The Boosted Difference of Convex functions Algorithm

Phan Tu Vuong

School of Mathematical Sciences University of Southampton, UK

joint work with Francisco J. Aragón Artacho

Variational Analysis and Optimisation Webinar

9th June 2021

The Boosted Difference of Convex functions Algorithm

Phan Tu Vuong

School of Mathematical Sciences University of Southampton, UK

joint work with Francisco J. Aragón Artacho

Variational Analysis and Optimisation Webinar

9th June 2021

Outline

1 Introduction

2 The Boosted DC Algorithm

- The algorithm: Adding a line search step to DCA
- Convergence under the Kurdyka–Łojasiewicz property

3 Numerical experiments

- A DC problem in biochemistry
- The Minimum Sum-of-Squares Clustering Problem
- The Multidimensional Scaling Problem

4 References

Introduction

The Boosted DC Algorithm

Numerical experiments

References

A nonconvex optimization problem

We will focus on the nonconvex optimization problem

$$(\mathcal{P})$$
 minimize $g(x) - h(x) =: \phi(x),$

where $g, h : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ are convex functions with

 $\inf_{x\in\mathbb{R}^m}\phi(x)>-\infty.$

The objective function ϕ is a DC function, i.e., a difference of convex functions.

A nonconvex optimization problem

We will focus on the nonconvex optimization problem

$$(\mathcal{P})$$
 minimize $g(x) - h(x) =: \phi(x),$

where $g, h : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ are convex functions with

 $\inf_{x\in\mathbb{R}^m}\phi(x)>-\infty.$

The objective function ϕ is a DC function, i.e., a difference of convex functions.

The following assumptions are made:

 WLOG g and h are strongly convex with modulus ρ > 0 (otherwise, take g̃(x) := g(x) + ^ρ/₂ ||x||² and h̃(x) := h(x) + ^ρ/₂ ||x||²).

A nonconvex optimization problem

We will focus on the nonconvex optimization problem

$$(\mathcal{P})$$
 minimize $g(x) - h(x) =: \phi(x),$

where $g, h : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ are convex functions with

 $\inf_{x\in\mathbb{R}^m}\phi(x)>-\infty.$

The objective function ϕ is a DC function, i.e., a difference of convex functions.

The following assumptions are made:

- WLOG g and h are strongly convex with modulus ρ > 0 (otherwise, take g̃(x) := g(x) + ^ρ/₂ ||x||² and h̃(x) := h(x) + ^ρ/₂ ||x||²).
- g is continuously differentiable on an open set containing dom h.

A nonconvex optimization problem

We will focus on the nonconvex optimization problem

$$(\mathcal{P})$$
 minimize $g(x) - h(x) =: \phi(x),$

where $g, h : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ are convex functions with

$$\inf_{\mathbf{x}\in\mathbb{R}^m}\phi(\mathbf{x})>-\infty.$$

The objective function ϕ is a DC function, i.e., a difference of convex functions.

The following assumptions are made:

- WLOG g and h are strongly convex with modulus ρ > 0 (otherwise, take g̃(x) := g(x) + ^ρ/₂ ||x||² and h̃(x) := h(x) + ^ρ/₂ ||x||²).
- g is continuously differentiable on an open set containing dom h.
- *h* is subdifferentiable at every point in dom *h*; i.e., $\partial h(x) \neq \emptyset$ for all $x \in \text{dom } h$.

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$, with g smooth and h convex

Fact (First-order necessary optimality condition)

If $x^* \in dom \phi$ is an optimal solution of $(\mathcal{P}) \Rightarrow \partial h(x^*) = \{\nabla g(x^*)\}$.

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$, with g smooth and h convex

Fact (First-order necessary optimality condition)

If $x^* \in dom \phi$ is an optimal solution of $(\mathcal{P}) \Rightarrow \partial h(x^*) = \{\nabla g(x^*)\}$.

Definition

We say that \overline{x} is a critical point of (\mathcal{P}) if $\nabla g(\overline{x}) \in \partial h(\overline{x})$.

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$, with *g* smooth and *h* convex

Fact (First-order necessary optimality condition)

If $x^* \in dom \phi$ is an optimal solution of $(\mathcal{P}) \Rightarrow \partial h(x^*) = \{\nabla g(x^*)\}$.

Definition

We say that \overline{x} is a critical point of (\mathcal{P}) if $\nabla g(\overline{x}) \in \partial h(\overline{x})$.

Example

Consider the DC function $\phi : \mathbb{R}^m \to \mathbb{R}$ defined for $x \in \mathbb{R}^m$ by

$$\phi(x) := \left(||x||^2 + \sum_{i=1}^m x_i \right) - \left(\sum_{i=1}^m |x_i| \right).$$

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$, with *g* smooth and *h* convex

Fact (First-order necessary optimality condition)

If $x^* \in dom \phi$ is an optimal solution of $(\mathcal{P}) \Rightarrow \partial h(x^*) = \{\nabla g(x^*)\}$.

Definition

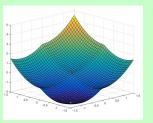
We say that \overline{x} is a critical point of (\mathcal{P}) if $\nabla g(\overline{x}) \in \partial h(\overline{x})$.

Example

Consider the DC function $\phi : \mathbb{R}^m \to \mathbb{R}$ defined for $x \in \mathbb{R}^m$ by

$$\phi(x) := \left(\|x\|^2 + \sum_{i=1}^m x_i \right) - \left(\sum_{i=1}^m |x_i| \right).$$

Then, ϕ has 2^m critical points (any $x \in \{-1, 0\}^m$), and only one point $x^* := (-1, \ldots, -1)$ satisfying $\partial h(x^*) = \{\nabla g(x^*)\}$, which is the global minimum of ϕ .



(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

 In 1981 Fukushima and Mine introduced two algorithms to minimize a composite function g - h, where g is (strictly) convex (possibly nonsmooth) and h is smooth (possibly nonconvex).

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

- In 1981 Fukushima and Mine introduced two algorithms to minimize a composite function g - h, where g is (strictly) convex (possibly nonsmooth) and h is smooth (possibly nonconvex).
- If x^* is a local minimum $\Rightarrow \nabla h(x^*) \in \partial g(x^*)$ (critical point).

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

- In 1981 Fukushima and Mine introduced two algorithms to minimize a composite function g - h, where g is (strictly) convex (possibly nonsmooth) and h is smooth (possibly nonconvex).
- If x^* is a local minimum $\Rightarrow \nabla h(x^*) \in \partial g(x^*)$ (critical point).

ALGORITHM 1 (FM'81): Fix some parameters $\alpha > 0$ and $0 < \beta < 1$. Let x_0 be any initial point and set k := 0. Find the solution y_k of $(\mathcal{P}_k) \underset{y \in \mathbb{R}^m}{\text{minimize}} g(y) - \langle \nabla h(x_k), y \rangle$. and set $d_k := y_k - x_k$. If $d_k = 0 \Rightarrow$ stop and return x_k .

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

- In 1981 Fukushima and Mine introduced two algorithms to minimize a composite function g - h, where g is (strictly) convex (possibly nonsmooth) and h is smooth (possibly nonconvex).
- If x^* is a local minimum $\Rightarrow \nabla h(x^*) \in \partial g(x^*)$ (critical point).

ALGORITHM 1 (FM'81): Fix some parameters $\alpha > 0$ and $0 < \beta < 1$. Let x_0 be any initial point and set k := 0. Find the solution y_k of $(\mathcal{P}_k) \underset{y \in \mathbb{R}^m}{\text{minimize}} g(y) - \langle \nabla h(x_k), y \rangle$. and set $d_k := y_k - x_k$. If $d_k = 0 \Rightarrow$ stop and return x_k . (Armijo - backtracking) Set $\lambda_k := 1$. while $\phi(x_k + \lambda_k d_k) > \phi(x_k) - \alpha \lambda_k ||d_k||^2$ do $\lambda_k := \beta \lambda_k$.

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

- In 1981 Fukushima and Mine introduced two algorithms to minimize a composite function g - h, where g is (strictly) convex (possibly nonsmooth) and h is smooth (possibly nonconvex).
- If x^* is a local minimum $\Rightarrow \nabla h(x^*) \in \partial g(x^*)$ (critical point).

ALGORITHM 1 (FM'81): Fix some parameters α > 0 and 0 < β < 1. Let x₀ be any initial point and set k := 0.
Find the solution y_k of

(𝒫_k) minimize g(y) - ⟨∇h(x_k), y⟩.
and set d_k := y_k - x_k. If d_k = 0 ⇒ stop and return x_k.

(Armijo - backtracking) Set λ_k := 1. while φ(x_k + λ_kd_k) > φ(x_k) - αλ_k ||d_k||² do λ_k := βλ_k.
Set x_{k+1} := x_k + λ_kd_k, k := k + 1 and go to Step 1.

Previous works: linearizing the nonconvex part Le Thi-Pham Dinh-El Bernoussi'86: DC algorithm

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

• In 1986 Pham Dinh and Souad introduced an algorithm to minimize a DC functions g - h, where g and h are both convex (*possibly nonsmooth*). This was further developed by Pham Dinh, Le Thi and their collaborators.

