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00: Splitting Algorithms

Problem:
minimize

x∈E
f (x) + g(z) s.t. Mx = z .

Splitting Methods break a problem into
more easily computable subproblems by:

1. decoupling constraints that are
difficult to simultaneously satisfy

2. decoupling minimization steps that
are difficult to simultaneously
compute

3. decoupling a constraint satisfaction
step from a minimization step
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01: Douglas–Rachford

Popular variants include:

1. ADMM and its dual
Douglas–Rachford
(right). Recent survey
of DR by Lindstrom
and Sims (2018)

2. Proximal gradient
(forward–backward
method), (e.g.
alternating
projections)

3. FISTA
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02: Spiraling Algorithms

Algorithms that may spiral
include:

1. Douglas–Rachford
(dual to ADMM)

2. FISTA
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03: Dynamical systems

Case study: sphere and line
Douglas–Rachford:

• Borwein and Sims (2011)
conjectured global, proved
local

• Aragón Artacho and
Borwein (2013) provided
partial answers

• Borwein (2016) furnished
images similar to right
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04: Lyapunov Functions

Case study: sphere/line DR:

• Benoist (2015) constructed
Lyapunov function

• Borwein et al. (2018) showed
global results don’t extend to
sphere generalizations

• Dao and Tam (2019); Giladi
and Rüffer (2019) extended
Benoist’s framework to more
general graphs locally

• Asymptotic stability essentially
guarantees existence of such
functions (Kellett and Teel,
2005; Giladi and Rüffer, 2019;
Lindstrom, 2020)
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05: Oscillations

• When spiraling, plotting the
changes in projections onto
line (shadow sequence)
produces smooth arches and
sharp valleys

• Same pattern observed in
many contexts. Discussed in
(Lamichhane et al., 2019).
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06: Circumcenter Construction

• The circumcenter of a 3-tuple (A,B,C ) is
the center of a circle that contains
A,B,C .

• It lies at the intersection of the
perpendicular bisectors of triangle ABC

• Exists finitely whenever A,B,C not both
distinct and colinear.
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07: Circumcentering Reflections Method (CRM)

• Behling et al. (2018b,a) introduced
CRM: CT x = C (x ,RAx ,RARBx).

• Bauschke et al. (2018a,b): sufficient
conditions guarantee properness of
operator (existence of updates)

• Dizon et al. (2019) introduced GCRM:

CT : x 7→

{
TA,Bx if colinear

CT x otherwise
.

Also used subspace invariance to show
local quadratic convergence with plane
curves & lines.

• Behling et al. (2019): convex, product
space formulation global convergence
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08: Newton–Raphson characterization

x0

x1 x3 x5 x7 x9 x11

x12 x10 x8 x6 x4 x2

• Perpendicular bisectors of reflections across hyperplanes are
the hyperplanes
• Perpendicular bisectors of reflections across curves are

tangents
• When one set is a hyperplane and one set is a graph, CRM

“resembles” Newton–Raphson (Dizon et al., 2019).
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09: Duality

• Renaissance geometry: projective duality of lines and points.

• Convex optimization: Fenchel–Moreau–Rockafellar duality of
epigraphs of convex functions.
• Duality of algorithms Gabay (1983):

• ADMM: minimize
x∈Rn

f (x) + g(z) s.t. Mx = z ∈ Rm.

• DR: minimize
λ∈Rm

f ∗ ◦ (−MT )(λ) + g∗(λ)
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10: ADMM and Basis Pursuit

Basis pursuit:
minimize ‖x‖1 s.t. Ax = b, x ∈ Rn, A ∈ Rν×n, b ∈ Rν , ν < n.

