DC Semidefinite Programming

M.V. Dolgopolik

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Saint Petersburg, Russia

Variational Analysis and Optimisation Webinar September 22, 2021

Contents

(1) DC Optimisation and DCA

(2) DC Matrix-Valued Functions
(3) Examples
(4) DC Structure of the Maximal Eigenvalue Function
(5) Optimality Conditions
(6) Extensions of the DCA

Contents

(1) DC Optimisation and DCA

(2) DC Matrix-Valued Functions

(3) Examples
(4) DC Structure of the Maximal Eigenvalue Function
(5) Optimality Conditions
(6) Extensions of the DCA

DC optimisation

DC optimisation problems:

$$
\min f(x)=g(x)-h(x)
$$

where g and h are convex functions.

DC optimisation

DC optimisation problems:

$$
\min f(x)=g(x)-h(x)
$$

where g and h are convex functions.

For any $v \in \partial h\left(x_{0}\right)$ one has

$$
f(x) \leq g(x)-h\left(x_{0}\right)-\left\langle v, x-x_{0}\right\rangle
$$

DC optimisation

DC optimisation problems:

$$
\min f(x)=g(x)-h(x)
$$

where g and h are convex functions.

For any $v \in \partial h\left(x_{0}\right)$ one has

$$
f(x) \leq g(x)-h\left(x_{0}\right)-\left\langle v, x-x_{0}\right\rangle .
$$

If x_{0} is a local minimiser of f, then it is a globally optimal solution of the convex problem

$$
\min g(x)-\left\langle v, x-x_{0}\right\rangle .
$$

DC Algorithm (DCA)

Algorithm 1: DC Algorithm/The Convex-Concave Procedure (CCP).
Step 1. Choose an initial point x_{0} and set $n:=0$.
Step 2. Compute $v_{n} \in \partial h\left(x_{n}\right)$.
Step 3. Set the value of x_{n+1} to a solution of the convex problem

$$
\min g(x)-\left\langle v_{n}, x-x_{n}\right\rangle
$$

If $x_{n+1}=x_{n}$, Stop. Otherwise, put $n:=n+1$ and go to Step 2.

DC Algorithm (DCA)

Algorithm 2: DC Algorithm/The Convex-Concave Procedure (CCP).

Step 1. Choose an initial point x_{0} and set $n:=0$.
Step 2. Compute $v_{n} \in \partial h\left(x_{n}\right)$.
Step 3. Set the value of x_{n+1} to a solution of the convex problem

$$
\min g(x)-\left\langle v_{n}, x-x_{n}\right\rangle
$$

If $x_{n+1}=x_{n}$, Stop. Otherwise, put $n:=n+1$ and go to Step 2.

Since $f\left(x_{n+1}\right) \leq f\left(x_{n}\right)$, the actual stopping criteria:

$$
\left|f\left(x_{n+1}\right)-f\left(x_{n}\right)\right|<\varepsilon \quad \text { and } \quad\left\|x_{n+1}-x_{n}\right\|<\varepsilon
$$

Constrained problems

Inequality constrained DC optimisation problem:

$$
\begin{aligned}
& \min f_{0}(x)=g_{0}(x)-h_{0}(x) \\
& \text { subject to } f_{i}(x)=g_{i}(x)-h_{i}(x) \leq 0, \quad i \in I=\{1, \ldots, m\}
\end{aligned}
$$

Constrained problems

Inequality constrained DC optimisation problem:

$$
\begin{aligned}
& \min f_{0}(x)=g_{0}(x)-h_{0}(x) \\
& \text { subject to } f_{i}(x)=g_{i}(x)-h_{i}(x) \leq 0, \quad i \in I=\{1, \ldots, m\}
\end{aligned}
$$

Similar approach:

$$
\begin{aligned}
& \min g_{0}(x)-\left\langle v_{0}, x-x_{n}\right\rangle \\
& \text { subject to } g_{i}(x)-h_{i}\left(x_{n}\right)-\left\langle v_{i}, x-x_{n}\right\rangle \leq 0, \quad i \in I
\end{aligned}
$$

References

(1) T. Lipp, S. Boyd, Variations and extension of the convex-concave procedure, Optimization and Engineering. 17, 263-287, 2016.
(2) H.A. Le Thi, T. Pham Dinh, DC programming and DCA: thirty years of developments. Math. Program. 169, 5-68, 2018.
(3) W. van Ackooij, W. de Oliveira, Non-smooth DC-constrained optimization: constraint qualification and minimizing methodologies, Optim. Methods Softw. 34, 890-920, 2019.