Previous works: linearizing the nonconvex part Le Thi-Pham Dinh-El Bernoussi'86: DC algorithm

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

• In 1986 Pham Dinh and Souad introduced an algorithm to minimize a DC functions g - h, where g and h are both convex (*possibly nonsmooth*). This was further developed by Pham Dinh, Le Thi and their collaborators.

• If x^* is a local minimum $\Rightarrow \partial h(x^*) \subset \partial g(x^*)$

Previous works: linearizing the nonconvex part Le Thi–Pham Dinh–El Bernoussi'86: DC algorithm

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

• In 1986 Pham Dinh and Souad introduced an algorithm to minimize a DC functions g - h, where g and h are both convex (*possibly nonsmooth*). This was further developed by Pham Dinh, Le Thi and their collaborators.

• If x^* is a local minimum $\Rightarrow \partial h(x^*) \subset \partial g(x^*) \Rightarrow \partial h(x^*) \cap \partial g(x^*) \neq \emptyset$.

Previous works: linearizing the nonconvex part Le Thi-Pham Dinh-El Bernoussi'86: DC algorithm

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

• In 1986 Pham Dinh and Souad introduced an algorithm to minimize a DC functions g - h, where g and h are both convex (*possibly nonsmooth*). This was further developed by Pham Dinh, Le Thi and their collaborators.

• If x^* is a local minimum $\Rightarrow \partial h(x^*) \subset \partial g(x^*) \Rightarrow \partial h(x^*) \cap \partial g(x^*) \neq \emptyset$.

ALGORITHM 2 (DCA): Let x_0 be any initial point and set k := 0.

```
Choose u_k \in \partial h(x_k)
```

Find a solution y_k of

$$(\mathcal{P}_k)$$
 minimize $g(y) - \langle y, u_k \rangle$.

If $y_k = x_k \Rightarrow$ stop. Otherwise, set $x_{k+1} := y_k$, k := k+1 and go to Step 1.

Previous works: linearizing the nonconvex part Le Thi-Pham Dinh-El Bernoussi'86: DC algorithm

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

• In 1986 Pham Dinh and Souad introduced an algorithm to minimize a DC functions g - h, where g and h are both convex (*possibly nonsmooth*). This was further developed by Pham Dinh, Le Thi and their collaborators.

• If x^* is a local minimum $\Rightarrow \partial h(x^*) \subset \partial g(x^*) \Rightarrow \partial h(x^*) \cap \partial g(x^*) \neq \emptyset$.

ALGORITHM 2 (DCA): Let x_0 be any initial point and set k := 0. Choose $u_k \in \partial h(x_k) \Leftrightarrow x_k \in (\partial h)^{-1}(u_k) = \partial h^*(u_k) \Leftrightarrow u_k$ is a solution of (\mathcal{D}_k) minimize $h^*(u) - \langle x_k, u \rangle$.

2 Choose $y_k \in \partial g^*(u_k) \Leftrightarrow u_k \in \partial g(y_k) \Leftrightarrow y_k$ is a solution of

 (\mathcal{P}_k) minimize $g(y) - \langle y, u_k \rangle$.

If $y_k = x_k \Rightarrow$ stop. Otherwise, set $x_{k+1} := y_k$, k := k+1 and go to Step 1.

Introduction

The Boosted DC Algorithm

Numerical experiments

References

FM'81 and DCA when h is smooth?

ALGORITHM 2 (DCA): Let x_0 be any initial point and set k := 0.

Find the solution y_k of

 (\mathcal{P}_k) minimize $g(y) - \langle \nabla h(x_k), y \rangle.$

If $y_k = x_k \Rightarrow$ stop. Otherwise, set $x_{k+1} := y_k$, k := k+1 and go to Step 1.

FM'81 and DCA when *h* is smooth?

ALGORITHM 2 (DCA): Let x_0 be any initial point and set k := 0.

Find the solution y_k of

 (\mathcal{P}_k) minimize $g(y) - \langle \nabla h(x_k), y \rangle.$

If $y_k = x_k \Rightarrow$ stop. Otherwise, set $x_{k+1} := y_k$, k := k+1 and go to Step 1.

ALGORITHM 1 (FM'81): Fix some parameters $\alpha > 0$ and $0 < \beta < 1$. Let x_0 be any initial point and set k := 0.

Find the solution y_k of

 (\mathcal{P}_k) minimize $g(y) - \langle \nabla h(x_k), y \rangle.$

and set $d_k := y_k - x_k$. If $d_k = 0 \Rightarrow$ stop and return x_k .

(Armijo - backtracking) Set $\lambda_k := 1$. while $\phi(x_k + \lambda_k d_k) > \phi(x_k) - \alpha \lambda_k ||d_k||^2$ do $\lambda_k := \beta \lambda_k$.

Set $x_{k+1} := x_k + \lambda_k d_k = \lambda y_k + (1 - \lambda) x_k$, k := k + 1 and **go to** Step 1.

FM'81 and DCA when *h* is smooth?

ALGORITHM 2 (DCA): Let x_0 be any initial point and set k := 0.

Find the solution y_k of

 (\mathcal{P}_k) minimize $g(y) - \langle \nabla h(x_k), y \rangle.$

If $y_k = x_k \Rightarrow$ stop. Otherwise, set $x_{k+1} := y_k$, k := k+1 and go to Step 1.

ALGORITHM 1 (FM'81): Fix some parameters $\alpha > 0$ and $0 < \beta < 1$. Let x_0 be any initial point and set k := 0.

$$\mathcal{P}_k$$
) minimize $g(y) - \langle \nabla h(x_k), y \rangle$

and set $d_k := y_k - x_k$. If $d_k = 0 \Rightarrow$ stop and return x_k .

(Armijo - backtracking) Set $\lambda_k := 1$. while $\phi(x_k + \lambda_k d_k) > \phi(x_k) - \alpha \lambda_k ||d_k||^2$ do $\lambda_k := \beta \lambda_k$.

Set $x_{k+1} := x_k + \lambda_k d_k = \lambda y_k + (1 - \lambda)x_k$, k := k + 1 and **go to** Step 1.

Proposition

If *g* and *h* are strongly convex with constant $\rho > 0$, then $\phi(y_k) < \phi(x_k) - \rho ||d_k||^2 \quad \forall k \in \mathbb{N}.$

FM'81 and DCA when *h* is smooth?

ALGORITHM 2 (DCA): Let x_0 be any initial point and set k := 0.

Find the solution y_k of

 (\mathcal{P}_k) minimize $g(y) - \langle \nabla h(x_k), y \rangle.$

If $y_k = x_k \Rightarrow$ stop. Otherwise, set $x_{k+1} := y_k$, k := k+1 and go to Step 1.

ALGORITHM 1 (FM'81): Fix some parameters $\alpha > 0$ and $0 < \beta < 1$. Let x_0 be any initial point and set k := 0.

$$\mathcal{P}_k$$
) minimize $g(y) - \langle \nabla h(x_k), y \rangle$

and set $d_k := y_k - x_k$. If $d_k = 0 \Rightarrow$ stop and return x_k .

(Armijo - backtracking) Set $\lambda_k := 1$. while $\phi(x_k + \lambda_k d_k) > \phi(x_k) - \alpha \lambda_k ||d_k||^2$ do $\lambda_k := \beta \lambda_k$.

Set $x_{k+1} := x_k + \lambda_k d_k = \lambda y_k + (1 - \lambda)x_k$, k := k + 1 and **go to** Step 1.

Proposition

If *g* and *h* are strongly convex with constant $\rho > 0$, then $\phi(y_k) < \phi(x_k) - \rho ||d_k||^2 \quad \forall k \in \mathbb{N}.$ \Rightarrow If $0 < \alpha \leq \rho$, the iterations of FM'81 and DCA coincide.

$$(\mathcal{P}) \underset{x \in \mathbb{R}^{m}}{\text{minimize}} \phi(x) := g(x) - h(x)$$
$$u_{k} \in \partial h(x_{k}), y_{k} \in \partial g^{*}(u_{k})$$

- FM'81 is based on the fact that d_k := y_k − x_k is a descent direction at x_k: it holds φ'(x_k; d_k) ≤ −ρ||d_k||².
- DCA works thanks to

$$\phi(y_k) = (g-h)(y_k) \le (h^* - g^*)(u_k) - \frac{\rho}{2} ||d_k||^2 \le \phi(x_k) - \rho ||d_k||^2.$$

$$(\mathcal{P}) \underset{x \in \mathbb{R}^{m}}{\text{minimize}} \phi(x) := g(x) - h(x)$$
$$u_{k} \in \partial h(x_{k}), y_{k} \in \partial g^{*}(u_{k})$$

- FM'81 is based on the fact that d_k := y_k − x_k is a descent direction at x_k: it holds φ'(x_k; d_k) ≤ −ρ||d_k||².
- DCA works thanks to

$$\phi(y_k) = (g-h)(y_k) \le (h^* - g^*)(u_k) - \frac{\rho}{2} ||d_k||^2 \le \phi(x_k) - \rho ||d_k||^2.$$

Advantages: Simplicity, works well in practice, does not require any line search.

$$(\mathcal{P}) \underset{x \in \mathbb{R}^{m}}{\text{minimize}} \phi(x) := g(x) - h(x)$$
$$u_{k} \in \partial h(x_{k}), y_{k} \in \partial g^{*}(u_{k})$$

- FM'81 is based on the fact that d_k := y_k − x_k is a descent direction at x_k: it holds φ'(x_k; d_k) ≤ −ρ||d_k||².
- DCA works thanks to

$$\phi(y_k) = (g-h)(y_k) \le (h^* - g^*)(u_k) - \frac{\rho}{2} ||d_k||^2 \le \phi(x_k) - \rho ||d_k||^2.$$

Advantages: Simplicity, works well in practice, does not require any line search.

