Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000

Error bounds, amenable cones and beyond

Bruno F. Lourenço The Institute of Statistical Mathematics

June 16th, 2021 VAO Webinar

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
000000	0000	0000	00000000	000	000000
Conic li	near progra	mming			

 $\begin{array}{ll} \text{minimize} & \langle c, x \rangle \\ \text{subject to} & x \in (\mathcal{L} + a) \cap \mathcal{K} \end{array}$

- \mathcal{K} : closed convex cone contained in some space \mathcal{E} .
- \mathcal{L} : subspace contained in \mathcal{E} .

● *a*, *c* ∈ *E*.

General philosophy: isolate the nonlinearity of the problem into the conic constraints.

- Many good solvers: SeDuMi, SDPT3, SDPA, MOSEK and others.
- Many applications.
 - Lectures on Modern Convex Optimization (Ben-Tal and Nemirovski)
 - MOSEK Modeling Cookbook. https://docs.mosek.com/modeling-cookbook

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
000000	0000	0000	0000000	000	000000
Feasibilit	y problems	over co	onvex cone	s	

Consider the following *feasibility problem over a convex cone* \mathcal{K} .

find x subject to $x \in (\mathcal{L} + a) \cap \mathcal{K}$

• \mathcal{K} : closed convex cone contained in some space \mathcal{E} .

- \mathcal{L} : subspace contained in \mathcal{E} .
- *a* ∈ *E*.
- $(\mathcal{L} + \mathbf{a} \text{ is an affine space})$

L.

Amenable cones: error bounds without constraint qualifications. Mathematical Programming **186**, 1–48 (2021)

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
000000	0000	0000	00000000	000	000000
Motivati	on				

Let $\|\cdot\|$ be the Euclidean norm and fix $x \in \mathcal{E}$.

$$dist (x, \mathcal{L} + a) = \inf\{ ||x - y|| \mid y \in \mathcal{L} + a \}$$
$$dist (x, \mathcal{K}) = \inf\{ ||x - y|| \mid y \in \mathcal{K} \}$$
$$dist (x, (\mathcal{L} + a) \cap \mathcal{K}) = \inf\{ ||x - y|| \mid y \in (\mathcal{L} + a) \cap \mathcal{K} \}$$

Fundamental question

Can we estimate dist $(x, (\mathcal{L} + a) \cap \mathcal{K})$ using dist $(x, \mathcal{L} + a)$ and dist (x, \mathcal{K}) ?

• Convergence analysis often leads to this type of questions.

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Hölderia	n error bou	nds			

 $\begin{array}{l} C_1, C_2: \text{ closed convex sets.} \\ C := C_1 \cap C_2 \end{array}$

Definition (Hölderian error bound)

 C_1, C_2 satisfy a **Hölderian error bound** $\stackrel{\text{def}}{\iff}$ for every bounded set *B* there exist $\theta_B > 0$, $\gamma_B \in (0, 1]$ such that

$$\operatorname{dist}(x, C) \leq \theta_B \max_{1 \leq i \leq 2} \operatorname{dist}(x, C_i)^{\gamma_B} \quad \forall \ x \in B.$$

If $\gamma_B = \gamma \in (0, 1]$ for all *B*, the bound is **uniform**. If the bound is uniform with $\gamma = 1$, we call it a **Lipschitzian** error bound.

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Some kr	nown result	S			

Some results: $(C_1, C_2: \text{ convex sets, with } C_1 \cap C_2 \neq \emptyset)$

- ri $C_1 \cap ri C_2 \neq \emptyset \Rightarrow \mathsf{Lipschitzian}$
- C_1, C_2 are polyhedral \Rightarrow Lipschitzian (Hoffman's Lemma)
- C₁, C₂: basic convex semialgebraic sets ⇒ Uniform Hölderian (Borwein, Li and Yao's error bound)
- C₁: affine space, C₂: PSD cone ⇒ Uniform Hölderian (Sturm's error bound)

Key issue

Determining **whether** a Hölderian error bound holds. If yes, determing the **exponent** as tightly as possible.

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Sturm's	bound				

 S^n : $n \times n$ symmetric matrices.

 \mathcal{S}^n_+ : $n \times n$ positive semidefinite matrices.