Contents

(1) DC Optimisation and DCA

(2) DC Matrix-Valued Functions
(3) Examples

4 DC Structure of the Maximal Eigenvalue Function
(5) Optimality Conditions
(6) Extensions of the DCA

Nonlinear semidefinite programming

Nonlinear semidefinite programming problems:

$$
\min f(x) \text { subject to } F(x) \preceq 0
$$

where $F: \mathbb{R}^{d} \rightarrow \mathbb{S}^{\ell}$, and \mathbb{S}^{ℓ} is the space of symmetric matrices of order ℓ, and $A \preceq B$ iff $B-A$ is positive semidefinite.
${ }^{1}$ Michael Stingl, On the Solution of Nonlinear Semidefinite Programs by Augmented Lagrangian Methods, PhD Thesis.

Nonlinear semidefinite programming

Nonlinear semidefinite programming problems:

$$
\min f(x) \text { subject to } F(x) \preceq 0
$$

where $F: \mathbb{R}^{d} \rightarrow \mathbb{S}^{\ell}$, and \mathbb{S}^{ℓ} is the space of symmetric matrices of order ℓ, and $A \preceq B$ iff $B-A$ is positive semidefinite.

Applications: material optimization, truss topology design, structural optimization with vibration and stability constraints, robust gain-scheduling and some decentralized control problems, problems of maximizing the minimal eigenfrequency of a given structure, optimal $\mathcal{H}_{2} / \mathcal{H}_{\infty}$-static output feedback problems, etc. ${ }^{1}$

[^0]
Order-theoretic approach

Let a matrix-valued function $F: \mathbb{R}^{d} \rightarrow \mathbb{S}^{\ell}$ be given.

Definition 1

The function F is called convex, if for all $x_{1}, x_{2} \in \mathbb{R}^{d}$ and $\alpha \in[0,1]$ one has

$$
F\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \preceq \alpha F\left(x_{1}\right)+(1-\alpha) F\left(x_{2}\right) .
$$

Order-theoretic approach

Let a matrix-valued function $F: \mathbb{R}^{d} \rightarrow \mathbb{S}^{\ell}$ be given.

Definition 1

The function F is called convex, if for all $x_{1}, x_{2} \in \mathbb{R}^{d}$ and $\alpha \in[0,1]$ one has

$$
F\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \preceq \alpha F\left(x_{1}\right)+(1-\alpha) F\left(x_{2}\right) .
$$

Definition 2

The function F is called $D C$ (Difference-of-Convex), if there exist convex functions $G, H: \mathbb{R}^{d} \rightarrow \mathbb{S}^{\ell}$ such that $F=G-H$. Any such representation of the function F (or, equivalently, any such pair of functions (G, H)) is called a $D C$ decomposition of F.

Counterexample

Example 1

Let $d=1, \ell=2$, and

$$
F(x)=\left(\begin{array}{cc}
1 & x^{2} \\
x^{2} & 1
\end{array}\right)
$$

Then for $x_{1}=1$ and $x_{2}=-1$ one has

$$
\alpha F\left(x_{1}\right)+(1-\alpha) F\left(x_{2}\right)-F\left(\alpha x_{1}+(1-\alpha) x_{2}\right)=\left(\begin{array}{cc}
0 & 1-(2 \alpha-1)^{2} \\
1-(2 \alpha-1)^{2} & 0
\end{array}\right) .
$$

This matrix is not positive semidefinite for any $\alpha \in(0,1)$, which implies that the function F is nonconvex.