ADMM:

f := ιS , S := {x ∈ Rn | Ax = b} ,
M := Id, g : z → ‖z‖1, E ,Y := Rn.

xk+1 ∈ argmin
x∈Rn

{
f (x) + g(zk)

+ 〈λk ,Mx − zk〉+
c

2
‖Mx − z‖2

}
zk+1 ∈ argmin

z∈Rm

{
f (xk+1) + g(z)

+ 〈λk ,Mxk+1 − z〉+
c

2
‖Mxk+1 − z‖2

}
λk+1 = λk + c(Mxk+1 − zk+1).
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11: Primal/Dual Algorithms

Set: d1 := f ∗◦(−MT ), d2 := g∗

Primal reconstruction:

cMxk+1 = proxcd1
(Rcd2yk)− Rc∂d2 (yk)

czk = yk − proxcd2
yk

λk = proxcd2
yk

Dual reconstruction:

yk = λk + czk

Rcd2yk = λk − czk

Rcd1Rcd2yk = λk − czk + 2cMxk+1

See (Eckstein and Yao,
2015).
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12: Failure of CRM for primal/dual

For basis pursuit, proxd2
= projB∞ , so the perpendicular bisector

of (yk ,Rcd2yk) contains a face of B∞, so CRM generically fails.
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13: CRM and Lyapunov functions

Theorem 1 (Lindstrom
(2020) )

For Lyapunov functions V
from Benoist (2015); Dao
and Tam (2019), CRM
updates lie on the
intersections of hyperplanes
that contain subgradient
descent trajectories of V
from the points PBx,
PARBx, and TB,Ax. If the
set order is reversed, the
analogous result holds with
the points PAx, PBRAx,
and TA,Bx.
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14: New method based on Lyapunov functions

Theorem 2 (Lindstrom (2020))
Whenever (∀x ∈ U) 〈∇V (x+), x − x+〉 = 0 for Lyapunov function V :

LT x :=

{
C (x , 2x+ − x , πT x), if x , 2x+ − x , πT x are not colinear;

Tx++ otherwise

lies on the intersections of hyperplanes that contain subgradient descent
trajectories of V from x+ and x++.
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15: An interesting example

Proposition 1 (Lindstrom
(2020))
When TA,B is the
Douglas–Rachford projection
operator and A,B are lines,
LTA,B

x is a fixed point for
any x .

• Easy to prove: all
subgradient descent
trajectories from all
points intersect in the
fixed set

• Another view: any
quadratic surrogate that
matches gradients of V
at the sample points
will be “equal” to V
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16: Quadratic surrogate characterization

Theorem 3 (Lindstrom (2020))
Under appropriate assumptions, LT and CT return minimizers of
quadratic surrogates for Lyapunov functions that describe the
convergence of algorithms admitted by iteratively applying the operator
T (where T is Douglas–Rachford specifically in the CT case).
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17: Primal/dual centering

Primal/dual acceleration
of ADMM/DR:

1. Compute primal,
reconstruct dual

2. Apply LT to dual

3. Propagate centered
step update back to
ADMM variables

4. Check objective
function against
improvement from
regular update, pick
winning candidate
and repeat

,
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18: More general quadratic surrogate minimization

1. One could also
consider a spherical
surrogate built from
more points (higher
dimensions)...

2. or adaptive
algorithms that
compare and choose
from among
surrogate-offered
update candidates...

3. Or a more general
elliptical (not just
spherical) surrogate...
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19: Computational Evidence
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Regular ADMM vs LT centering

ADMM dual
ADMM |x-z|
LT dual
LT |x-z|

For 1,000 problems of dimension 300, LT solved every problem:

wins min Q1 median Q3 max

vanilla ADMM 1 278 995 1582 2932 761,282
LT -centering 999 87 165 221 324 94,591
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20: Summary

Theoretical contributions:

• CRM: Lyapunov characterization (including nonconvex cases)
• New method LT :

1. problem agnostic: generically implementable
2. operator agnostic: ADMM, DR, FISTA, Nesterov...
3. does not require subproblems: black box compatible
4. satisfies Lyapunov properties with remarkably few structural

assumptions: primal/dual adaptable
5. not convexity reliant: good candidate for online optimization

• Both methods: quadratic surrogacy characterization

General lessons:

• Use tools like Cinderella and Geogebra
• Excursions into the weeds (e.g. highly specific problems/

structure) yield insights about more general problems
• Look for bridges between seemingly disparate areas of research

(e.g. Lyapunov functions, centering)
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Thank you!
Scott B. Lindstrom, “Computable centering methods for spiraling
algorithms and their duals, with motivations from the theory of
Lyapunov functions.” arXiv preprint arXiv:2001.10784, (2020).

Coming to Australia, 3 May 2021.
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