Variational Analysis and Optimisation Webinars - March 31, 2021

Characterizing quasiconvexity of the pointwise infimum of a family of arbitrary translations of quasiconvex functions *

Yboon García Ramos
garcia_yv@up.edu.pe

*Join work with:

- Fabián Flores, Departamento de Ingeniería Matemática, Universidad de Concepción.
- Nicolas Hadjisavvas, Department of Product and Systems Design Engineering, University of the Aegean.

Introduction

The Framework:

X : real Banach space, X^{*} : continuous dual, $\langle\cdot, \cdot\rangle$ the pairing between X and X^{*}. For $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$,

- $\operatorname{dom} f=\{x \in X: f(x)<+\infty\}$ (domain).
- epi $(f)=\{(x, \alpha) \in X \times \mathbb{R}: f(x) \leq \alpha\}$ (epigraph).
- For any $\lambda \in \mathbb{R}$

$$
\begin{aligned}
& {[f \leq \lambda] \doteq\{x \in X: f(x) \leq \lambda\} \text { (sublevel set at height } \lambda \text {) }} \\
& {[f<\lambda] \doteq\{x \in X: f(x)<\lambda\} \text { (strict sublevel set at height } \lambda \text {) }}
\end{aligned}
$$

Motivation: convex functions vs quasiconvex functions

f convex $\Leftrightarrow \operatorname{Epi}(f)$ is convex.
f quasiconvex $\Leftrightarrow S_{\lambda}$ is convex, $\forall \lambda \in \mathbb{R}$.

- If f, g convex $\Rightarrow f+g$ convex.
- If f, g quasiconvex $\Rightarrow f+g$ is not in general quasiconvex.

Example
$f(x)=x^{2}, g(x)=-x^{3} \Rightarrow(f+g)(x)=x^{2}-x^{3}$.

Motivation: convex functions vs quasiconvex functions

f convex $\Leftrightarrow \operatorname{Epi}(f)$ is convex.
f quasiconvex $\Leftrightarrow S_{\lambda}$ is convex, $\forall \lambda \in \mathbb{R}$.

- If f, g convex $\Rightarrow f+g$ convex.
- If f, g quasiconvex $\Rightarrow f+g$ is not in general quasiconvex.

Example
$f(x)=x^{2}, g(x)=-x^{3} \Rightarrow(f+g)(x)=x^{2}-x^{3}$.

Motivation: convex functions vs quasiconvex functions

Characterization subdifferential

- f convex: (classical) Subdifferential f is a lcs convex $\Leftrightarrow \partial f$ maximal monotone.
- f Isc: Clarke-Rockafellar subdifferential:

$$
\partial f(x)=\left\{x^{*} \in X: f^{\uparrow}(x, u) \geq\left\langle x^{*}, u\right\rangle, \forall u \in X\right\}, x \in \operatorname{domf} \text {.[6] }
$$

f quasiconvex Ics $\Leftrightarrow \partial f$ quasimonotone. [3]

- $T: X \rightrightarrows X^{*}$ monotone, $x^{*} \in X^{*} \Rightarrow T+x *$ monotone.
- [3] $T: X \rightrightarrows X^{*}$ quasimonotone \Rightarrow

Motivation: convex functions vs quasiconvex functions

Characterization subdifferential

- f convex: (classical) Subdifferential f is a Ics convex $\Leftrightarrow \partial f$ maximal monotone.
- f Isc: Clarke-Rockafellar subdifferential:

$$
\partial f(x)=\left\{x^{*} \in X: f^{\uparrow}(x, u) \geq\left\langle x^{*}, u\right\rangle, \forall u \in X\right\}, x \in \operatorname{domf} \text {.[6] }
$$

f quasiconvex Ics $\Leftrightarrow \partial f$ quasimonotone. [3]

- $T: X \rightrightarrows X^{*}$ monotone, $x^{*} \in X^{*} \Rightarrow T+x *$ monotone.
- [3] $T: X \rightrightarrows X^{*}$ quasimonotone \Rightarrow

$$
\left[\forall x^{*} \in X^{*}, T+x^{*} \text { quasimonotone } \Leftrightarrow T \text { monotone. }\right]
$$

How do we preserve quasi-convexity under summation?