DC decomposition of C^{2}-functions

Theorem 1

Let F be twice continuously differentiable and suppose that there exists $M>0$ such that $\left\|\nabla^{2} F_{i j}(x)\right\|_{F} \leq M$ for all $i, j \in\{1, \ldots, \ell\}$.

DC decomposition of C^{2}-functions

Theorem 1

Let F be twice continuously differentiable and suppose that there exists $M>0$ such that $\left\|\nabla^{2} F_{i j}(x)\right\|_{F} \leq M$ for all $i, j \in\{1, \ldots, \ell\}$. Then the function F is $D C$ and for any $\mu \geq \ell M$ the pair (G, H) with

$$
G(x)=F(x)+\frac{\mu}{2}|x|^{2} I_{\ell}, \quad H(x)=\frac{\mu}{2}|x|^{2} I_{\ell}, \quad x \in \mathbb{R}^{d},
$$

is a $D C$ decomposition of F.

DC decomposition of C^{2}-functions

Theorem 1

Let F be twice continuously differentiable and suppose that there exists $M>0$ such that $\left\|\nabla^{2} F_{i j}(x)\right\|_{F} \leq M$ for all $i, j \in\{1, \ldots, \ell\}$. Then the function F is $D C$ and for any $\mu \geq \ell M$ the pair (G, H) with

$$
G(x)=F(x)+\frac{\mu}{2}|x|^{2} I_{\ell}, \quad H(x)=\frac{\mu}{2}|x|^{2} I_{\ell}, \quad x \in \mathbb{R}^{d},
$$

is a $D C$ decomposition of F.

A matrix-valued function F is convex if and only if for any $z \in \mathbb{R}^{\ell}$ the real-valued function $x \mapsto\langle z, F(x) z\rangle$ is convex.

Componentwise approach

Definition 3

The function F is called componentwise convex, if each component $F_{i j}(\cdot)$, $i, j \in\{1, \ldots, \ell\}$, is convex.

Componentwise approach

Definition 3

The function F is called componentwise convex, if each component $F_{i j}(\cdot)$, $i, j \in\{1, \ldots, \ell\}$, is convex. The function F is called componentwise $D C$, if there exist componentwise convex functions $G, H: \mathbb{R}^{d} \rightarrow \mathbb{S}^{\ell}$ such that $F=G-H$. Any such representation of the function F (or, equivalently, any such pair of functions (G, H)) is called a componentwise DC decomposition of F.

An example

If F is convex, then for $z=e_{i}$ the function $F_{i i}(x)=\langle z, F(x) z\rangle$ is convex.

An example

If F is convex, then for $z=e_{i}$ the function $F_{i i}(x)=\langle z, F(x) z\rangle$ is convex.

Example 1

Let $d=1, \ell=2$, and

$$
F(x)=\left(\begin{array}{cc}
0.5 x^{2} & \sin x \\
\sin x & 0.5 x^{2}
\end{array}\right)
$$

An example

If F is convex, then for $z=e_{i}$ the function $F_{i i}(x)=\langle z, F(x) z\rangle$ is convex.

Example 1

Let $d=1, \ell=2$, and

$$
F(x)=\left(\begin{array}{cc}
0.5 x^{2} & \sin x \\
\sin x & 0.5 x^{2}
\end{array}\right)
$$

Then for all $z \in \mathbb{R}^{2}$ and $x \in \mathbb{R}$ one has

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}}\langle z, F(x) z\rangle=z_{1}^{2}-2(\sin x) z_{1} z_{2}+z_{2}^{2} & \geq z_{1}^{2}-2\left|z_{1}\right|\left|z_{2}\right|+z_{2}^{2} \\
& =\left(\left|z_{1}\right|-\left|z_{2}\right|\right)^{2} \geq 0
\end{aligned}
$$

Thus, the function F is convex, despite the fact that non-diagonal elements of F are nonconvex.

What about non-diagonal elements?

What about non-diagonal elements?

Theorem 2

Let F be convex. Then for all $i, j \in\{1, \ldots, \ell\}, i \neq j$, the function $F_{i j}$ is $D C$.