Drawbacks: It can be very slow.

$$(\mathcal{P}) \underset{x \in \mathbb{R}^{m}}{\text{minimize}} \phi(x) := g(x) - h(x)$$
$$u_{k} \in \partial h(x_{k}), y_{k} \in \partial g^{*}(u_{k})$$

- FM'81 is based on the fact that d_k := y_k − x_k is a descent direction at x_k: it holds φ'(x_k; d_k) ≤ −ρ||d_k||².
- DCA works thanks to

$$\phi(y_k) = (g-h)(y_k) \le (h^* - g^*)(u_k) - \frac{\rho}{2} ||d_k||^2 \le \phi(x_k) - \rho ||d_k||^2.$$

Advantages: Simplicity, works well in practice, does not require any line search.

Drawbacks: It can be very slow. Can it be accelerated?

$$(\mathcal{P}) \underset{x \in \mathbb{R}^{m}}{\text{minimize}} \phi(x) := g(x) - h(x)$$
$$u_{k} \in \partial h(x_{k}), y_{k} \in \partial g^{*}(u_{k})$$

- FM'81 is based on the fact that d_k := y_k − x_k is a descent direction at x_k: it holds φ'(x_k; d_k) ≤ −ρ||d_k||².
- DCA works thanks to

$$\phi(y_k) = (g-h)(y_k) \le (h^* - g^*)(u_k) - \frac{\rho}{2} ||d_k||^2 \le \phi(x_k) - \rho ||d_k||^2.$$

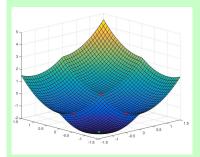
Advantages: Simplicity, works well in practice, does not require any line search.

Drawbacks: It can be very slow. Can it be accelerated? Yes, if g is smooth, thanks to the fact that

$$\phi'(\mathbf{y}_k; d_k) \le -\rho \|d_k\|^2.$$

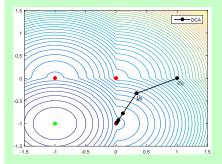
Example (Revisited)

$$g(x) = \frac{3}{2} (x_1^2 + x_2^2) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} (x_1^2 + x_2^2)$.



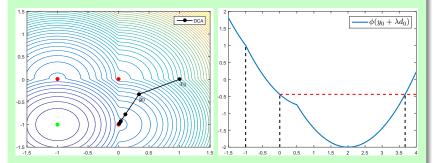
Example (Revisited)

$$g(x) = \frac{3}{2} (x_1^2 + x_2^2) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} (x_1^2 + x_2^2)$



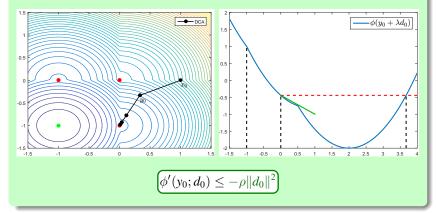
Example (Revisited)

$$g(x) = \frac{3}{2} (x_1^2 + x_2^2) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} (x_1^2 + x_2^2)$



Example (Revisited)

$$g(x) = \frac{3}{2} (x_1^2 + x_2^2) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} (x_1^2 + x_2^2)$



Outline

Introduction

2 The Boosted DC Algorithm

• The algorithm: Adding a line search step to DCA

Convergence under the Kurdyka–Łojasiewicz property

3 Numerical experiments

- A DC problem in biochemistry
- The Minimum Sum-of-Squares Clustering Problem
- The Multidimensional Scaling Problem

References

Numerical experiments

References

The Boosted DC Algorithm

$$\phi(x) := g(x) - h(x), u_k \in \partial h(x_k), y_k \in \partial g^*(u_k)$$

Proposition

If g is differentiable, then $\phi'(y_k; d_k) \leq -\rho \|d_k\|^2$.

References

The Boosted DC Algorithm

$$\phi(x) := g(x) - h(x), u_k \in \partial h(x_k), y_k \in \partial g^*(u_k)$$

Proposition

If g is differentiable, then $\phi'(y_k; d_k) \leq -\rho \|d_k\|^2$.

Proof

Pick any $v \in \partial h(y_k) \neq \emptyset$.

References

The Boosted DC Algorithm

$$\phi(x) := g(x) - h(x), u_k \in \partial h(x_k), y_k \in \partial g^*(u_k)$$

Proposition

If g is differentiable, then
$$\phi'(y_k; d_k) \leq -\rho \|d_k\|^2$$
.

Proof

Pick any $v \in \partial h(y_k) \neq \emptyset$. The one-sided directional derivative $\phi'(y_k; d_k)$ is given by

$$\begin{split} \phi'(y_k; d_k) &= \lim_{t \downarrow 0} \frac{g(y_k + td_k) - g(y_k)}{t} - \lim_{t \downarrow 0} \frac{h(y_k + td_k) - h(y_k)}{t} \\ &\leq \langle \nabla g(y_k), d_k \rangle - \langle v, d_k \rangle \,, \end{split}$$

by convexity of h.

References

The Boosted DC Algorithm

$$\phi(x) := g(x) - h(x), u_k \in \partial h(x_k), y_k \in \partial g^*(u_k)$$

Proposition

If g is differentiable, then $\phi'(y_k; d_k) \leq -\rho \|d_k\|^2$.

Proof

Pick any $v \in \partial h(y_k) \neq \emptyset$. The one-sided directional derivative $\phi'(y_k; d_k)$ is given by

$$\begin{split} \phi'(y_k; d_k) &= \lim_{t \downarrow 0} \frac{g(y_k + td_k) - g(y_k)}{t} - \lim_{t \downarrow 0} \frac{h(y_k + td_k) - h(y_k)}{t} \\ &\leq \langle \nabla g(y_k), d_k \rangle - \langle v, d_k \rangle \,, \end{split}$$

by convexity of *h*. As y_k is the solution of (\mathcal{P}_k) , we have

$$\nabla g(y_k) = u_k \in \partial h(x_k).$$

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)

References

The Boosted DC Algorithm

$$\phi(x) := g(x) - h(x), u_k \in \partial h(x_k), y_k \in \partial g^*(u_k)$$

Proposition

If g is differentiable, then $\phi'(y_k; d_k) \leq -\rho \|d_k\|^2$.

Proof

Pick any $v \in \partial h(y_k) \neq \emptyset$. The one-sided directional derivative $\phi'(y_k; d_k)$ is given by

$$\begin{split} \phi'(y_k; d_k) &= \lim_{t \downarrow 0} \frac{g(y_k + td_k) - g(y_k)}{t} - \lim_{t \downarrow 0} \frac{h(y_k + td_k) - h(y_k)}{t} \\ &\leq \langle \nabla g(y_k), d_k \rangle - \langle v, d_k \rangle \,, \end{split}$$

by convexity of *h*. As y_k is the solution of (\mathcal{P}_k) , we have

$$\nabla g(y_k) = u_k \in \partial h(x_k).$$

Since ∂h is strongly monotone with constant ρ and $v \in \partial h(y_k)$,

$$\langle u_k - v, x_k - y_k \rangle \geq \rho ||x_k - y_k||^2 = \rho ||d_k||^2.$$

The Boosted DC Algorithm

$$\phi(x) := g(x) - h(x), u_k \in \partial h(x_k), y_k \in \partial g^*(u_k)$$

Proposition

If g is differentiable, then
$$\phi'(y_k; d_k) \leq -\rho \|d_k\|^2$$
.

Proof

Pick any $v \in \partial h(y_k) \neq \emptyset$. The one-sided directional derivative $\phi'(y_k; d_k)$ is given by

$$\begin{split} \phi'(y_k; d_k) &= \lim_{t \downarrow 0} \frac{g(y_k + td_k) - g(y_k)}{t} - \lim_{t \downarrow 0} \frac{h(y_k + td_k) - h(y_k)}{t} \\ &\leq \langle \nabla g(y_k), d_k \rangle - \langle v, d_k \rangle \,, \end{split}$$

by convexity of *h*. As y_k is the solution of (\mathcal{P}_k) , we have

$$\nabla g(y_k) = u_k \in \partial h(x_k).$$

Since ∂h is strongly monotone with constant ρ and $v \in \partial h(y_k)$,

$$\langle u_k - v, x_k - y_k \rangle \geq \rho ||x_k - y_k||^2 = \rho ||d_k||^2.$$

Hence

$$\phi'(y_k; d_k) \le \langle \nabla g(y_k) - v, d_k \rangle = \langle u_k - v, y_k - x_k \rangle \le -\rho \|d_k\|^2.$$

The Boosted DC Algorithm

BDCA (Boosted DC Algorithm)

Fix $\alpha > 0$ and $0 < \beta < 1$. Let x_0 be any initial point and set k := 0.