A natural case: $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ quasiconvex and $g: \mathbb{R} \rightarrow \mathbb{R}$ nondecreasing.

$$
[g \circ f \leq \lambda], \text { is convex } \forall \lambda \in \mathbb{R}
$$

so, $g \circ f$ quasiconvex and it is easy to show that $f+g \circ f$ is quasiconvex.

$$
g \circ f+f \text { is quasiconvex. }
$$

in other cases?

Quasiconvex and quasimonotone families

Definition

A family \mathcal{A} of operators $T_{i}: X \rightrightarrows X^{*}, i \in I$, will be called a quasimonotone family, if the operator T with graph
$\mathrm{Gr} T=\bigcup_{i \in I} \mathrm{Gr} T_{i}$ is quasimonotone.
Two operators T_{1}, T_{2} will be called a quasimonotone pair if $\left\{T_{1}, T_{2}\right\}$ is a quasimonotone family.

Definition
A family of functions $f_{i}: X \rightarrow \mathbb{R} \cup\{+\infty\}, i \in I$, is called a quasiconvex family if for every $i, j \in I$ and every the following implication holds:

Two functions f_{1}, f_{2} will be called a quasiconvex pair, if $\left\{f_{1}, f_{2}\right\}$ is a quasiconvex family.

Definition

A family \mathcal{A} of operators $T_{i}: X \rightrightarrows X^{*}, i \in I$, will be called a quasimonotone family, if the operator T with graph
$\mathrm{Gr} T=\bigcup_{i \in I} \mathrm{Gr} T_{i}$ is quasimonotone.
Two operators T_{1}, T_{2} will be called a quasimonotone pair if $\left\{T_{1}, T_{2}\right\}$ is a quasimonotone family.

Definition

A family of functions $f_{i}: X \rightarrow \mathbb{R} \cup\{+\infty\}, i \in I$, is called a quasiconvex family if for every $i, j \in I$ and every $x, y \in X, z \in] x, y[$, the following implication holds:

$$
f_{i}(x)<f_{i}(z) \Rightarrow f_{j}(z) \leq f_{j}(y) .
$$

Two functions f_{1}, f_{2} will be called a quasiconvex pair, if $\left\{f_{1}, f_{2}\right\}$ is a quasiconvex family.

First result

Our first main result relates quasiconvexity of a pair of functions to quasi- monotonicity of the pair of subdifferentials.

Theorem

Let $f_{1}, f_{2}: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be Isc functions. Then $\left\{f_{1}, f_{2}\right\}$ is a quasiconvex pair if and only if $\left\{\partial f_{1}, \partial f_{2}\right\}$ is a quasimonotone pair.
Tools:
[[2, Corollary 4.3]]
Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a Isc function, and $a, b \in X$ with $f(a)<f(b)$. Then there exist $c \in\left[a, b\left[\right.\right.$ and sequences $x_{n} \rightarrow c$ and $x_{n}^{*} \in \partial f\left(x_{n}\right)$, such that $f\left(x_{n}\right) \rightarrow f(c)$ and $\left\langle x_{n}^{*}, x-x_{n}\right\rangle>0$, for every $x=c+t(b-a)$ with $t>0$.
[[1, Theorem 2.1]]
Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a Isc function. The following are equivalent:
(i) f is quasiconvex;
(ii) $\exists x^{*} \in \partial f(x):\left\langle x^{*}, y-x\right\rangle>0 \Rightarrow f(z) \leq f(y), \forall z \in[x, y]$.

How big is the class of quasiconvex pairs of Isc functions

Candidates:

Type 1: f_{1} and f_{2} are quasiconvex, and there is a proportionality between the subdifferentials: $\partial f_{i}(x) \subseteq \mathbb{R}_{+} \partial f_{j}(x), \forall x \in X$, $i \neq j, i=1$ or $i=2$.
Type 2: f_{1} and f_{2} are nondecreasing transformations of a same quasiconvex function; that is, there exists a quasiconvex function g and nondecreasing functions h_{1}, h_{2} such that $f_{1}=h_{1} \circ g$ and $f_{2}=h_{2} \circ g$.
Type 3: f_{1}, f_{2} quasiconvex with argmin $f_{1} \cap \operatorname{argmin} f_{2} \neq \emptyset$.