What about non-diagonal elements?

Theorem 2

Let F be convex. Then for all $i, j \in\{1, \ldots, \ell\}, i \neq j$, the function $F_{i j}$ is $D C$.

Let $\ell=2$. For $z=(1,1)$ one has

$$
\langle z, F(x) z\rangle=F_{11}(x)+2 F_{12}(x)+F_{22}(x)
$$

which implies

$$
F_{12}(x)=F_{21}(x)=\langle z, F(x) z\rangle-\left(F_{11}(x)+F_{22}(x)\right)
$$

Corollaries

Corollary 2

Let F be convex. Then F is Lipschitz continuous on bounded sets.

Corollaries

Corollary 2

Let F be convex. Then F is Lipschitz continuous on bounded sets.
Corollary 3 (Aleksandrov-Busemann-Feller theorem for matrix-valued functions)
Let F be convex. Then F is twice differentiable almost everywhere.

Corollaries

Corollary 2

Let F be convex. Then F is Lipschitz continuous on bounded sets.
Corollary 3 (Aleksandrov-Busemann-Feller theorem for matrix-valued functions)
Let F be convex. Then F is twice differentiable almost everywhere.

Corollary 4

Any matrix-valued DC function F is componentwise DC.

Contents

(1) DC Optimisation and DCA

(2) DC Matrix-Valued Functions

(3) Examples
(4) DC Structure of the Maximal Eigenvalue Function
(5) Optimality Conditions
(6) Extensions of the DCA

Quadratic/Bilinear constraints

Suppose that

$$
\begin{equation*}
F(x)=C+\sum_{i=1}^{d} x_{i} B_{i}+\sum_{i, j=1}^{d} x_{i} x_{j} A_{i j} \tag{1}
\end{equation*}
$$

In particular, one can suppose that F is bilinear/biaffine, that is,

$$
\begin{equation*}
F(x, y)=A_{00}+\sum_{i=1}^{d} x_{i} A_{i 0}+\sum_{j=1}^{m} y_{j} A_{0 j}+\sum_{i=1}^{d} \sum_{j=1}^{m} x_{i} y_{j} A_{i j} \tag{2}
\end{equation*}
$$

Quadratic/Bilinear constraints

Suppose that

$$
\begin{equation*}
F(x)=C+\sum_{i=1}^{d} x_{i} B_{i}+\sum_{i, j=1}^{d} x_{i} x_{j} A_{i j} \tag{1}
\end{equation*}
$$

In particular, one can suppose that F is bilinear/biaffine, that is,

$$
\begin{equation*}
F(x, y)=A_{00}+\sum_{i=1}^{d} x_{i} A_{i 0}+\sum_{j=1}^{m} y_{j} A_{0 j}+\sum_{i=1}^{d} \sum_{j=1}^{m} x_{i} y_{j} A_{i j} \tag{2}
\end{equation*}
$$

Examples: simultaneous stabilisation of single-input single-output linear systems by one fixed controller of a given order, robust gain-scheduling, maximizing the minimal eigenfrequency of a given structure, etc.

Quadratic/Bilinear constraints

For any $\mu \geq \ell \max _{s, k \in\{1, \ldots, \ell\}} \sum_{i, j=1}^{d}\left[A_{i j}\right]_{s k}^{2}$ the pair

$$
G(x)=C+\sum_{i=1}^{d} x_{i} B_{i}+\sum_{i, j=1}^{d} x_{i} x_{j} A_{i j}+\frac{\mu}{2}|x|^{2} \iota_{\ell}, \quad H(x)=\frac{\mu}{2}|x|^{2} I_{\ell}
$$

is a DC decomposition of F.