Select $u_k \in \partial h(x_k)$ and find the unique solution y_k of the problem

 (\mathcal{P}_k) minimize $g(x) - \langle u_k, x \rangle$.

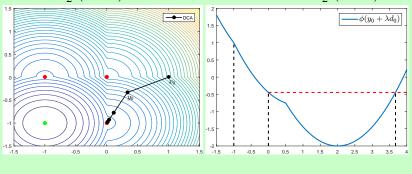
- Set $d_k := y_k x_k$. If $d_k = 0 \Rightarrow$ stop and return x_k .
- Choose any $\overline{\lambda}_k \ge 0$. Set $\lambda_k := \overline{\lambda}_k$. while $\phi(y_k + \lambda_k d_k) > \phi(y_k) - \alpha \lambda_k^2 ||d_k||^2$ do $\lambda_k := \beta \lambda_k$.
- Set $x_{k+1} := y_k + \lambda_k d_k$, k := k + 1, and **go to** Step 1.

References

DCA vs BDCA

Example (Revisited)

$$g(x) = \frac{3}{2} \left(x_1^2 + x_2^2 \right) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} \left(x_1^2 + x_2^2 \right)$

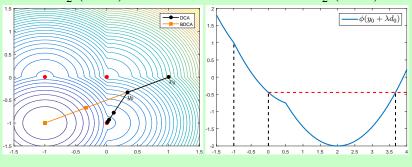


References

DCA vs BDCA

Example (Revisited)

$$g(x) = \frac{3}{2} \left(x_1^2 + x_2^2 \right) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} \left(x_1^2 + x_2^2 \right)$

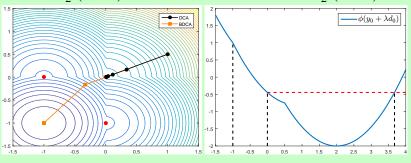


References

DCA vs BDCA

Example (Revisited)

$$g(x) = \frac{3}{2} \left(x_1^2 + x_2^2 \right) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} \left(x_1^2 + x_2^2 \right)$

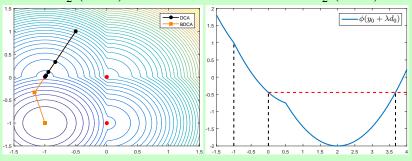


References

DCA vs BDCA

Example (Revisited)

$$g(x) = \frac{3}{2} \left(x_1^2 + x_2^2 \right) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} \left(x_1^2 + x_2^2 \right)$

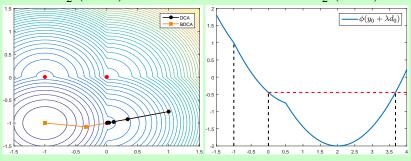


References

DCA vs BDCA

Example (Revisited)

$$g(x) = \frac{3}{2} \left(x_1^2 + x_2^2 \right) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} \left(x_1^2 + x_2^2 \right)$



References

DCA vs BDCA

Example (Revisited)

$$g(x) = \frac{3}{2} \left(x_1^2 + x_2^2 \right) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} \left(x_1^2 + x_2^2 \right)$



References

DCA vs BDCA

Example (Revisited)

Consider the DC function $\phi : \mathbb{R}^2 \to \mathbb{R}$ defined as $\phi := g - h$, where

$$g(x) = \frac{3}{2} \left(x_1^2 + x_2^2 \right) + x_1 + x_2$$
 and $h(x) = |x_1| + |x_2| + \frac{1}{2} \left(x_1^2 + x_2^2 \right)$.

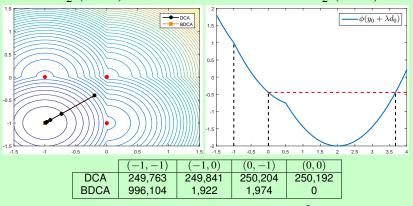


Table: For one million random starting points in $[-1.5, 1.5]^2$, we count the sequences converging to each of the four stationary points.

Introduction

The Boosted DC Algorithm

Numerical experiment

References

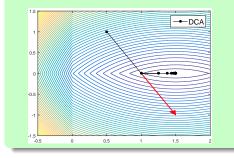
Why to restrict to the case where g is differentiable?

Example (Failure of BDCA when g is not differentiable)

Consider the following modification of the previous example

$$g(x) = -\frac{5}{2}x_1 + x_1^2 + x_2^2 + |x_1| + |x_1|$$
 and $h(x) = \frac{1}{2}\left(x_1^2 + x_2^2\right)$

so *h* is differentiable but *g* is not. Let $x_0 = (0.5, 1)$. The point generated by DCA is $y_0 = (1, 0)$ and $d_0 = y_0 - x_0 = (0.5, -1)$ is not a descent direction for ϕ at y_0 :



Introduction

The Boosted DC Algorithm

Numerical experiment

References

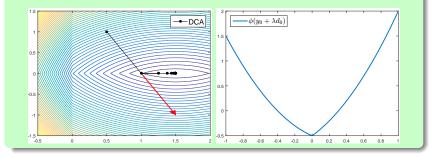
Why to restrict to the case where g is differentiable?

Example (Failure of BDCA when g is not differentiable)

Consider the following modification of the previous example

$$g(x) = -\frac{5}{2}x_1 + x_1^2 + x_2^2 + |x_1| + |x_1|$$
 and $h(x) = \frac{1}{2}\left(x_1^2 + x_2^2\right)$

so *h* is differentiable but *g* is not. Let $x_0 = (0.5, 1)$. The point generated by DCA is $y_0 = (1, 0)$ and $d_0 = y_0 - x_0 = (0.5, -1)$ is not a descent direction for ϕ at y_0 :



Introduction

The Boosted DC Algorithm

Numerical experiment

References

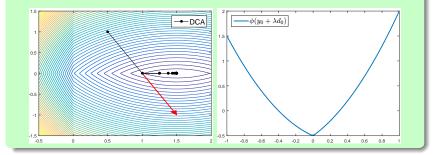
Why to restrict to the case where g is differentiable?

Example (Failure of BDCA when g is not differentiable)

Consider the following modification of the previous example

$$g(x) = -\frac{5}{2}x_1 + x_1^2 + x_2^2 + |x_1| + |x_1|$$
 and $h(x) = \frac{1}{2}\left(x_1^2 + x_2^2\right)$

so *h* is differentiable but *g* is not. Let $x_0 = (0.5, 1)$. The point generated by DCA is $y_0 = (1, 0)$ and $d_0 = y_0 - x_0 = (0.5, -1)$ is not a descent direction for ϕ at y_0 :



Proposition

Let $\phi = g - h$, where $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$ are convex and h is differentiable. If $0 \notin \partial_C \phi(y_k)$, then $\phi'(y_k; y_k - x_k) < 0$.

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

Our convergence results follow the ideas from

H. Attouch, J. Bolte: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. *Math. Program.* 116 (2009), 5–16.

which in turn were adapted from Łojasiewicz's original ideas.

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

Our convergence results follow the ideas from

H. Attouch, J. Bolte: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. *Math. Program.* 116 (2009), 5–16.

which in turn were adapted from Łojasiewicz's original ideas.

Theorem

For any $x_0 \in \mathbb{R}^m$, either BDCA returns a critical point of (\mathcal{P}) or it generates an infinite sequence such that the following holds.

• $\phi(x_k)$ is monotonically decreasing and convergent to some ϕ^* .

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

Our convergence results follow the ideas from

H. Attouch, J. Bolte: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116 (2009), 5-16.

which in turn were adapted from Łojasiewicz's original ideas.

Theorem

For any $x_0 \in \mathbb{R}^m$, either BDCA returns a critical point of (\mathcal{P}) or it generates an infinite sequence such that the following holds.

- $\phi(x_k)$ is monotonically decreasing and convergent to some ϕ^* .
- 2 Any limit point of $\{x_k\}$ is a critical point of (\mathcal{P}) . If in addition, ϕ is coercive then there exits a subsequence of $\{x_k\}$ which converges to a critical point of (\mathcal{P}) .

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

Our convergence results follow the ideas from

H. Attouch, J. Bolte: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116 (2009), 5-16.

which in turn were adapted from Łojasiewicz's original ideas.

Theorem

For any $x_0 \in \mathbb{R}^m$, either BDCA returns a critical point of (\mathcal{P}) or it generates an infinite sequence such that the following holds.

