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Conic linear programming

minimize (c, x)
subjectto xe€ (L+a)NK

@ /C: closed convex cone contained in some space £.
@ L: subspace contained in £.
@ a,cef.
General philosophy: isolate the nonlinearity of the problem into the conic
constraints.
@ Many good solvers: SeDuMi, SDPT3, SDPA, MOSEK and others.
@ Many applications.

o Lectures on Modern Convex Optimization (Ben-Tal and Nemirovski)
o MOSEK Modeling Cookbook.
https://docs.mosek.com/modeling-cookbook
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Feasibility problems over convex cones

Consider the following feasibility problem over a convex cone K.

find x
subjectto x e (L+a)NK

@ /C: closed convex cone contained in some space £.
@ L: subspace contained in £.
@ acé.

(L + ais an affine space)

3 L.

Amenable cones: error bounds without constraint qualifications.
Mathematical Programming 186, 1-48 (2021)
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Motivation
Let || - || be the Euclidean norm and fix x € &.

dist (x, L+ a) =inf{|[x —y|| | y € L+ a}
dist (x, ) = inf{Jlx — yl| | y € K}
dist (x,(L+a)NK)=inf{||[x—y| |y € (L+a)NK}

Fundamental question

Can we estimate dist (x, (£ + a) N K) using dist (x, £ + a) and
dist (x, KC)?

= X

@ Convergence analysis often leads to this type of questions.
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Holderian error bounds

Cy, Go: closed convex sets.
C = Cl n C2

Definition (Holderian error bound)

(1, G, satisfy a Holderian error bound 2L for every bounded set B
there exist g > 0, v € (0, 1] such that

1 < 1 )78 X
dist (x, C) < 0p e dist (x, G;)® VxeB

If vg = v € (0,1] for all B, the bound is uniform. If the bound is
uniform with v = 1, we call it a Lipschitzian error bound.
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Some results: (Ci, G: convex sets, with C; N G, # 0)
o 1i C; Nri G, # () = Lipschitzian

e (i, G are polyhedral = Lipschitzian (Hoffman's Lemma)

@ (i, G,: basic convex semialgebraic sets = Uniform Holderian

(Borwein, Li and Yao's error bound)

The exponential cone
000000

o (: affine space, Co: PSD cone = Uniform Holderian (Sturm's error

bound)

Determining whether a Holderian error bound holds. If yes, determing
the exponent as tightly as possible.
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Sturm'’s bound

S™ n X n symmetric matrices.
ST: n x n positive semidefinite matrices.

Theorem (Sturm'’s Error Bound)

Suppose (L + a) NS # 0. There exists v > 0 such that for every p > 0,
there exists k, > 0 such that
dist (x, £+ a) <€, dist(x,57)<e |x||<p
implies
dist (x, (£ 4+ a) N ST) < k,e® ),
where v < min{n — 1,dim(£* N {a}*), dim span (£ + a)}.

o Tight!
@ +y is connected to the so-called singularity degree.

@ J. F. Sturm.
Error bounds for linear matrix inequalities.
SIAM Journal on Optimization, 10(4):1228-1248, Jan. 2000.
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Beyond Sturm's bound

For which cones does a result similar to Sturm’s bound holds?

Answer: For symmetric cones, a result almost identical to Sturm'’s
bound holds. For a new class of cones called amenable cones, similar
results holds. Three ingredients are needed:

@ Amenable cones
o Facial Residual Functions (FRFs)

@ Facial Reduction.
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Ty
Review of faces&A

@ /C: closed convex cone
@ F C K: closed convex cone

Definition (Face of a cone)

Fis a face of £ &% if x+y e F, with x,y € K, then x,y € F.

Definition (Exposed face)

F is an exposed face of K <% F =K {z}*, for some z € K*.

Fact: F = K Nspan F
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Amenable cones

Definition (Amenable cones)

IC is amenable if for every face F of K there is kK > 0 such that

dist (x, F) < kdist (x, ), Vx € span F.