Examples:

Type 3

- $X=\mathbb{R}^{2}$;
- $f_{1}\left(x_{1}, x_{2}\right)=\min \left\{100 x_{1}^{2}+x_{2}^{2}, 1\right\}$;
- $f_{2}\left(x_{1}, x_{2}\right)=\min \left\{x_{1}^{2}+100 x_{2}^{2}, 1\right\}$.
$-\operatorname{argmin} f_{1}=\operatorname{argmin} f_{2}=\{0\}$.
- $f=f_{1}+f_{2}: f(0.8,0)=f(0,0.8)=1.64 ; f(0.4,0.4)=2$
$\Rightarrow f$ is not quasiconvex.

Neither Type 1 nor Type 2

- $X=\mathbb{R}$;
$f_{1}(x)=\left\{\begin{array}{c}x^{2}, x<1, \\ 1, x \geq 1\end{array} \quad ; f_{2}(x)=f_{1}(-x)\right.$.
$\partial f_{1} \cup \partial f_{2}$ is quasimonotone;
Neither $\mathbb{R}_{+} \partial f_{1}(x) \subseteq \mathbb{R}_{+} \partial f_{2}(x), \forall x \in \operatorname{Dom} \partial f_{2}$, nor
$\mathbb{R}_{+} \partial f_{2}(x) \subseteq \mathbb{R}_{+} \partial f_{1}(x), \forall x \in \operatorname{Dom} \partial f_{1}$ hold.
$f_{1}+f_{2}$ is quasiconvex.

Characterizations of quasiconvexity of the minimum of any vertical translation of two quasiconvex functions.

Theorem

Assume that the functions f_{1}, f_{2} are quasiconvex. Then, the following assertions are equivalent:
(a) $\left\{f_{1}, f_{2}\right\}$ is a quasiconvex pair.
(b) for every $\lambda_{1}, \lambda_{2} \in \mathbb{R},\left[f_{1} \leq \lambda_{1}\right] \cup\left[f_{2} \leq \lambda_{2}\right]$ is convex.
(c) for every $\lambda_{1}, \lambda_{2} \in \mathbb{R},\left[f_{1}<\lambda_{1}\right] \cup\left[f_{2}<\lambda_{2}\right]$ is convex.
(d) for every $x \in X,\left[f_{1}<f_{1}(x)\right] \cup\left[f_{2}<f_{2}(x)\right]$ is convex.
(e) for every $\alpha \in \mathbb{R}$, the function h_{α} defined by $h_{\alpha}(x) \doteq \min \left\{f_{1}(x)+\alpha, f_{2}(x)\right\}$ is quasiconvex.

[^0]
Example

Here, argmin $f_{1} \cap \operatorname{argmin} f_{2}=\emptyset$. Simply consider $f_{1}(x)=\min \{0, x\}$ and $f_{2}(x)=\max \{0, x\}$. The subdifferentials are a quasimonotone pair, whereas one function has no minima, the other does have minima. It is obvious that $f_{1}+f_{2}$ and $\min \left\{f_{1}, f_{2}\right\}$ are quasiconvex.

Example

Consider the functions f_{1}, f_{2} defined on \mathbb{R}^{2} by

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{ccc}
\max \left\{\arctan x_{1}, 0\right\} & \text { if } & -1 \leq x_{2} \leq+1 \\
\frac{\pi}{2} & \text { if } & x_{2}<-1 \\
x_{2}-1+\frac{\pi}{2} & \text { if } & x_{2}>1
\end{array}\right. \\
& f_{2}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{clc}
\max \left\{-\arctan x_{1}, 0\right\} & \text { if } & -1 \leq x_{2} \leq+1 \\
-x_{2}-1+\frac{\pi}{2} & \text { if } & x_{2}<-1 \\
\frac{\pi}{2} & \text { if } & x_{2}>1
\end{array}\right.
\end{aligned}
$$

One may check that the union of any two sublevel sets is convex, so the functions are a quasiconvex pair $\Rightarrow \min \left\{f_{1}, f_{2}\right\}$ is quasiconvex.