Theorem (Sturm's Error Bound)

Suppose $(\mathcal{L} + a) \cap S^n_+ \neq \emptyset$. There exists $\gamma \ge 0$ such that for every $\rho > 0$, there exists $\kappa_{\rho} > 0$ such that

dist
$$(x, \mathcal{L} + a) \le \epsilon$$
, dist $(x, \mathcal{S}^n_+) \le \epsilon$, $||x|| \le \rho$

implies

dist
$$(x, (\mathcal{L} + a) \cap \mathcal{S}^n_+) \leq \kappa_{\rho} \epsilon^{(2^{-\gamma})},$$

where $\gamma \leq \min\{n-1, \dim(\mathcal{L}^{\perp} \cap \{a\}^{\perp}), \dim \operatorname{span}(\mathcal{L}+a)\}.$

Tight!

• γ is connected to the so-called singularity degree.

J. F. Sturm.

Error bounds for linear matrix inequalities. SIAM Journal on Optimization, 10(4):1228–1248, Jan. 2000.

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
000000	0000	0000	00000000	000	000000
Beyond	Sturm's bo	ound			

Question

For which cones does a result similar to Sturm's bound holds?

Answer: For **symmetric cones**, a result almost *identical* to Sturm's bound holds. For a new class of cones called **amenable cones**, similar results holds. Three ingredients are needed:

- Amenable cones
- Facial Residual Functions (FRFs)
- Facial Reduction.

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Review of	of faces 🛱				

- K: closed convex cone
- $\mathcal{F} \subseteq \mathcal{K}$: closed convex cone

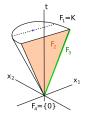
Definition (Face of a cone)

$$\mathcal{F}$$
 is a face of $\mathcal{K} \stackrel{\text{def}}{\iff}$ if $x + y \in \mathcal{F}$, with $x, y \in \mathcal{K}$, then $x, y \in \mathcal{F}$.

Definition (Exposed face)

$$\mathcal{F}$$
 is an **exposed** face of $\mathcal{K} \iff \mathcal{F} = \mathcal{K} \cap \{z\}^{\perp}$, for some $z \in \mathcal{K}^*$

 $\mathsf{Fact:}\ \mathcal{F} = \mathcal{K} \cap \operatorname{span} \mathcal{F}$



Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	0000000	000	000000
Amenab	e cones				

Definition (Amenable cones)

 \mathcal{K} is **amenable** if for every face \mathcal{F} of \mathcal{K} there is $\kappa > 0$ such that

dist $(x, \mathcal{F}) \leq \kappa \text{dist}(x, \mathcal{K}), \quad \forall x \in \text{span } \mathcal{F}.$

- Symmetric cones (e.g., PSD cone) are amenable ($\kappa=1$)
- Polyhedral cones are amenable
- Strictly convex cones are amenable. (*p*-cones, second order cones and so on)
- Amenability is preserved under linear isomorphism and direct products

Reminders:

 \mathcal{K} is homogeneous $\stackrel{\text{def}}{\iff}$ Aut (\mathcal{K}) acts transitively on $\operatorname{ri} \mathcal{K}$.

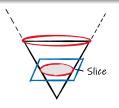
 \mathcal{K} is self-dual $\stackrel{\text{def}}{\iff} \mathcal{K} = \mathcal{K}^*$ for some choice of inner product.

 \mathcal{K} is symmetric $\stackrel{\text{def}}{\longleftrightarrow} \mathcal{K}$ is homogeneous and self-dual.

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Recent I	results on a	amenab	ility		

A few results (L, Roshchina and Saunderson)

- Hyperbolicity cones and spectrahedral cones are amenable.
- Amenability is preserved by intersections and taking slices.
- A cone constructed from an amenable compact convex set is amenable.



L, V. Roshchina and J. Saunderson Hyperbolicity cones are amenable.

arxiv:2102.06359

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Compari	ison of exp	osednes	s propertie	es	

Known results:

- Facially exposed ⇐ Nice ⇐ Amenable ⇐ Projectionally exposed.
- dim $\mathcal{K} \leq$ 3: Facially exposed \Leftrightarrow Projectionally exposed (Barker and Poole, SIADM'87)
- There exists a 4D cone that is facially exposed but not nice (Vera, SIOPT'14).