@ Symmetric cones (e.g., PSD cone) are amenable (x = 1)
@ Polyhedral cones are amenable

@ Strictly convex cones are amenable. (p-cones, second order cones

and so on)
@ Amenability is preserved under linear isomorphism and direct
products
Reminders:
. def o .
KC is homogeneous <= Aut(K) acts transitively on ri K.
def

K is self-dual <= K = K* for some choice of inner product.
. . def .
K is symmetric <= K is homogeneous and self-dual.
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Recent results on amenability

A few results (L, Roshchina and Saunderson)

@ Hyperbolicity cones and spectrahedral cones are amenable.
@ Amenability is preserved by intersections and taking slices.

@ A cone constructed from an amenable compact convex set is
amenable.

@ L, V. Roshchina and J. Saunderson
Amenable cones are particularly nice.
arxiv:2011.07745

@ L, V. Roshchina and J. Saunderson
Hyperbolicity cones are amenable.
arxiv:2102.06359 113
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Comparison of exposedness properties

Known results:
o Facially exposed < Nice <= Amenable FLER Projectionally exposed.
e dim K < 3: Facially exposed < Projectionally exposed (Barker and
Poole, SIADM'87)
@ There exists a 4D cone that is facially exposed but not nice (Vera,
SIOPT'14).
New results (see LRS'20):
@ There exists a 4D cone that is nice but not amenable
@ In dimension 4 or less: Amenable < Projectionally exposed.

Figure: A 3D slice of a 4D convex cone that is nice but not amenable 12/33
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Let

@ [C: closed convex pointed cone.

e F: face of £

@ z € F* (Reminder:F* = {x | (x,y) > 0,Vy € F}).
Fact:

Fn{z}t = Knspan F N {z}*.
Therefore,
dist (x, ) =0 dist (x,spanF) =0 (x,z) =0

implies

dist (x, Fn{z}+) = 0.
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Facial Residual Functions

Let
@ [C: closed convex pointed cone.
e F: face of
e z € F*, where 7* = {x | (x,y) > 0,Vy € F}.

If
dist (x, ) <e dist(x,spanF) <e (x,z) <e,
what can we say about
dist (x, F N {z}+)?

In general, it also depends on ||x||.

The exponential cone
000000
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Let

@ /C: closed convex pointed cone.
e F: face of £
@ z€ F*¥

Definition (Facial residual functions)

If Yr,: Ry x Ry — Ry satisfies

© 5 is nonnegative, monotone nondecreasing in each argument and
(0, ) = 0 for every o € R;..

@ whenever x € span [ satisfies the inequalities

dist (x, ) <€, (x,z) <e, dist(x,spanF) <e

we have:

dist (x, F N {Z}L) < r (e [1x]])-

Then, 9 £ , is said to be facial residual function (FRF) for F and z.

The exponential cone
000000

Fact: FRFs always exist!
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Facial Residual Functions (FRFs) - Examples

o If IC is a symmetric cone, then

Vr.2(€ lIx]l) = re + ry/ellx]|
is a FRF, for some x > 0. (relatively technical to prove)
o If I is polyhedral, then ¥ £ , (¢, ||x||) = ke is a FRF, for some x > 0.

@ There are easy formulae for direct products of amenable cones and
bijective linear images of cones.
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An intermediary result

find x
subjectto x e (L+a)NK

Proposition (Error bound for when a face satisfying Slater’s condition is

known)

Suppose K is amenable and (£ + a) NriF # ) for some face F
containing (£ + a) N K.
Then, 3k > 0 such that whenever x € span IC and e satisfy

dist (x, ) <, dist(x,L+a)<e¢, dist(x,spanF) < e,

we have
dist (x, (£ + a) N K) < k| x||e + xe.

Fact: If (£ +a) NI # 0, a face F as above always exist.
o If we know F and we have a bound on dist (x, span F), we can also
bound dist (x, (£ + a) N K).
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General idea

find x
subjectto x € (L+a)NK

Suppose we have dist (x, £ + a) and dist (x, K).
Q Find F such that (L+a)NriF £ 0 and (L+a)NK C F.