Quadratic/Bilinear constraints

For any $\mu \geq \ell \max _{s, k \in\{1, \ldots, \ell\}} \sum_{i, j=1}^{d}\left[A_{i j}\right]_{s k}^{2}$ the pair

$$
G(x)=C+\sum_{i=1}^{d} x_{i} B_{i}+\sum_{i, j=1}^{d} x_{i} x_{j} A_{i j}+\frac{\mu}{2}|x|^{2} I_{\ell}, \quad H(x)=\frac{\mu}{2}|x|^{2} I_{\ell}
$$

is a $D C$ decomposition of F. Let

$$
A=\left(\begin{array}{ccc}
A_{11} & \ldots & A_{1 d} \\
\ldots & \ldots & \ldots \\
A_{d 1} & \ldots & A_{d d}
\end{array}\right)
$$

If a decomposition $A=A_{+}+A_{-}$is known, one can define

$$
G(x)=C+\sum_{i=1}^{d} x_{i} B_{i}+\sum_{i, j=1}^{d} x_{i} x_{j}\left(A_{+}\right)_{i j}, \quad H(x)=-\sum_{i, j=1}^{d} x_{i} x_{j}\left(A_{-}\right)_{i j} .
$$

Bilinear/Biaffine Matrix Constraints

Let

$$
F\left(X_{1}, X_{2}, X_{3}\right)=\left[\begin{array}{cc}
X_{1} & \left(A+B X_{2} C\right) X_{3} \\
X_{3}\left(A+B X_{2} C\right)^{T} & X_{3}
\end{array}\right] \preceq 0
$$

for all $X_{1}, X_{3} \in \mathbb{S}^{\ell}, X_{2} \in \mathbb{R}^{m \times m}$.

Bilinear/Biaffine Matrix Constraints

Let

$$
F\left(X_{1}, X_{2}, X_{3}\right)=\left[\begin{array}{cc}
X_{1} & \left(A+B X_{2} C\right) X_{3} \\
X_{3}\left(A+B X_{2} C\right)^{T} & X_{3}
\end{array}\right] \preceq 0
$$

for all $X_{1}, X_{3} \in \mathbb{S}^{\ell}, X_{2} \in \mathbb{R}^{m \times m}$. (Examples: optimal $\mathcal{H}_{2} / \mathcal{H}_{\infty}$-static output feedback problems.)

Bilinear/Biaffine Matrix Constraints

Let

$$
F\left(X_{1}, X_{2}, X_{3}\right)=\left[\begin{array}{cc}
X_{1} & \left(A+B X_{2} C\right) X_{3} \\
X_{3}\left(A+B X_{2} C\right)^{T} & X_{3}
\end{array}\right] \preceq 0
$$

for all $X_{1}, X_{3} \in \mathbb{S}^{\ell}, X_{2} \in \mathbb{R}^{m \times m}$. (Examples: optimal $\mathcal{H}_{2} / \mathcal{H}_{\infty}$-static output feedback problems.) For any $\mu \geq \ell M$, where

$$
M^{2}=\max _{i \in\{1, \ldots, \ell\}} \sum_{k_{1}=1}^{m} \sum_{k_{2}=1}^{m} \sum_{k_{3}=1}^{\ell}\left(B_{i k_{1}} C_{k_{2} k_{3}}\right)^{2}
$$

the pair

$$
G(x)=F(x)+\frac{\mu}{2}\left(\left\|X_{2}\right\|_{F}^{2}+\left\|X_{3}\right\|_{F}^{2}\right) I_{2 \ell}, \quad H(x)=\frac{\mu}{2}\left(\left\|X_{2}\right\|_{F}^{2}+\left\|X_{3}\right\|_{F}^{2}\right) I_{2 \ell}
$$

is a DC decomposition of F, where $\|X\|_{F}=\sqrt{\operatorname{Tr} X^{2}}$ is the Frobenius norm.

The Stiefel manifold/orthogonality constraint

Consider the equality constraint

$$
\begin{equation*}
X^{T} X=I_{\ell} \tag{3}
\end{equation*}
$$

which is known as the Stiefel manifold or orthogonality constraint appearing in many applications (e.g. multi-matrix principal component analysis).

[^1]
The Stiefel manifold/orthogonality constraint

Consider the equality constraint

$$
\begin{equation*}
X^{T} X=I_{\ell} \tag{3}
\end{equation*}
$$

which is known as the Stiefel manifold or orthogonality constraint appearing in many applications (e.g. multi-matrix principal component analysis).

