
Optimisation for Deep Learning

1 Introduction

This course will be offered in Semester 2 2021 (ACE).
Lecturers:

• Dr. Vera Roshchina, UNSW (v.roshchina@unsw.edu.au)

• Dr. Nadezda (Nadia) Sukhorukova, Swinburne University of Technology
(nsukhorukova@swin.edu.au)

• Dr. Julien Ugon, Deakin University (julien.ugon@deakin.edu.au)

Textbooks:

1. Optimisation part: Convex Optimization by Stephen Boyd and Lieven
Vandenberghe, Cambridge University Press;

2. Deep learning part: Deep learning by Yoshua Bengio, Ian Goodfellow,
Aaron Courville.

Both books are available online.

2 Motivation

A number of problems in machine learning and, in particular, deep learning,
can be formulated as optimisation problems and solved using a suitable optimi-
sation method. Most modern software packages on deep learning use a default
optimisation method (“black box”). For many applications, these methods are
suitable and the users only need to change the number of layers, nodes, change
the activation function, etc. In other cases, however, users need to open the
“black box”, in order to improve the performance. The main purpose of this
course is to provide a good theoretical foundation to optimisation theory, apply
it to formulate optimisation problems appearing in deep learning models and
provide a range of optimisation methods that can be used to solve these prob-
lems. This unit can be seen as a mathematical unit focused on deep learning as
its important potential application.

3 Short history

The term “Deep Learning” was introduced by Rina Dechter in 1986. Most
models are based on the so called Universal Approximation Theorem.

Theorem 3.1 Universal approximation theorem, George Cybenko, 1989
Let ϕ : R→ R be a nonconstant, bounded, and continuous function (called the
activation function). Let Im be a compact set in Rm. The space of real-valued
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continuous functions on Im is denoted by C(Im). Then, given any ε > 0 and
any function f ∈ C(Im), there exist an integer N , real constants vi, bi ∈ R and
real vectors

wi ∈ Rm, i = 1, . . . , N,

such that we may define:

F (x) =

N∑
i=1

viϕ
(
wT

i x + bi
)

and |F (x)−f(x)| ≤ ε for all x ∈ Im. In other words, functions of the form F (x)
are dense in C(Im).

Cybenko proved this theorem for the case when the activation function ϕ is a
sigmoid function. Later these results were improved by Kurt Hornek (1991) and
Leshno et. al. (1993).

Generally speaking, neural network is not the first discovered “universal
approximators”. Classical polynomials were the first proved “universal approx-
imators” (so-called StoneWeierstrass approximation theorem, 1885).

When the activation function is not used (that is, this function is an affine
function) the problem becomes a simple linear regression and this is a well-
studied convex optimisation problem (least squares). When the activation func-
tions are more complex, the optimisation problems are nonconvex and require
advanced optimisation skills to understand the “black box” output and how this
result can be improved.

4 Preliminary structure

• Weeks 1-2: Introduction to optimisation, machine learning and deep learn-
ing: general terminology and convention. Overview of optimisation prob-
lems appearing in deep learning.

• Weeks 3-4: Linear optimisation and elements of linear integer optimisa-
tion.

• Weeks 5-6: Convex optimisation.

• Weeks 7-8: Non-convex optimisation.

• Weeks 9-12: Guided study and project submission.
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