Some consequences for the sum of quasiconvex functions
Let $J \doteq\{1,2, \ldots, m\}$.
Theorem
Let $\left\{f_{i}: i \in J\right\}$ be a quasiconvex family. Then
$f_{1}+f_{2}+\cdots+f_{m}$ and $\min \left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ are quasiconvex.

Another characterization:
Proposition
Let f_{1}, f_{2} be functions on X. Then $\left\{f_{1}, f_{2}\right\}$ is a quasiconvex pair, iff for every pair of nondecreasing functions h_{1}, h_{2}, the function $h_{1} \circ f_{1}+h_{2} \circ f_{2}$ is quasiconvex.

Some consequences for the sum of quasiconvex functions

```
Let }J\doteq{1,2,\ldots,m}
Theorem
Let {fi:i\inJ} be a quasiconvex family. Then
f
```


Another characterization:

Proposition

Let f_{1}, f_{2} be functions on X. Then $\left\{f_{1}, f_{2}\right\}$ is a quasiconvex pair, iff for every pair of nondecreasing functions h_{1}, h_{2}, the function $h_{1} \circ f_{1}+h_{2} \circ f_{2}$ is quasiconvex.

Remark

The result that the sum of two convex functions is convex, and so quasiconvex, cannot be re-obtained with our results $)^{*}$.
But

- We show that our class of functions, for which the sum of quasiconvex functions is quasiconvex, contains not trivial functions and
- ...

Other properties that are preserved under summation in a

 quasiconvex familyf is semistrictly quasiconvex if

$$
[x, y \in \operatorname{dom} f, f(x) \neq f(y)] \Rightarrow[f(t x+(1-t) y)<\max \{f(x), f(y)\}, \forall t \in] 0,1[.]
$$

The sum of two semistrictly quasiconvex functions is not necessarily semistrictly quasiconvex.

Example

$f_{1}(x)=x$ and $f_{2}(x)=\min \left\{-x,-\frac{x}{2}\right\}$.
f_{1}, f_{2} : semistrictly quasiconvex, but their sum is not.

Proposition

Let $f_{1}, f_{2}, \ldots, f_{m}$ be Isc and semistrictly quasiconvex (and so quasiconvex) functions. If $\left\{f_{i}: i \in J\right\}$ is a quasiconvex family, then the sum $f_{1}+f_{2}+\cdots+f_{m}$ is also semistrictly quasiconvex.

The \mathcal{C}-family

$C \subseteq \mathbb{R}^{n}$

$$
C^{\infty} \doteq\left\{v \in \mathbb{R}^{n}: \exists t_{k} \rightarrow+\infty, \exists x_{k} \in C, \frac{x_{k}}{t_{k}} \rightarrow v\right\} \text {. (asymptotic cone). }
$$

Definition ([[10], [9]])
It is said that f belongs to \mathcal{C} if for all $x \in \operatorname{dom} f$ and all $v \in(\operatorname{dom} f)^{\infty}$, $v \neq 0$, one has either
(i) $0 \leq t \mapsto f(x+t v)$ is nonincreasing, or
(ii) $\lim _{t \rightarrow+\infty} f(x+t v)=+\infty$.

Remark: f convex or coercive then $f \in \mathcal{C}$;

Proposition

Let $f_{1}, f_{2}, \ldots, f_{m}$ be Isc functions on X, such that

$$
\left\{f_{i}: i \in J\right\} \text { is a quasiconvex family. }
$$

If $f_{i} \in \mathcal{C}$ for all $i \in J$, then $f_{1}+f_{2}+\cdots+f_{m} \in \mathcal{C}$.
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,
$\partial^{Q} f(x)=\left\{(v, t) \in \mathbb{R}^{n+1}:\langle v, x\rangle \geq t\right.$ and $f(y) \geq f(x)$ if $\left.\langle v, y\rangle \geq t\right\}$.
Theorem ([14])
Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ For each $x \in \mathbb{R}^{n}$, assume that at least one of the following conditions is satisfied:
(i) $[f<f(x)] \subseteq[g<g(x)]$
(ii) $[g<g(x)] \subseteq[f<f(x)]$
(iii) $\partial^{Q} f(x) \subseteq \partial^{Q} g(x)$
(iv) $\partial^{Q} g(x) \subseteq \partial^{Q} f(x)$.