@ Use facial residual functions to bound dist (x, F) using
dist (x, £ + a) and dist (x, ).
© Use previous proposition!
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How to find F

We want F such that
(L+a)NriF #0.

and (L+a)NK C F.
Q Let /i =K and i+ 1.
Q If (L+a)NriF;i # 0, we are done.
Q If (L+a)NriF; =0, we invoke a separation theorem.

o There exists z; € F; \ Fi- and z € £ N {a}*.
o Let Fii1 < Fin{z}* and i+ i+ 1. Go to Step 2.
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The Facial Reduction Theorem

Theorem (The facial reduction theorem)

If the problem is feasible, there exists a chain of faces
FeC---CF1=K

together with z; € F¥ N LY N {a}* such that
@ Forallie{l,...,£—1}, we have

Fip1 = Fin{z}*

@ Fen(L+a)=KN(L+a)and (L+ a)NriFe # 0.

The smallest ¢ is the singularity degree of the problem.

@ L, M. Muramatsu and T. Tsuchiya.
Facial reduction and partial polyhedrality.
SIAM Journal on Optimization, 28(3), 2018.

@ J. M. Borwein and H. Wolkowicz.
Facial reduction for a cone-convex programming problem.
Journal of the Australian Mathematical Society (Series A), 30(3):369-380, 1981.
20/33
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Main result

Theorem (Error bound for amenable cones)

Let IC be a closed convex amenable cone such that I N (L + a) # 0. Let
FC---CHR =K

be a chain of faces of K together with z; € F; N L N {a}* such that
(£ +a)NriFe £ 0.

and Fiy1 = Fi N {zi}* for every i. Let 1; be a facial residual function for F;,
zj. Then, after positive rescaling the 1;, there is a constant k > 0 such that if
x € span [C satisfies the inequalities

dist (x, €) <, dist(x,L£+a) <e,

we have

dist (x, (£ + a) N K) < (sl|x]| + &)(e + ©(e, [Ix]])),
where ¢ = p_1 - Oy, iF L > 2. If £ =1, we let p be the function
satisfying (e, ||x]|) = e.

(fOg)(a, b) = f(a+ g(a, b), b).
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Main result

Theorem (Error bound for amenable cones)

Let IC be a closed convex amenable cone such that ICN (L + a) # 0.

Then, there is a constant k > 0 such that if
x € span IC satisfies the inequalities

dist (x, £) <, dist(x,L+a) <e,

we have
dist (x, (£ +a) NK) < (kllx|| + £)(e + » (e, [Ix])),

where ¢ = 11 - - - Oy

(fog)(a, b) == f(a+ g(a, b), b). 2/3
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Error bound for symmetric cones

Proposition (Error bounds for symmetric cones)

Let IC = K' x --- x K* be a product of s symmetric cones, such that

(L+a)NK#0D
Let p > 0. Then, there exists k > 0 such that for every x € £ and e < 1
satisfying
dist (x,K) < e, dist(x,L+3)<e, [Ix|<op,
we have ippelln)
dist (x, (£ + a) N K) < ke® 777
Furthermore,

dpps(L, a) < min {dim([,L n{a}"), i(ranlei —1),d(L, a)} .

i=1

@ i.e., an uniform Holderian error bound holds

L,a

@ the exponent is 2-%pPs(£:3) 5nd it is tight.
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Conclusion so far

Three steps for obtaining error bounds.
@ Prove that K is amenable

@ Work out the facial residual functions. Preferably, the facial residual
functions should have some simple formula as functions of € and || x||.

© Apply the main result.

Next questions
How to compute the facial residual functions? How about non-amenable
cones?

[d Scott B. Lindstrom; L and Ting Kei Pong
Error bounds, facial residual functions and applications to the

exponential cone
arXiv:2010.16391
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Error bound without amenability

Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let K be a closed convex cone such that I N (L + a) # (. Let
FC---CHR =K

be a chain of faces of K together with z; € F; N L N {a}* such that
(£ +a)NriFe £ 0.

and Fiy1 = Fi N {zi}* for every i. Let 1; be a facial residual function for F;,
zj. Then, after positive rescaling the 1);, for every bounded set B there are
constants k > 0, M > 0 such that if x € span KC N B satisfies the inequalities

dist (x, £) <, dist(x,L£+a)<e,

we have

dist (x, (£ + a) N K) < k(e + ¢(e, M)),
where ¢ = pp_1 - Oapr, iF L > 2. If £ =1, we let p be the function
satisfying (e, || x||) = €.