New results (see LRS'20):

- There exists a 4D cone that is nice but not amenable
- In dimension 4 or less: Amenable \Leftrightarrow Projectionally exposed.

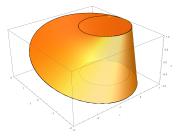


Figure: A 3D slice of a 4D convex cone that is nice but not amenable

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Facial R	Residual Fu	nctions			

Let

- \mathcal{K} : closed convex pointed cone.
- \mathcal{F} : face of \mathcal{K}

•
$$z \in \mathcal{F}^*$$
 (Reminder: $\mathcal{F}^* = \{x \mid \langle x, y \rangle \ge 0, \forall y \in \mathcal{F}\}$).

Fact:

$$\mathcal{F} \cap \{z\}^{\perp} = \mathcal{K} \cap \operatorname{span} \mathcal{F} \cap \{z\}^{\perp}.$$

Therefore,

$$\operatorname{dist}(x,\mathcal{K}) = 0 \quad \operatorname{dist}(x,\operatorname{span}\mathcal{F}) = 0 \quad \langle x,z \rangle = 0$$

implies

$$\operatorname{dist}(x,\mathcal{F}\cap\{z\}^{\perp})=0.$$

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Facial R	esidual Fu	nctions			

Let

- \mathcal{K} : closed convex pointed cone.
- \mathcal{F} : face of \mathcal{K}

•
$$z \in \mathcal{F}^*$$
, where $\mathcal{F}^* = \{x \mid \langle x, y \rangle \ge 0, \forall y \in \mathcal{F}\}.$

lf

$$\operatorname{dist}(x,\mathcal{K}) \leq \epsilon \quad \operatorname{dist}(x,\operatorname{span}\mathcal{F}) \leq \epsilon \quad \langle x,z \rangle \leq \epsilon,$$

what can we say about

dist $(x, \mathcal{F} \cap \{z\}^{\perp})$?

In general, it also depends on ||x||.

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Facial F	Residual Fu	nctions			

Let

- \mathcal{K} : closed convex pointed cone.
- \mathcal{F} : face of \mathcal{K}
- $z \in \mathcal{F}^*$

Definition (Facial residual functions)

If $\psi_{\mathcal{F},z}:\mathbb{R}_+\times\mathbb{R}_+\to\mathbb{R}_+$ satisfies

- ψ_{F,z} is nonnegative, monotone nondecreasing in each argument and ψ(0, α) = 0 for every α ∈ ℝ₊.
- **2** whenever $x \in \operatorname{span} \mathcal{K}$ satisfies the inequalities

$$\operatorname{dist}(x,\mathcal{K}) \leq \epsilon, \quad \langle x,z \rangle \leq \epsilon, \quad \operatorname{dist}(x,\operatorname{span}\mathcal{F}) \leq \epsilon$$

we have:

dist
$$(x, \mathcal{F} \cap \{z\}^{\perp}) \leq \psi_{\mathcal{F},z}(\epsilon, ||x||).$$

Then, $\psi_{\mathcal{F},z}$ is said to be facial residual function (FRF) for \mathcal{F} and z.

Fact: FRFs always exist!

• If \mathcal{K} is a symmetric cone, then

$$\psi_{\mathbf{F},z}(\epsilon, \|\mathbf{x}\|) = \kappa \epsilon + \kappa \sqrt{\epsilon \|\mathbf{x}\|}$$

is a FRF, for some $\kappa > 0$. (relatively technical to prove)

- If \mathcal{K} is polyhedral, then $\psi_{\mathcal{F},z}(\epsilon, ||x||) = \kappa \epsilon$ is a FRF, for some $\kappa > 0$.
- There are easy formulae for direct products of amenable cones and bijective linear images of cones.