- $\phi(x_k)$ is monotonically decreasing and convergent to some ϕ^* .
- 2 Any limit point of $\{x_k\}$ is a critical point of (\mathcal{P}) . If in addition, ϕ is coercive then there exits a subsequence of $\{x_k\}$ which converges to a critical point of (\mathcal{P}) .
- **2** $\sum_{k=0}^{+\infty} ||d_k||^2 < +\infty$. Further, if there is some $\overline{\lambda}$ such that $\lambda_k \leq \overline{\lambda}$ for all k, then $\sum_{k=0}^{+\infty} \|x_{k+1} - x_k\|^2 < +\infty$.

Outline

Introduction

2 The Boosted DC Algorithm

- The algorithm: Adding a line search step to DCA
- Convergence under the Kurdyka–Łojasiewicz property

Numerical experiments

- A DC problem in biochemistry
- The Minimum Sum-of-Squares Clustering Problem
- The Multidimensional Scaling Problem

References

The Kurdyka-Łojasiewicz property

Definition

Let $f : \mathbb{R}^m \to \mathbb{R}$ be a locally Lipschitz function. We say that f satisfies the strong Kurdyka–Łojasiewicz inequality at $x^* \in \mathbb{R}^m$ if there exist $\eta \in]0, +\infty[$, a neighborhood U of x^* , and a concave function $\varphi : [0, \eta] \to [0, +\infty[$ such that: • $\varphi(0) = 0;$ • φ is of class C^1 on $]0, \eta[;$ • $\varphi' > 0$ on $]0, \eta[;$ • for all $x \in U$ with $f(x^*) < f(x) < f(x^*) + \eta$ we have $\varphi'(f(x) - f(x^*))$ dist $(0, \partial_C f(x)) \ge 1.$

Here $\partial_C f$ stands for the Clarke subdifferential

$$\partial_C f(\bar{x}) = \operatorname{co}\left\{\lim_{x \to \bar{x}, x \notin \Omega_f} \nabla f(x)\right\},$$

where co stands for the convex hull and Ω_f denotes the set of Lebesgue measure zero where *f* fails to be differentiable.

$(\mathcal{P}) \underset{x \in \mathbb{R}^m}{\text{minimize}} \phi(x) := g(x) - h(x)$

Theorem (Convergence)

Let $\{x_k\}$ be the sequence generated by the BDCA. Suppose that $\{x_k\}$ has a cluster point x^* , that ∇g is locally Lipschitz around x^* and that ϕ satisfies the strong Kurdyka–Łojasiewicz inequality at x^* . Then $\{x_k\}$ converges to x^* , which is a critical point of (\mathcal{P}) .

(
$$\mathcal{P}$$
) minimize $\phi(x) := g(x) - h(x)$

Theorem (Convergence)

Let $\{x_k\}$ be the sequence generated by the BDCA. Suppose that $\{x_k\}$ has a cluster point x^* , that ∇g is locally Lipschitz around x^* and that ϕ satisfies the strong Kurdyka–Łojasiewicz inequality at x^* . Then $\{x_k\}$ converges to x^* , which is a critical point of (\mathcal{P}) .

Proof

- Technical but "standard".
- λ_k can be zero or unbounded!
- We either need Clarke's subdifferential or to assume that -φ satisfies the Kurdyka–Łojasiewicz inequality:

$$\nabla g(y_k) - \nabla g(x_k) \in \partial h(x_k) - \nabla g(x_k) = \left| \partial_C \left(-\phi(x_k) \right) = -\partial_C \phi(x_k) \right|$$

$(\mathcal{P}) \underset{x \in \mathbb{R}^m}{\text{minimize}} \phi(x) := g(x) - h(x)$

Theorem (Convergence)

Let $\{x_k\}$ be the sequence generated by the BDCA. Suppose that $\{x_k\}$ has a cluster point x^* , that ∇g is locally Lipschitz around x^* and that ϕ satisfies the strong Kurdyka–Łojasiewicz inequality at x^* . Then $\{x_k\}$ converges to x^* , which is a critical point of (\mathcal{P}).

Theorem (Rate)

Suppose that the sequence $\{x_k\}$ generated by the BDCA has the limit point x^* , that ∇g is locally Lipschitz continuous around x^* and ϕ satisfies the strong Kurdyka–Łojasiewicz inequality at x^* with $\varphi(t) = Mt^{1-\theta}$ for some M > 0 and $0 \le \theta < 1$. Then:

• if $\theta = 0$, then $\{x_k\}$ converges in a finite number of steps to x^* ;

$(\mathcal{P}) \underset{x \in \mathbb{R}^m}{\text{minimize}} \phi(x) := g(x) - h(x)$

Theorem (Convergence)

Let $\{x_k\}$ be the sequence generated by the BDCA. Suppose that $\{x_k\}$ has a cluster point x^* , that ∇g is locally Lipschitz around x^* and that ϕ satisfies the strong Kurdyka–Łojasiewicz inequality at x^* . Then $\{x_k\}$ converges to x^* , which is a critical point of (\mathcal{P}).

Theorem (Rate)

Suppose that the sequence $\{x_k\}$ generated by the BDCA has the limit point x^* , that ∇g is locally Lipschitz continuous around x^* and ϕ satisfies the strong Kurdyka–Łojasiewicz inequality at x^* with $\varphi(t) = Mt^{1-\theta}$ for some M > 0 and $0 \le \theta < 1$. Then:

- if $\theta = 0$, then $\{x_k\}$ converges in a finite number of steps to x^* ;
- (2) if $\theta \in \left[0, \frac{1}{2}\right]$, then $\{x_k\}$ converges linearly to x^* ;

(\mathcal{P}) minimize $\phi(x) := g(x) - h(x)$

Theorem (Convergence)

Let $\{x_k\}$ be the sequence generated by the BDCA. Suppose that $\{x_k\}$ has a cluster point x^* , that ∇g is locally Lipschitz around x^* and that ϕ satisfies the strong Kurdyka–Lojasiewicz inequality at x^* . Then $\{x_k\}$ converges to x^* , which is a critical point of (\mathcal{P}) .

Theorem (Rate)

Suppose that the sequence $\{x_k\}$ generated by the BDCA has the limit point x^* , that ∇g is locally Lipschitz continuous around x^* and ϕ satisfies the strong Kurdyka–Łojasiewicz inequality at x^* with $\varphi(t) = Mt^{1-\theta}$ for some M > 0 and $0 \le \theta < 1$. Then:

- if $\theta = 0$, then $\{x_k\}$ converges in a finite number of steps to x^* ;
- (a) if $\theta \in \left[0, \frac{1}{2}\right]$, then $\{x_k\}$ converges linearly to x^* ;

③ if $\theta \in \left]\frac{1}{2}, 1\right[$, then $\exists \eta > 0$ s.t. $||x_k - x^*|| \le \eta k^{-\frac{1-\theta}{2\theta-1}}$ for all large *k*.

How to choose the trial step size $\overline{\lambda}_k$?

BDCA (Boosted DC Algorithm)

Fix $\alpha > 0$ and $0 < \beta < 1$. Let x_0 be any initial point and set k := 0.

Select
$$u_k \in \partial h(x_k)$$
 and $y_k \in \partial g^*(u_k)$.

3 Set
$$d_k := y_k - x_k$$
. If $d_k = 0 \Rightarrow$ stop and return x_k .

3 Choose any
$$\overline{\lambda}_k \ge 0$$
. Set $\lambda_k := \overline{\lambda}_k$.
while $\phi(y_k + \lambda_k d_k) > \phi(y_k) - \alpha \lambda_k^2 ||d_k||^2$ do $\lambda_k := \beta \lambda_k$.

Set
$$x_{k+1} := y_k + \lambda_k d_k$$
, $k := k + 1$, and **go to** Step 1.

One possibility would be to set $\overline{\lambda}_k = \overline{\lambda}$ for all *k*.

How to choose the trial step size $\overline{\lambda}_k$?

BDCA (Boosted DC Algorithm)

Fix $\alpha > 0$ and $0 < \beta < 1$. Let x_0 be any initial point and set k := 0.

Select
$$u_k \in \partial h(x_k)$$
 and $y_k \in \partial g^*(u_k)$.

2 Set
$$d_k := y_k - x_k$$
. If $d_k = 0 \Rightarrow$ stop and return x_k .

3 Choose any
$$\overline{\lambda}_k \ge 0$$
. Set $\lambda_k := \overline{\lambda}_k$.
while $\phi(y_k + \lambda_k d_k) > \phi(y_k) - \alpha \lambda_k^2 ||d_k||^2$ do $\lambda_k := \beta \lambda_k$.

Set
$$x_{k+1} := y_k + \lambda_k d_k$$
, $k := k + 1$, and **go to** Step 1.

One possibility would be to set $\overline{\lambda}_k = \overline{\lambda}$ for all *k*. Instead, we propose:

Self-adaptive trial step size

Fix $\gamma > 1$. Set $\overline{\lambda}_0 := 0$. Choose some $\overline{\lambda}_1 > 0$ and obtain λ_1 by BDCA. For any $k \ge 2$:

• if
$$\lambda_{k-2} = \overline{\lambda}_{k-2}$$
 and $\lambda_{k-1} = \overline{\lambda}_{k-1}$ then set $\overline{\lambda}_k := \gamma \lambda_{k-1}$;
else set $\overline{\lambda}_k := \lambda_{k-1}$.