(fOg)(a, b) = f(a+ g(a, b), b).
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Error bound without amenable cones

Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let K be a closed convex cone such that KK N (L + a) # 0.

Then for every bounded set B there are
constants k > 0, M > 0 such that if x € span KC N B satisfies the inequalities

dist (x, £) <€, dist(x,L+ a) <e,

we have
dist (x, (£ + a) N K) < k(e + ¢(e, M)),

where o = de_1$ - Gy

(fOg)(a, b) = f(a+ g(a, b), b).
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Where amenability fits in this?

g : Ry — Ry: monotone nondecreasing function with g(0) = 0.

Definition (g-amenability)

F < K is g-amenable if for every bounded set B, there exists x > 0 such that
dist (x, F) < wg(dist (x, £)), Vx € (spanF)N B.

If all faces of IC are g-amenable, then K is an g-amenable cone.

Suppose K! and K? are g-amenables
@ There are calculus rules for the FRFs of X! x k2.
@ A FRF of a face of X! can be lifted to a FRF of the whole cone K!.
@ Amenability is recovered when g = | - |.

o FRFs of K! x K?. are sums of FRFs of K! and k2.
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The exponential cone

Kexp ::{(X,y,z)|y>0,22yex/y}u{(x,y,z)|X§O,220,y=0}.
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The exponential cone

Kexp ::{(X,y,z)\y>0,22yex/y}u{(x7y,z)|x§07220,y20}.

K:Xp ::{(x,y,z) | x <0,ez > —Xey/x} U{(x,y,z) | x=0,ez >0,y > 0}.
@ Not exposed! (So not amenable...)
@ Applications to entropy optimization, logistic regression, geometric
programming and etc.

@ Available in Mosek.
https://docs.mosek. com/modeling-cookbook/expo.html.

@ V. Chandrasekaran, P. Shah
Relative entropy optimization and its applications.
Math. Program. 161, 1-32 (2017)
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The faces of the exponential cone

@ exposed extreme rays (1D faces) parametrized by 5 € R:

Fp = {(—ﬂy +y,y,e7Py) ‘ y €0, oo)} : (amenable)
@ an “exceptional” exposed extreme ray:
Foo ={(x,0,0) | x < 0}. (amenable)
@ a non-exposed extreme ray: Fpe:
Fne ={(0,0,2) | z> 0}. (g-amenable, not amenable)
@ a single 2D exposed face:
Fooo ={(x,y,2) | x<0,z>0,y =0}, (amenable)
where F, and F,. are the extreme rays of F_.
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Error bound for problems over the exponential cone

find x (CFP)
subject to  x € (£ + a) N Kexp

Let z € (Keop)* NLEN{a}t, 2#0. Let F = Koy N {2}
@ F = {0}: Lipschitzian error bound.
@ F = Fp: a Holderian error bound with exponent 1/2.

@ F = F, either a Lipschitzian or a log-type error bound holds depending
on the exposing vector. (No Holderian error bound holds in the latter!)

@ F = F_, entropic error bound: for every bounded set B, there exists

kg >0
dist (x, (£ + a) N Kexp) < KBY—oo(max(dist (x, £ + a), dist (x, Kexp))), Vx € B,
where

0 if t=0,

g-oo(t) :==§ —tIn(t) if te (0,1/€],
t+ % ift>1/e
The results above are optimal.
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Strange error bounds

From the exponential cone we can:

@ Obtain sets that do not have a Holderian error bound, but have a
logarithmic error bound:

e Or, a function that does not have a KL exponent.

Foo = Kexp N {z}l,

where z = (0,0, 1).
@ Obtain sets that satisfy a Holderian bound for all v € (0,1) but not
v = 1. Furthermore, the best error bound is an entropic one.

e Or, a KL function whose exponent can be arbitrary close to 1/2 but
not 1/2.

-Ffoo = Rexp N {Z}J_a
where z = (0, 1,0).
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