Introduction 0000000	Amenable cones	FRFs 0000	Error bounds	Beyond amenability 000	The exponential cone
0000000	0000	0000	•0000000	000	000000
An inter	rmediary re	sult			

find x subject to $x \in (\mathcal{L} + a) \cap \mathcal{K}$

Proposition (Error bound for when a face satisfying Slater's condition is known)

Suppose \mathcal{K} is amenable and $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F} \neq \emptyset$ for some face \mathcal{F} containing $(\mathcal{L} + a) \cap \mathcal{K}$. Then, $\exists \kappa > 0$ such that whenever $x \in \operatorname{span} \mathcal{K}$ and ϵ satisfy

 $\operatorname{dist}(x,\mathcal{K}) \leq \epsilon, \quad \operatorname{dist}(x,\mathcal{L}+a) \leq \epsilon, \quad \operatorname{dist}(x,\operatorname{span}\mathcal{F}) \leq \epsilon,$

we have

dist
$$(x, (\mathcal{L} + a) \cap \mathcal{K}) \leq \kappa ||x|| \epsilon + \kappa \epsilon$$
.

Fact: If $(\mathcal{L} + a) \cap \mathcal{K} \neq \emptyset$, a face \mathcal{F} as above always exist.

If we know F and we have a bound on dist (x, span F), we can also bound dist (x, (L + a) ∩ K).

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	0000000	000	000000
General	idea				

find
$$x$$

subject to $x \in (\mathcal{L} + a) \cap \mathcal{K}$

Suppose we have dist $(x, \mathcal{L} + a)$ and dist (x, \mathcal{K}) .

- Find \mathcal{F} such that $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F} \neq \emptyset$ and $(\mathcal{L} + a) \cap \mathcal{K} \subseteq \mathcal{F}$.
- Ose previous proposition!

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
How to	find \mathcal{F}				

We want \mathcal{F} such that

 $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F} \neq \emptyset.$

and $(\mathcal{L} + a) \cap \mathcal{K} \subseteq \mathcal{F}$.

- Let $\mathcal{F}_1 = \mathcal{K}$ and $i \leftarrow 1$.
- 2 If $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F}_i \neq \emptyset$, we are done.

● If $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F}_i = \emptyset$, we invoke a separation theorem.

- There exists $z_i \in \mathcal{F}_i^* \setminus \mathcal{F}_i^{\perp}$ and $z_i \in \mathcal{L}^{\perp} \cap \{a\}^{\perp}$.
- Let $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_i \cap \{z_i\}^{\perp}$ and $i \leftarrow i+1$. Go to Step 2.



TI E ·		T 1			
0000000	0000	0000	0000000	000	000000
Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone

The Facial Reduction Theorem

Theorem (The facial reduction theorem)

If the problem is feasible, there exists a chain of faces

 $\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_{1} = \mathcal{K}$

together with $z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp}$ such that

 \bigcirc For all $i \in \{1, \ldots, \ell - 1\}$, we have

$$\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}$$

The smallest ℓ is the **singularity degree** of the problem.

L, M. Muramatsu and T. Tsuchiya. Facial reduction and partial polyhedrality. SIAM Journal on Optimization, 28(3), 2018.

J. M. Borwein and H. Wolkowicz.

Facial reduction for a cone-convex programming problem. Journal of the Australian Mathematical Society (Series A), 30(3):369–380, 1981.

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Main res	sult				

Theorem (Error bound for amenable cones)

Let \mathcal{K} be a closed convex amenable cone such that $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$. Let

$$\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_1 = \mathcal{K}$$

be a chain of faces of \mathcal{K} together with $z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp}$ such that

 $(\mathcal{L} + \mathbf{a}) \cap \operatorname{ri} \mathcal{F}_{\ell} \neq \emptyset.$

and $\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}$ for every *i*. Let ψ_i be a facial residual function for \mathcal{F}_i , z_i . Then, after positive rescaling the ψ_i , there is a constant $\kappa > 0$ such that if $x \in \operatorname{span} \mathcal{K}$ satisfies the inequalities

$$\operatorname{dist}(x, \mathcal{K}) \leq \epsilon, \quad \operatorname{dist}(x, \mathcal{L} + \mathbf{a}) \leq \epsilon,$$

we have

dist
$$(x, (\mathcal{L} + a) \cap \mathcal{K}) \leq (\kappa ||x|| + \kappa)(\epsilon + \varphi(\epsilon, ||x||)),$$

where $\varphi = \psi_{\ell-1} \diamondsuit \cdots \diamondsuit \psi_1$, if $\ell \ge 2$. If $\ell = 1$, we let φ be the function satisfying $\varphi(\epsilon, ||x||) = \epsilon$.