Solution λ_k from $\overline{\lambda}_k$ by the backtracking step of BDCA.

Outline

Introduction

2 The Boosted DC Algorithm

- The algorithm: Adding a line search step to DCA
- Convergence under the Kurdyka–Łojasiewicz property

3 Numerical experiments

A DC problem in biochemistry

- The Minimum Sum-of-Squares Clustering Problem
- The Multidimensional Scaling Problem

References

We were interested in finding a solution to the problem

 $\underset{x \in \mathbb{R}^m}{\text{minimize}} \ \phi(x) := \|p(x) - c(x)\|^2$

where

$$p(x) := [F, R] \exp \left(p + [F, R]^T x \right)$$
 and $c(x) := [R, F] \exp \left(p + [F, R]^T x \right)$,

and $F, R \in \mathbb{Z}_{>0}^{m \times n}$ (*m* molecular species, *n* reversible elementary reactions).

We were interested in finding a solution to the problem

$$\underset{x \in \mathbb{R}^m}{\text{minimize}} \ \phi(x) := \|p(x) - c(x)\|^2 = 2\Big(\|p(x)\|^2 + \|c(x)\|^2\Big) - \|p(x) + c(x)\|^2,$$

where

$$p(x) := [F, R] \exp \left(p + [F, R]^T x \right)$$
 and $c(x) := [R, F] \exp \left(p + [F, R]^T x \right)$,

and $F, R \in \mathbb{Z}_{>0}^{m \times n}$ (*m* molecular species, *n* reversible elementary reactions).

We were interested in finding a solution to the problem

$$\underset{x \in \mathbb{R}^m}{\text{minimize}} \ \phi(x) := \|p(x) - c(x)\|^2 = 2\Big(\|p(x)\|^2 + \|c(x)\|^2\Big) - \|p(x) + c(x)\|^2,$$

where

$$p(x) := [F, R] \exp \left(p + [F, R]^T x \right)$$
 and $c(x) := [R, F] \exp \left(p + [F, R]^T x \right)$,

and $F, R \in \mathbb{Z}_{>0}^{m \times n}$ (*m* molecular species, *n* reversible elementary reactions).

It is not difficult to prove that *f* is real analytic
 ⇒ *f* satisfies the Łojasiewicz property with some exponent θ ∈ [0, 1).

We were interested in finding a solution to the problem

$$\underset{x \in \mathbb{R}^m}{\text{minimize}} \ \phi(x) := \|p(x) - c(x)\|^2 = 2\Big(\|p(x)\|^2 + \|c(x)\|^2\Big) - \|p(x) + c(x)\|^2,$$

where

$$p(x) := [F, R] \exp \left(p + [F, R]^T x \right)$$
 and $c(x) := [R, F] \exp \left(p + [F, R]^T x \right)$,

and $F, R \in \mathbb{Z}_{>0}^{m \times n}$ (*m* molecular species, *n* reversible elementary reactions).

- It is not difficult to prove that *f* is real analytic
 ⇒ *f* satisfies the Łojasiewicz property with some exponent θ ∈ [0, 1).
- We can then apply BDCA to the functions

$$g(x) := 2\Big(\|p(x)\|^2 + \|c(x)\|^2\Big) + \frac{\rho}{2}\|x\|^2$$
 and $h(x) := \|p(x) + c(x)\|^2 + \frac{\rho}{2}\|x\|^2$,

for any $\rho > 0$. Our results guarantee the convergence of the sequence generated by BDCA, as long as the sequence is bounded.

Finding steady states of biochemical networks

A boring table of computational results...

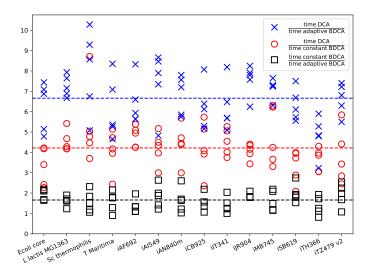
Taking $\rho := 100$, $\overline{\lambda}_k := 50$ (constant), $\beta := 0.5$ and $\alpha := 0.4$, we obtain:

DATA	ALGORITHMS: Time Spent (seconds)						RATIO (avg.)			
Model Name	m	n	BDCA			DCA			DCA/BDCA	
			min.	max.	avg.	min.	max.	avg.	iter.	time
Ecoli core	72	94	16	26	20	68	105	87	4.9	4.4
L lactis MG1363	486	615	2926	4029	3424	14522	18212	16670	5.2	4.9
Sc thermophilis	349	444	291	553	358	1302	2004	1611	4.9	4.5
T Maritima	434	554	1333	2623	1920	5476	12559	8517	4.7	4.4
iAF692	466	546	1677	2275	1967	8337	11187	9466	5.3	4.8
iAl549	307	355	177	254	209	665	1078	913	4.9	4.4
iAN840m	549	840	3229	6939	4721	16473	28957	21413	5.0	4.5
iCB925	416	584	1831	2450	2133	7358	11465	9887	5.0	4.6
ilT341	425	504	1925	2883	2302	9434	20310	12262	5.7	5.3
iJR904	597	915	6363	9836	7623	24988	43640	33621	4.4	4.8
iMB745	528	652	2629	5091	4252	16438	25172	20269	5.0	4.8
iSB619	462	598	2407	5972	3323	8346	25468	13967	4.3	4.2
iTH366	587	713	3310	5707	4464	13613	30044	20715	5.0	4.6
iTZ479 v2	435	560	1211	2656	2216	7368	12592	10120	4.9	4.6

For each model, we selected a random kinetic parameter $p \in [-1, 1]^{2n}$ and 10 initial random points $x_0 \in [-2, 2]^m$. BDCA was run 1000 iterations, DCA was run until it reached the same value obtained by BDCA.

Finding steady states of biochemical networks

Comparison of the constant and self-adaptive trial step size strategy for BDCA



Applications to Biochemistry

Nature Protocols (2019)

The COBRA Toolbox

Search docs

Home

Installation

Functions

Tutorials

How to contribute

How to cite

Support

FAQ

Contributors

Funding

Docs » Home Page

The COnstraint-Based Reconstruction and Analysis Toolbox

View The COBRA Toolbox source code on GitHub

The COnstraint-Based Reconstruction and Analysis Toolbox is a MATLAB software suite for quantitative prediction of cellular and multicellular biochemical networks with constraint-based modelling. It implements a comprehensive collection of basic and advanced modelling methods, including reconstruction and model generation as well as biased and unbiased model-driven analysis methods.

It is widely used for modelling, analysing and predicting a variety of metabolic phenotypes using genome-scale biochemical networks.

Outline

Introduction

- 2 The Boosted DC Algorithm
 - The algorithm: Adding a line search step to DCA
 - Convergence under the Kurdyka–Łojasiewicz property

3 Numerical experiments

- A DC problem in biochemistry
- The Minimum Sum-of-Squares Clustering Problem
- The Multidimensional Scaling Problem

References

The Minimum Sum-of-Squares Clustering Problem

Clustering is an unsupervised technique for data analysis whose objective is to group a collection of objects into clusters based on similarity.

- Let A = {a¹,..., aⁿ} be a finite set of points in ℝ^m, which represent the data points to be grouped.
- The goal is to partition *A* into *k* disjoint subsets A^1, \ldots, A^k , called clusters, such that a clustering criterion is optimized.

The Minimum Sum-of-Squares Clustering Problem

Clustering is an unsupervised technique for data analysis whose objective is to group a collection of objects into clusters based on similarity.

- Let A = {a¹,..., aⁿ} be a finite set of points in ℝ^m, which represent the data points to be grouped.
- The goal is to partition *A* into *k* disjoint subsets A^1, \ldots, A^k , called clusters, such that a clustering criterion is optimized.

The *Minimum Sum-of-Squares Clustering* criterion, one tries to minimize the Euclidean distance of each data point to the centroid of its clusters, denoted by $X := (x^1, \ldots, x^k) \in \mathbb{R}^{m \times k}$:

$$\underset{X \in \mathbb{R}^{m \times k}}{\operatorname{minimize}} \phi(X) := \frac{1}{n} \sum_{i=1}^{n} \underset{j=1, \dots, k}{\min} \|x^{j} - a^{i}\|^{2}$$

The Minimum Sum-of-Squares Clustering Problem

Clustering is an unsupervised technique for data analysis whose objective is to group a collection of objects into clusters based on similarity.

- Let A = {a¹,..., aⁿ} be a finite set of points in ℝ^m, which represent the data points to be grouped.
- The goal is to partition *A* into *k* disjoint subsets A^1, \ldots, A^k , called clusters, such that a clustering criterion is optimized.