Then $f+g$ is quasiconvex.
Proposition
Let f, g be as in Theorem 8. Then $\{f, g\}$ is a quasiconvex pair, and so $f+g$ and $\min \{f, g\}$ are quasiconvex.
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,
$\partial^{Q} f(x)=\left\{(v, t) \in \mathbb{R}^{n+1}:\langle v, x\rangle \geq t\right.$ and $f(y) \geq f(x)$ if $\left.\langle v, y\rangle \geq t\right\}$.
Theorem ([14])
Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ For each $x \in \mathbb{R}^{n}$, assume that at least one of the following conditions is satisfied:
(i) $[f<f(x)] \subseteq[g<g(x)]$
(ii) $[g<g(x)] \subseteq[f<f(x)]$
(iii) $\partial^{Q} f(x) \subseteq \partial^{Q} g(x)$
(iv) $\partial^{Q} g(x) \subseteq \partial^{Q} f(x)$.

Then $f+g$ is quasiconvex.

Proposition

Let f, g be as in Theorem 8. Then $\{f, g\}$ is a quasiconvex pair, and so $f+g$ and $\min \{f, g\}$ are quasiconvex.

References:

AUSSEL, D., Subdifferential properties of quasiconvex and pseudoconvex functions: a unified approach, J. Optim. Theory Appl. 97, 29-45 (1998).

五
Aussel, D.; Corvellec, J.-N; Lassonde, M., Mean value property and subdifferential criteria for lower semicontinuous functions, Trans. Amer. Math. Soc. 347, 4147-4161 (1995).

Aussel, D.; Corvellec, J.-N.; LASSOnde, M., Subdifferential characterization of quasiconvexity and convexity, J. Convex Anal., 1 (1994), 195-201.

Aussel, D.; Danillidis, A., Normal characterization of the main classes of quasiconvex functions, Set-Valued Anal., 8(2000), 219-236.

Borde, J.; Crouzeix, J.-P., Continuity properties of the normal cone to the level sets of a quasiconvex function, J. Optim. Theory Appl., 66 (1990), 415-429.

Clarke, F. H., Optimization and nonsmooth analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley \& Sons Inc., New York, 1983.

Crouzelx, J.-P., Contributions à l'etude des fonctions quasi-convexes, Thèse d'Etat, Université de Clermont-Ferrand II, 1977, pp. 231.

Flores-Bazán, F.; Echegaray, W.; Flores-Bazán, Fernado; Ocaña, E.: Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap, J. Global Optim., 69 (2017) 823-845.

Flores-BazÁn, F.; Hadjisavvas, N., Zero-scale asymptotic functions and quasiconvex optimization, J. Convex Anal., 26 (2019) 1253-1274.

Flores-Bazán, F.; Hadjisavvas, N.; Lara, F.; Montenegro, I.: First- and second- order asymptotic analysis with applications in quasiconvex optimization, J. Optim. Theory Appl., 170 (2016) 372-393.

Flores-Bazán, F.; Hadjisavvas, N.; Vera, C., An optimal alternative theorem and applications to mathematical programming, J. Global Optim., 37 (2007), 229-243,

Flores-Bazán, F.; Mastroeni, G.; Vera, C., Proper or weak efficiency via saddle point conditions in cone-constrained nonconvex vector optimization problems, J. Optim. Theory Appl., 181 (2019) 787-816.

HADJISAVVAS, N., The use of subdifferentials for studying generalized convex functions, J. Stat. Manag. Syst., 5 (2002), 125-139.

SuZUKI, S., Quasiconvexity of sum of quasiconvex functions, Lin. Nonlin. Analysis, 3 (2017), 287-295.

TANAKA, T., Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions, J. Optim. Theory Appl., 81 (1994), 355-377.

[^0]: * Equivalences (a) - (e) are true in any vector space