We can rewrite the constraint as follows:

$$
G(X)=X^{T} X-I_{\ell} \preceq 0, \quad H(X)=I_{\ell}-X^{\top} X \preceq 0
$$

The functions G and $-H$ are convex. ${ }^{2}$

[^2]
Contents

(1) DC Optimisation and DCA

(2) DC Matrix-Valued Functions
(3) Examples
(4) DC Structure of the Maximal Eigenvalue Function
(5) Optimality Conditions
(6) Extensions of the DCA

Equivalent reformulation

Nonlinear semidefinite programming problem

$$
\min f(x) \text { subject to } F(x) \preceq 0
$$

can be rewritten as

$$
\min f(x) \text { subject to } \quad \lambda_{\max }(F(x)) \leq 0 .
$$

Equivalent reformulation

Nonlinear semidefinite programming problem

$$
\min f(x) \text { subject to } F(x) \preceq 0
$$

can be rewritten as

$$
\min f(x) \text { subject to } \lambda_{\max }(F(x)) \leq 0 .
$$

Is $\lambda_{\max }(F(\cdot)) \mathrm{DC}$, when F is componentwise DC?

Maximal eigenvalue

Theorem 3

Let F be componentwise $D C$ and $F_{i j}=G_{i j}-H_{i j}$ be a $D C$ decomposition of each component of $F, i, j \in\{1, \ldots, \ell\}$.

Maximal eigenvalue

Theorem 3

Let F be componentwise $D C$ and $F_{i j}=G_{i j}-H_{i j}$ be a $D C$ decomposition of each component of $F, i, j \in\{1, \ldots, \ell\}$. Then the function $\lambda_{\max }(F(\cdot))$ is $D C$ and the pair (g, h) with

$$
\begin{aligned}
g(x) & =\max _{|v| \leq 1} \sum_{i, j=1}^{\ell}\left(\left(v_{i} v_{j}+1\right) G_{i j}(x)+\left(1-v_{i} v_{j}\right) H_{i j}(x)\right) \\
h(x) & =\sum_{i, j=1}^{\ell}\left(G_{i j}(x)+H_{i j}(x)\right)
\end{aligned}
$$

for all $x \in \mathbb{R}^{d}$ is a DC decomposition of the function $\lambda_{\max }(F(\cdot))$.

Maximal eigenvalue

Note that $g(x)=\lambda_{\max }(F(x))+h(x)$.

Maximal eigenvalue

Note that $g(x)=\lambda_{\max }(F(x))+h(x)$.

For any x one has

$$
\begin{gathered}
\partial g(x)=\operatorname{co}\left\{\sum_{i, j=1}^{\ell}\left(\left(v_{i} v_{j}+1\right) \partial G_{i j}(x)+\left(1-v_{i} v_{j}\right) \partial H_{i j}(x)\right) \mid\right. \\
\left.v \in \mathcal{E}_{\max }(A):|v|=1\right\}
\end{gathered}
$$

where $\mathcal{E}_{\max }(F(x))$ is the corresponding eigenspace.

Contents

(1) DC Optimisation and DCA

(2) DC Matrix-Valued Functions
(3) Examples
© DC Structure of the Maximal Eigenvalue Function
(5) Optimality Conditions
(6) Extensions of the DCA

Cone constrained DC optimisation

Consider the following problem:

$$
\begin{align*}
& \min f_{0}(x)=g_{0}(x)-h_{0}(x) \\
& \text { subject to } F(x)=G(x)-H(x) \preceq_{k} 0, \quad x \in A . \tag{P}
\end{align*}
$$

Cone constrained DC optimisation

Consider the following problem:

$$
\begin{align*}
& \min f_{0}(x)=g_{0}(x)-h_{0}(x) \tag{P}\\
& \text { subject to } F(x)=G(x)-H(x) \preceq_{k} 0, \quad x \in A .
\end{align*}
$$