 $(f \diamondsuit g)(a, b) \coloneqq f(a + g(a, b), b).$

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Main res	sult				

Theorem (Error bound for amenable cones)

Let \mathcal{K} be a closed convex amenable cone such that $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$. Let

 $\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_1 = \mathcal{K}$

be a chain of faces of \mathcal{K} together with $z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp}$ such that

 $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F}_{\ell} \neq \emptyset.$

and $\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}$ for every *i*. Let ψ_i be a facial residual function for \mathcal{F}_i , z_i . Then, after positive rescaling the ψ_i , there is a constant $\kappa > 0$ such that if $x \in \operatorname{span} \mathcal{K}$ satisfies the inequalities

dist
$$(x, \mathcal{K}) \leq \epsilon$$
, dist $(x, \mathcal{L} + a) \leq \epsilon$,

we have

dist
$$(x, (\mathcal{L} + a) \cap \mathcal{K}) \leq (\kappa ||x|| + \kappa)(\epsilon + \varphi(\epsilon, ||x||)),$$

where $\varphi = \psi_{\ell-1} \diamondsuit \cdots \diamondsuit \psi_1$, if $\ell \ge 2$. If $\ell = 1$, we let φ be the function satisfying $\varphi(\epsilon, ||x||) = \epsilon$.

 $(f \diamondsuit g)(a, b) := f(a + g(a, b), b).$

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Error bo	ound for sy	mmetric	c cones		

Proposition (Error bounds for symmetric cones)

Let $\mathcal{K} = \mathcal{K}^1 \times \cdots \times \mathcal{K}^s$ be a product of s symmetric cones, such that

 $(\mathcal{L} + a) \cap \mathcal{K} \neq \emptyset$

Let $\rho > 0$. Then, there exists $\kappa > 0$ such that for every $x \in \mathcal{E}$ and $\epsilon \le 1$ satisfying

dist
$$(x, \mathcal{K}) \leq \epsilon$$
, dist $(x, \mathcal{L} + a) \leq \epsilon$, $||x|| \leq \rho$,

we have

dist
$$(x, (\mathcal{L} + a) \cap \mathcal{K}) \leq \kappa \epsilon^{(2^{-d_{PPS}(\mathcal{L}, a)})}$$

Furthermore,

$$d_{PPS}(\mathcal{L}, a) \leq \min\left\{\dim(\mathcal{L}^{\perp} \cap \{a\}^{\perp}), \sum_{i=1}^{s}(\operatorname{rank} \mathcal{K}^{i}-1), d(\mathcal{L}, a)
ight\}.$$

- i.e., an uniform Hölderian error bound holds
- the exponent is $2^{-d_{PPS}(\mathcal{L},a)}$ and it is tight.

Introduction 0000000	Amenable cones	FRFs 0000	Error bounds	Beyond amenability 000	The exponential cone 000000
Conclus	ion so far				

Three steps for obtaining error bounds.

- Work out the facial residual functions. Preferably, the facial residual functions should have some simple formula as functions of ε and ||x||.
- Apply the main result.

Next questions

How to compute the facial residual functions? How about non-amenable cones?

Scott B. Lindstrom; L and Ting Kei Pong Error bounds, facial residual functions and applications to the exponential cone arXiv:2010.16391 Introduction Amenable cones FRFs Error bounds Beyond amenability The exponential cone 00000000 0000 0000 0000000 ●00 0000000 F

Error bound without amenability

Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let \mathcal{K} be a closed convex cone such that $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$. Let

 $\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_{1} = \mathcal{K}$

be a chain of faces of \mathcal{K} together with $z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp}$ such that

 $(\mathcal{L} + \mathbf{a}) \cap \operatorname{ri} \mathcal{F}_{\ell} \neq \emptyset.$

and $\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}$ for every *i*. Let ψ_i be a facial residual function for \mathcal{F}_i , z_i . Then, after positive rescaling the ψ_i , for every bounded set *B* there are constants $\kappa > 0$, M > 0 such that if $x \in \operatorname{span} \mathcal{K} \cap B$ satisfies the inequalities

dist $(x, \mathcal{K}) \leq \epsilon$, dist $(x, \mathcal{L} + a) \leq \epsilon$,

we have

dist
$$(x, (\mathcal{L} + a) \cap \mathcal{K}) \leq \kappa(\epsilon + \varphi(\epsilon, M)),$$

where $\varphi = \psi_{\ell-1} \diamondsuit \cdots \diamondsuit \psi_1$, if $\ell \ge 2$. If $\ell = 1$, we let φ be the function satisfying $\varphi(\epsilon, ||x||) = \epsilon$.

