel sets is convex, so
the functions are a quasiconvex pair = min{ f, fo} is quasiconvex.



Some consequences for the sum of quasiconvex functions

Let J = {1,2,...,m}.

Theorem
Let{f;: i € J} be a quasiconvex family. Then

fi+ fo+-+ fmandmin{ f1, fo,- - - , fn} are quasiconvex.




Some consequences for the sum of quasiconvex functions

Let J = {1,2,...,m}.

Theorem
Let{f;: i € J} be a quasiconvex family. Then
fi+ fa+---+ fm @and min{ f1, fo,- - - , fn} are quasiconvex.

Another characterization:

Proposition

Let f1, fo be functions on X. Then { f1, f2} is a quasiconvex
pair, iff for every pair of nondecreasing functions hy, ha, the
function hy o f1 + hy o f5 is quasiconvex.



Remark
The result that the sum of two convex functions is convex, and so

quasiconvex, cannot be re-obtained with our results ®.
But

» We show that our class of functions, for which the sum of
quasiconvex functions is quasiconvex, contains not trivial

functions and



Other properties that are preserved under summation in a
quasiconvex family

f is semistrictly quasiconvex if
[z,y € dom f, f(z) # f(y)] = [f(tz + (1 — t)y) < max{f(z), f(y)}, ¥Vt €]0,1[]

The sum of two semistrictly quasiconvex functions is not necessarily
semistrictly quasiconvex.

Example

fi(z) =z and fo(z) = min {—z, % }.

f1, f2 : semistrictly quasiconvex, but their sum is not.

Proposition

Let f1, fo,..., fm be Isc and semistrictly quasiconvex (and so
quasiconvex) functions. If {f; : i € J} is a quasiconvex family, then
the sum f1 + fo + -+ + f. IS also semistrictly quasiconvex.



The C-family

CCR"»
C*={veR": It = +o0, Jz}, € C, % — v}. (asymptotic cone).
k

Definition ([[10], [9]])
It is said that f belongs to C if for all x € dom f and all v € (dom f)°°,
v # 0, one has either

(i) 0 <t f(xz+ tv)is nonincreasing, or
(i1) t_l}+moof(x + tv) = +o0.
Remark: f convex or coercive then f € C;
Proposition
Let f1, fo,..., fm be lsc functions on X, such that

{fi: i€ J} is a quasiconvex family.

If fieCforallie J, then fi + fo+---+ fm €C.



Q-subdifferential ([14])
f:R*” > R,
09 f(z) = {(v,t) e R (v,2) >tand f(y) > f(x)if (v,y) > t}.

Theorem ([14])

Let f,g : R™ — R For each x € R™, assume that at least one of the
following conditions is satisfied:

(1) [f < f(@)] €9 <g(x)]
(i1) [g < g(x)] C[f < f(z)]
(iii) 99 f(x) C 99%(x)
(iv) 89(x) C 99 f(x).

Then f + g is quasiconvex.



Q-subdifferential ([14])
f:R*” > R,
09 f(z) = {(v,t) e R (v,2) >tand f(y) > f(x)if (v,y) > t}.
Theorem ([14])

Let f,g : R™ — R For each x € R™, assume that at least one of the
following conditions is satisfied:

(1) [f <f@)] Clg <glx)]
(i) g <g(@)] C[f < f(=)]
(ii1) 99f(x) € 0%(x)
(iv) 8%(x) C 92 (x).
Then f + g is quasiconvex.

Proposition

Let f, g be as in Theorem 8. Then {f, g} is a quasiconvex pair, and so
f+ g andmin{f, g} are quasiconvex.
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