Here K is a proper cone in a real Banach space Y, \preceq_{K} is the partial order induced by the cone K, i.e. $x \preceq_{K} y$ iff $y-x \in K$,

Cone constrained DC optimisation

Consider the following problem:

$$
\begin{align*}
& \min f_{0}(x)=g_{0}(x)-h_{0}(x) \\
& \text { subject to } F(x)=G(x)-H(x) \preceq \kappa^{0} 0, \quad x \in A . \tag{P}
\end{align*}
$$

Here K is a proper cone in a real Banach space Y, \preceq_{K} is the partial order induced by the cone K, i.e. $x \preceq_{K} y$ iff $y-x \in K$, and F is DC with respect to this partial order, i.e. the functions $G, H: \mathbb{R}^{d} \rightarrow Y$ are convex with respect to the cone K (or K-convex):

$$
G\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \preceq \kappa \alpha G\left(x_{1}\right)+(1-\alpha) G\left(x_{2}\right)
$$

for all $\alpha \in[0,1]$ and $x_{1}, x_{2} \in \mathbb{R}^{d}$.

Optimality conditions

We suppose that H is Fréchet differentiable.

Optimality conditions

We suppose that H is Fréchet differentiable.

Theorem 4

Let x_{*} be a locally optimal solution of the problem (\mathcal{P}). Then for any $v \in \partial h_{0}\left(x_{*}\right)$ the point x_{*} is a globally optimal solutions of the convex problem:

$$
\begin{align*}
& \min g_{0}(x)-\left\langle v, x-x_{*}\right\rangle \\
& \text { subject to } G(x)-H\left(x_{*}\right)-D H\left(x_{*}\right)\left(x-x_{*}\right) \preceq \varliminf_{k} 0, \quad x \in A, \tag{5}
\end{align*}
$$

where $D H\left(x_{*}\right)$ is the Fréchet derivative of H at x_{*}.

Optimality conditions

We suppose that H is Fréchet differentiable.

Theorem 4

Let x_{*} be a locally optimal solution of the problem (\mathcal{P}). Then for any $v \in \partial h_{0}\left(x_{*}\right)$ the point x_{*} is a globally optimal solutions of the convex problem:

$$
\begin{align*}
& \min g_{0}(x)-\left\langle v, x-x_{*}\right\rangle \\
& \text { subject to } G(x)-H\left(x_{*}\right)-D H\left(x_{*}\right)\left(x-x_{*}\right) \preceq_{K} 0, \quad x \in A, \tag{5}
\end{align*}
$$

where $D H\left(x_{*}\right)$ is the Fréchet derivative of H at x_{*}.

Points x_{*} that are optimal solutions of problem (5) are called critical.

Optimality conditions

Theorem 5

Suppose that the problem is smooth and

$$
0 \in \operatorname{int}\left\{G(x)-H\left(x_{*}\right)-D H\left(x_{*}\right)\left(x-x_{*}\right)+K \mid x \in A\right\} .
$$

Then x_{*} is critical if and only if there exists a Lagrange multiplier $\lambda_{*} \in K^{*}$ such that $\left\langle\lambda_{*}, F\left(x_{*}\right)\right\rangle=0$ and

$$
\left\langle D_{x} L\left(x_{*}, \lambda_{*}\right), x-x_{*}\right\rangle \geq 0 \quad \forall x \in A,
$$

where $L(x, \lambda)=f_{0}(x)+\langle\lambda, F(x)\rangle$.

Optimality conditions

Theorem 5

Suppose that the problem is smooth and

$$
0 \in \operatorname{int}\left\{G(x)-H\left(x_{*}\right)-D H\left(x_{*}\right)\left(x-x_{*}\right)+K \mid x \in A\right\} .
$$

Then x_{*} is critical if and only if there exists a Lagrange multiplier $\lambda_{*} \in K^{*}$ such that $\left\langle\lambda_{*}, F\left(x_{*}\right)\right\rangle=0$ and

$$
\left\langle D_{x} L\left(x_{*}, \lambda_{*}\right), x-x_{*}\right\rangle \geq 0 \quad \forall x \in A,
$$

where $L(x, \lambda)=f_{0}(x)+\langle\lambda, F(x)\rangle$.
If K has nonempty interior, then: $G(x)-H\left(x_{*}\right)-D H\left(x_{*}\right)\left(x-x_{*}\right) \in-\operatorname{int} K$ for some $x \in A$ (Slater's condition for problem (5)).