 $(f \diamondsuit g)(a, b) \coloneqq f(a + g(a, b), b).$

Error bound without amenable cones

Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let \mathcal{K} be a closed convex cone such that $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$. Let

 $\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_1 = \mathcal{K}$

be a chain of faces of \mathcal{K} together with $z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp}$ such that

 $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F}_{\ell} \neq \emptyset.$

and $\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}$ for every *i*. Let ψ_i be a facial residual function for \mathcal{F}_i , z_i . Then, after positive rescaling the ψ_i , for every bounded set *B* there are constants $\kappa > 0$, M > 0 such that if $x \in \operatorname{span} \mathcal{K} \cap B$ satisfies the inequalities

 $\operatorname{dist}(x,\mathcal{K}) \leq \epsilon, \quad \operatorname{dist}(x,\mathcal{L}+a) \leq \epsilon,$

we have

dist
$$(x, (\mathcal{L} + a) \cap \mathcal{K}) \leq \kappa(\epsilon + \varphi(\epsilon, M)),$$

where $\varphi = \psi_{\ell-1} \diamondsuit \cdots \diamondsuit \psi_1$, if $\ell \ge 2$. If $\ell = 1$, we let φ be the function satisfying $\varphi(\epsilon, ||x||) = \epsilon$.

 $(f \diamondsuit g)(a, b) \coloneqq f(a + g(a, b), b).$

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	00000000	000	000000
Where a	amenability	fits in	this?		

 $\mathfrak{g}:\mathbb{R}_+\to\mathbb{R}_+{:}$ monotone nondecreasing function with $\mathfrak{g}(0)=0.$

Definition (g-amenability)

 $\mathcal{F} \trianglelefteq \mathcal{K}$ is g-amenable if for every bounded set B, there exists $\kappa > 0$ such that

dist $(x, \mathcal{F}) \leq \kappa \mathfrak{g}(\text{dist}(x, \mathcal{K})), \quad \forall x \in (\text{span } \mathcal{F}) \cap B.$

If all faces of \mathcal{K} are g-amenable, then \mathcal{K} is an g-amenable cone.

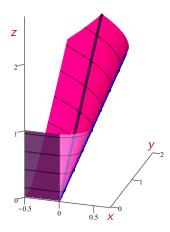
Suppose \mathcal{K}^1 and \mathcal{K}^2 are g-amenables

- There are calculus rules for the FRFs of $\mathcal{K}^1 \times \mathcal{K}^2$.
- A FRF of a face of \mathcal{K}^1 can be lifted to a FRF of the whole cone \mathcal{K}^1 .
- Amenability is recovered when $\mathfrak{g} = |\cdot|$.
 - FRFs of $\mathcal{K}^1 \times \mathcal{K}^2$. are sums of FRFs of \mathcal{K}^1 and \mathcal{K}^2 .

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone
0000000	0000	0000	0000000	000	00000

The exponential cone

$$\mathcal{K}_{\exp} := \left\{ (x, y, z) \mid y > 0, z \ge y e^{x/y} \right\} \cup \{ (x, y, z) \mid x \le 0, z \ge 0, y = 0 \}.$$



Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone		
0000000	0000	0000	00000000	000	00000		
The exponential cone							

$$\begin{split} & \mathcal{K}_{\mathsf{exp}} := \left\{ (x, y, z) \mid y > 0, z \ge y e^{x/y} \right\} \cup \left\{ (x, y, z) \mid x \le 0, z \ge 0, y = 0 \right\}. \\ & \mathcal{K}_{\mathsf{exp}}^* := \left\{ (x, y, z) \mid x < 0, ez \ge -x e^{y/x} \right\} \cup \left\{ (x, y, z) \mid x = 0, ez \ge 0, y \ge 0 \right\}. \end{split}$$

- Not exposed! (So not amenable...)
- Applications to entropy optimization, logistic regression, geometric programming and etc.
- Available in Mosek.

https://docs.mosek.com/modeling-cookbook/expo.html.