The *Minimum Sum-of-Squares Clustering* criterion, one tries to minimize the Euclidean distance of each data point to the centroid of its clusters, denoted by $X := (x^1, \ldots, x^k) \in \mathbb{R}^{m \times k}$:

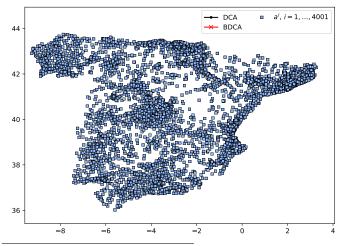
$$\min_{X \in \mathbb{R}^{m \times k}} \phi(X) := \frac{1}{n} \sum_{i=1}^{n} \min_{j=1,...,k} \|x^{j} - a^{i}\|^{2} = g(X) - h(X),$$

where

$$g(X) := \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \left\| x^{j} - a^{i} \right\|^{2} + \frac{\rho}{2} \|X\|^{2}, \text{ (strongly convex and smooth)}$$

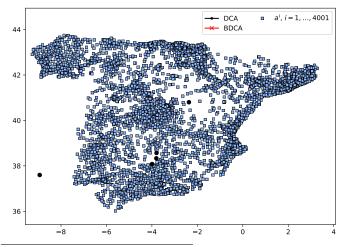
 $h(X) := \frac{1}{n} \sum_{i=1}^{n} \max_{j=1,...,k} \sum_{t=1,t\neq j}^{k} \left\| x^{t} - a^{i} \right\|^{2} + \frac{\rho}{2} \|X\|^{2}.$ (strongly convex but nonsmooth).

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



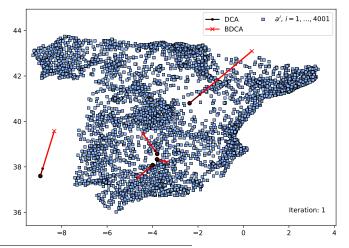
¹The data can be retrieved from the Spanish National Center of Geographic Information at http://centrodedescargas.cnig.es

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



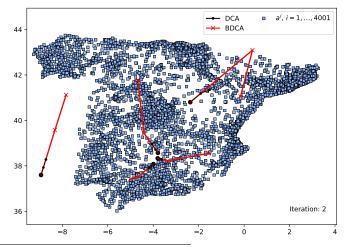
¹The data can be retrieved from the Spanish National Center of Geographic Information at http://centrodedescargas.cnig.es

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



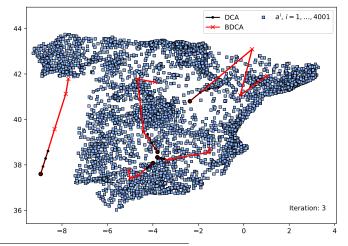
¹The data can be retrieved from the Spanish National Center of Geographic Information at http://centrodedescargas.cnig.es

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



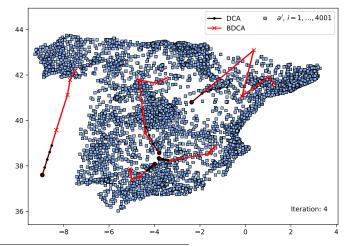
¹The data can be retrieved from the Spanish National Center of Geographic Information at http://centrodedescargas.cnig.es

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.

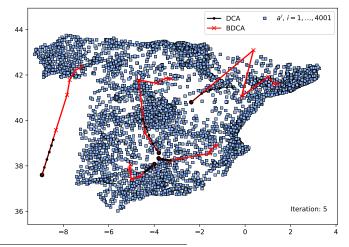


¹The data can be retrieved from the Spanish National Center of Geographic Information at http://centrodedescargas.cnig.es

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.

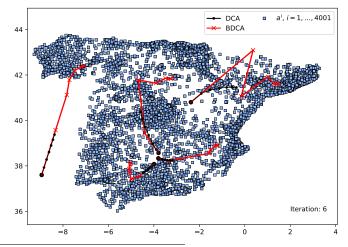


PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



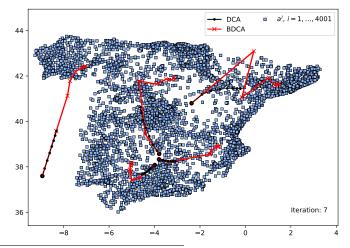
¹The data can be retrieved from the Spanish National Center of Geographic Information at http://centrodedescargas.cnig.es

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



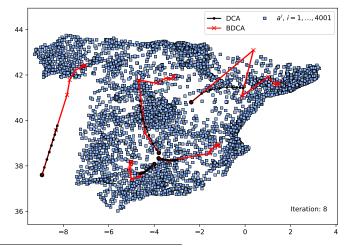
¹The data can be retrieved from the Spanish National Center of Geographic Information at http://centrodedescargas.cnig.es

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



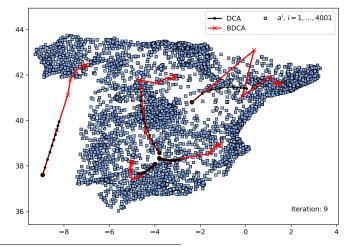
¹The data can be retrieved from the Spanish National Center of Geographic Information at http://centrodedescargas.cnig.es

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



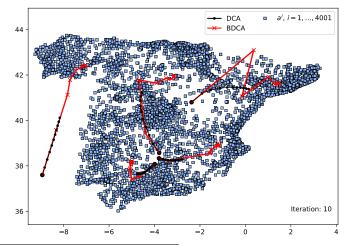
¹The data can be retrieved from the Spanish National Center of Geographic Information at http://centrodedescargas.cnig.es

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.

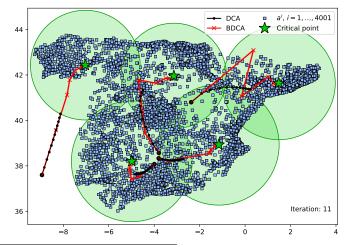


¹The data can be retrieved from the Spanish National Center of Geographic Information at http://centrodedescargas.cnig.es

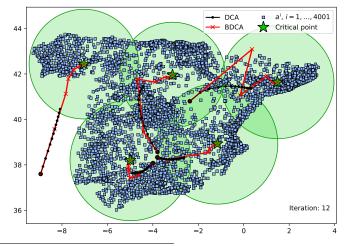
PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



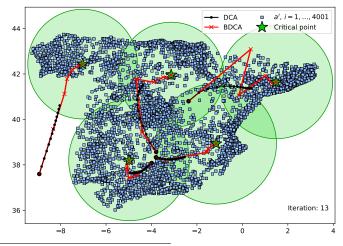
PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



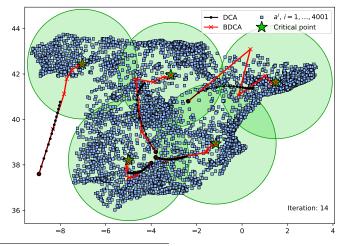
PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



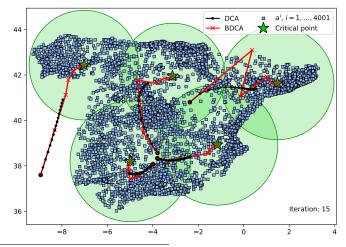
PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



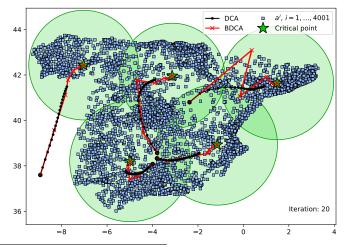
PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



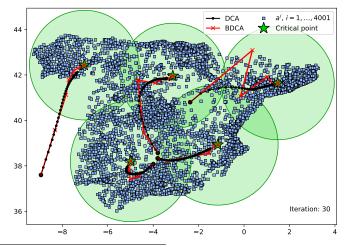
PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



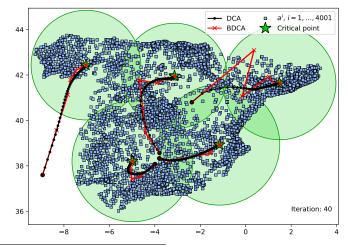
PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



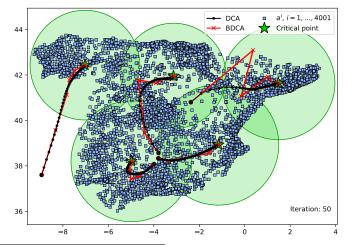
PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the peninsula with more than 500 residents¹.



PROBLEM: Find a partition into *k* clusters of the 4001 Spanish cities in the peninsula with more than 500 residents, with $k \in \{5, 10, 15, 20, 25, 50, 75, 100\}$.

For 100 random starting points, BDCA was stopped when the relative error of ϕ was smaller than 10^{-3} . Then, DCA was run from the same starting point until the same value of the objective function was reached (which did not happen in 31 instances).

PROBLEM: Find a partition into *k* clusters of the 4001 Spanish cities in the peninsula with more than 500 residents, with $k \in \{5, 10, 15, 20, 25, 50, 75, 100\}$.

For 100 random starting points, BDCA was stopped when the relative error of ϕ was smaller than 10^{-3} . Then, DCA was run from the same starting point until the same value of the objective function was reached (which did not happen in 31 instances).

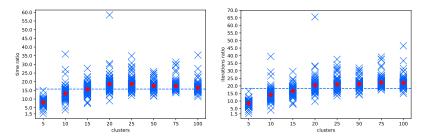


Figure: Comparison between DCA and BDCA. We represent the ratios of running time (left) and number of iterations (right) between DCA and BDCA.

Experiment 3: Clustering random points in an *m*-dimensional box

We took *n* random points in \mathbb{R}^m (normal distribution), with $n \in \{500, 1000, 5000, 10000\}$ and $m \in \{2, 5, 10, 20\}$. For each (n, m), 10 random starting points were chosen. Then:

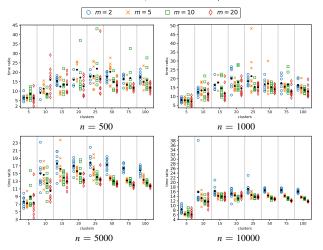
• BDCA was run to solve the *k*-clustering, with $k \in \{5, 10, 15, 20, 25, 50, 75, 100\}$.

• DCA was run until the same value of ϕ was reached (it failed in 123 instances).

Experiment 3: Clustering random points in an *m*-dimensional box

We took *n* random points in \mathbb{R}^m (normal distribution), with $n \in \{500, 1000, 5000, 10000\}$ and $m \in \{2, 5, 10, 20\}$. For each (n, m), 10 random starting points were chosen. Then: • BDCA was run to solve the *k*-clustering, with $k \in \{5, 10, 15, 20, 25, 50, 75, 100\}$.

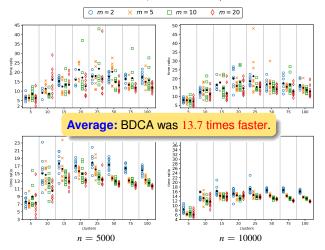
• DCA was run until the same value of ϕ was reached (it failed in 123 instances).



Experiment 3: Clustering random points in an *m*-dimensional box

We took *n* random points in \mathbb{R}^m (normal distribution), with $n \in \{500, 1000, 5000, 10000\}$ and $m \in \{2, 5, 10, 20\}$. For each (n, m), 10 random starting points were chosen. Then: • BDCA was run to solve the *k*-clustering, with $k \in \{5, 10, 15, 20, 25, 50, 75, 100\}$.

• DCA was run until the same value of ϕ was reached (it failed in 123 instances).



Outline

Introduction

- 2 The Boosted DC Algorithm
 - The algorithm: Adding a line search step to DCA
 - Convergence under the Kurdyka–Łojasiewicz property

3 Numerical experiments

- A DC problem in biochemistry
- The Minimum Sum-of-Squares Clustering Problem
- The Multidimensional Scaling Problem

References

The Multidimensional Scaling Problem

Suppose that we have a table of distances between some objects, known as the dissimilarity matrix. If the objects are *n* points x^1, x^2, \ldots, x^n in \mathbb{R}^q , the dissimilarity matrix can be defined by the Euclidean distance between them:

$$\delta_{ij} = \|x^i - x^j\| := \mathsf{d}_{ij}(X),$$

where we denote by *X* the $n \times q$ matrix whose rows are x^1, x^2, \ldots, x^n .

The Multidimensional Scaling Problem

Suppose that we have a table of distances between some objects, known as the dissimilarity matrix. If the objects are *n* points x^1, x^2, \ldots, x^n in \mathbb{R}^q , the dissimilarity matrix can be defined by the Euclidean distance between them:

$$\delta_{ij} = \|x^i - x^j\| := \mathsf{d}_{ij}(X),$$

where we denote by *X* the $n \times q$ matrix whose rows are x^1, x^2, \ldots, x^n . Given a target dimension $p \leq q$, the MDS problem consists in finding *n* points in \mathbb{R}^p , which are represented by an $n \times p$ matrix X^* , such that

$$Stress(X^*) := \sum_{i < j} w_{ij} \left(\mathsf{d}_{ij}(X^*) - \delta_{ij} \right)^2$$

is smallest, where $w_{ij} \ge 0$ are weights ($w_{ij} = 0$ if δ_{ij} is missing).

The Multidimensional Scaling Problem

Suppose that we have a table of distances between some objects, known as the dissimilarity matrix. If the objects are *n* points x^1, x^2, \ldots, x^n in \mathbb{R}^q , the dissimilarity matrix can be defined by the Euclidean distance between them:

$$\delta_{ij} = \|x^i - x^j\| := \mathsf{d}_{ij}(X),$$

where we denote by *X* the $n \times q$ matrix whose rows are x^1, x^2, \ldots, x^n . Given a target dimension $p \leq q$, the MDS problem consists in finding *n* points in \mathbb{R}^p , which are represented by an $n \times p$ matrix X^* , such that

$$Stress(X^*) := \sum_{i < j} w_{ij} \left(\mathsf{d}_{ij}(X^*) - \delta_{ij} \right)^2$$

is smallest, where $w_{ij} \ge 0$ are weights ($w_{ij} = 0$ if δ_{ij} is missing). This can be equivalently formulated as a DC problem by setting

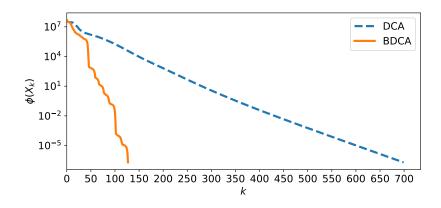
$$g(X) := \frac{1}{2} \sum_{i < j} w_{ij} \mathsf{d}_{ij}^2(X) + \frac{\rho}{2} ||X||^2,$$
$$h(X) := \sum_{i < j} w_{ij} \delta_{ij} \mathsf{d}_{ij}(X) + \frac{\rho}{2} ||X||^2,$$

for some $\rho \ge 0$. Moreover, it is clear that *g* is differentiable while *h* is not, but ∂h can be explicitly computed.

Consider the dissimilarity matrix defined by the distances between the 4155 Spanish cities with more than 500 residents, including this time those outside the peninsula. \Rightarrow The optimal value of this MDS problem is zero.

Consider the dissimilarity matrix defined by the distances between the 4155 Spanish cities with more than 500 residents, including this time those outside the peninsula. \Rightarrow The optimal value of this MDS problem is zero.

Consider the dissimilarity matrix defined by the distances between the 4155 Spanish cities with more than 500 residents, including this time those outside the peninsula. \Rightarrow The optimal value of this MDS problem is zero.



Consider the dissimilarity matrix defined by the distances between the 4155 Spanish cities with more than 500 residents, including this time those outside the peninsula. \Rightarrow The optimal value of this MDS problem is zero.

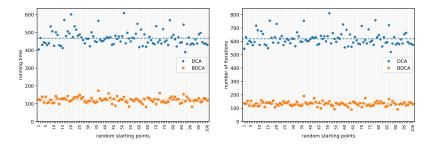
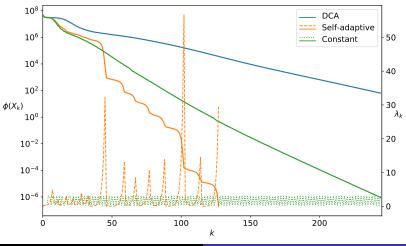


Figure: Running time (left) and number of iterations (right) of DCA and BDCA for 100 random instances.

Consider the dissimilarity matrix defined by the distances between the 4155 Spanish cities with more than 500 residents, including this time those outside the peninsula. \Rightarrow The optimal value of this MDS problem is zero.



Main References

- - H. ATTOUCH, J. BOLTE: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. *Math. Program.* 116 (2009), 5–16.
- F.J. ARAGÓN ARTACHO, R.M.T. FLEMING, P.T. VUONG: Accelerating the DC algorithm for smooth functions. *Math. Program. 169B* (2018), 95–118.

F.J. ARAGÓN ARTACHO, P.T. VUONG: The Boosted DC Algorithm for nonsmooth functions. *SIAM J. Optim.* 30 (2020), 980–1006

- J. BOLTE, A. DANIILIDIS, A. LEWIS, AND M. SHIOTA, Clarke subgradients of stratifiable functions, *SIAM J. Optim.* 18 (2007), 556–572.
- M. FUKUSHIMA, H. MINE: A generalized proximal point algorithm for certain non-convex minimization problems. *Int. J. Syst. Sci.* 12 (1981), 989–1000.

H.A. LE THI, T. PHAM DINH: D.C. programing approach to the multidimensional scaling problem, in *From Local to Global Optimization*, P. Pardalos and P. Varbrand, eds, Kluwer, Dodrecht, 2001, 231–276.

H. MINE, M. FUKUSHIMA: A minimization method for the sum of a convex function and a continuously differentiable function. *J. Optimiz. Theory App.* 33 (1981), 9–23.

B. ORDIN, A.M. BAGIROV: A heuristic algorithm for solving the minimum sum-of-squares clustering problems, *J. Glob. Optim.* 61 (2015), 341–361.

T. PHAM DINH, E.B. SOUAD: Algorithms for solving a class of nonconvex optimization problems. Methods of subgradients. In J.-B. Hiriart-Urruty, editor, *FERMAT Days 85: Mathematics for Optimization*, volume 129 of *North-Holland Mathematics Studies*, pp. 249–271. Elsevier (1986)