V. Chandrasekaran, P. Shah

Relative entropy optimization and its applications. *Math. Program. 161, 1–32 (2017)*

The exponential cone 000000

The faces of the exponential cone

exposed extreme rays (1D faces) parametrized by $\beta \in \mathbb{R}$:

$$\mathcal{F}_{\beta} \coloneqq \left\{ \left(-\beta y + y, y, e^{1-\beta} y \right) \mid y \in [0, \infty) \right\}.$$
 (amenable)

an "exceptional" exposed extreme ray:

$$\mathcal{F}_{\infty} \coloneqq \{(x,0,0) \mid x \leq 0\}.$$
 (amenable)

a **non-exposed** extreme ray: \mathcal{F}_{ne} :

> $\mathcal{F}_{ne} := \{(0, 0, z) \mid z > 0\}.$ (g-amenable, not amenable)

a single 2D exposed face:

.

$$\mathcal{F}_{-\infty} \coloneqq \{(x,y,z) \mid x \leq 0, z \geq 0, y = 0\}, \qquad \text{(amenable)}$$

where \mathcal{F}_{∞} and \mathcal{F}_{ne} are the extreme rays of $\mathcal{F}_{-\infty}$.

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone	
0000000	0000	0000	0000000	000	000000	
Error bound for problems over the exponential cone						

find x subject to $x \in (\mathcal{L} + a) \cap K_{exp}$

Let $z \in (\mathcal{K}_{exp})^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp}$, $z \neq 0$. Let $\mathcal{F} = \mathcal{K}_{exp} \cap \{z\}^{\perp}$.

- $\mathcal{F} = \{0\}$: Lipschitzian error bound.
- $\mathcal{F} = \mathcal{F}_{\beta}$: a Hölderian error bound with exponent 1/2.
- *F* = *F*∞, either a Lipschitzian or a log-type error bound holds depending on the exposing vector. (No Hölderian error bound holds in the latter!)
- $\mathcal{F} = \mathcal{F}_{-\infty}$, **entropic error bound**: for every bounded set *B*, there exists $\kappa_B > 0$

dist $(x, (\mathcal{L} + a) \cap \mathcal{K}_{exp}) \leq \kappa_B \mathfrak{g}_{-\infty}(\max(\operatorname{dist}(x, \mathcal{L} + a), \operatorname{dist}(x, \mathcal{K}_{exp}))), \quad \forall x \in B,$ where

$$\mathfrak{g}_{-\infty}(t) := egin{cases} 0 & ext{if} \ t = 0, \ -t \ln(t) & ext{if} \ t \in (0, 1/e^2] \ t + rac{1}{e^2} & ext{if} \ t > 1/e^2. \end{cases}$$

The results above are **optimal**.

(CFP)

From the exponential cone we can:

- Obtain sets that **do not have** a Hölderian error bound, but have a logarithmic error bound:
 - Or, a function that does not have a KL exponent.

$$\mathcal{F}_{\infty} = \mathcal{K}_{exp} \cap \{z\}^{\perp},$$

where z = (0, 0, 1).

- Obtain sets that satisfy a Hölderian bound for all $\gamma \in (0,1)$ but not $\gamma = 1$. Furthermore, the best error bound is an entropic one.
 - Or, a KL function whose exponent can be arbitrary close to 1/2 but not 1/2.

$$\mathcal{F}_{-\infty} = \mathcal{K}_{exp} \cap \{z\}^{\perp},$$

where z = (0, 1, 0).

Introduction	Amenable cones	FRFs	Error bounds	Beyond amenability	The exponential cone	
0000000		0000	00000000	000	00000●	
References						

È L

Amenable cones: error bounds without constraint qualifications. Mathematical Programming **186**, 1–48 (2021)

- L, V. Roshchina and J. Saunderson Amenable cones are particularly nice. *arxiv:2011.07745*
- L, V. Roshchina and J. Saunderson Hyperbolicity cones are amenable. arxiv:2102.06359

Scott B. Lindstrom; L and Ting Kei Pong Error bounds, facial residual functions and applications to the exponential cone arXiv:2010.16391