Contents

(1) DC Optimisation and DCA

(2) DC Matrix-Valued Functions
(3) Examples

4 DC Structure of the Maximal Eigenvalue Function
(5) Optimality Conditions
(6) Extensions of the DCA

DCA for cone constrained problems

If x_{0} is non-optimal, then one can find a "better" point by solving the convex problem

$$
\begin{aligned}
& \min g_{0}(x)-\left\langle v, x-x_{0}\right\rangle \\
& \text { subject to } G(x)-H\left(x_{0}\right)-D H\left(x_{0}\right)\left(x-x_{0}\right) \preceq k 0, \quad x \in A,
\end{aligned}
$$

for some $v \in \partial h_{0}\left(x_{0}\right)$. Interior point methods, augmented Lagrangian methods, etc. can be applied. ${ }^{3}$

[^3]
DCA for cone constrained problems

If x_{0} is non-optimal, then one can find a "better" point by solving the convex problem

$$
\begin{aligned}
& \min g_{0}(x)-\left\langle v, x-x_{0}\right\rangle \\
& \text { subject to } G(x)-H\left(x_{0}\right)-D H\left(x_{0}\right)\left(x-x_{0}\right) \preceq_{k} 0, \quad x \in A,
\end{aligned}
$$

for some $v \in \partial h_{0}\left(x_{0}\right)$. Interior point methods, augmented Lagrangian methods, etc. can be applied. ${ }^{3}$

If x_{1} is a solution, then x_{1} is feasible, and

$$
\begin{aligned}
f_{0}\left(x_{1}\right)=g_{0}\left(x_{1}\right)-h_{0}\left(x_{1}\right) & \leq g_{0}\left(x_{1}\right)-h_{0}\left(x_{0}\right)-\left\langle v, x_{1}-x_{0}\right\rangle \\
& \leq g_{0}\left(x_{0}\right)-h_{0}\left(x_{0}\right)=f_{0}\left(x_{0}\right),
\end{aligned}
$$

i.e. $f_{0}\left(x_{1}\right) \leq f_{0}\left(x_{0}\right)$. If x_{0} is not critical, then $f_{0}\left(x_{1}\right)<f_{0}\left(x_{0}\right)$.
${ }^{3} \mathrm{~T}$. Lipp, S. Boyd, Variations and extension of the convex-concave procedure, Optimization and Engineering, 2016.

DCA for cone constrained problems

Algorithm 3: DC Algorithm/The Convex-Concave Procedure (CCP).

Step 1. Choose a feasible initial point x_{0} and set $n:=0$.
Step 2. Compute $v_{n} \in \partial h_{0}\left(x_{n}\right)$ and $D H\left(x_{n}\right)$.
Step 3. Set the value of x_{n+1} to a solution of the convex problem

$$
\begin{aligned}
& \min g_{0}(x)-\left\langle v_{n}, x-x_{n}\right\rangle \\
& \text { subject to } G(x)-H\left(x_{n}\right)-D H\left(x_{n}\right)\left(x-x_{n}\right) \preceq_{K} 0, \quad x \in A .
\end{aligned}
$$

If $x_{n+1}=x_{n}$, Stop. Otherwise, put $n:=n+1$ and go to Step 2.

DCA for cone constrained problems

Theorem 5

Let f_{0} be bounded below on the feasible region. Then the following statements hold true:

DCA for cone constrained problems

Theorem 5

Let f_{0} be bounded below on the feasible region. Then the following statements hold true:
(1) the sequence $\left\{x_{n}\right\}$ is feasible for the problem ($\left.\mathcal{P}\right)$;

DCA for cone constrained problems

Theorem 5

Let f_{0} be bounded below on the feasible region. Then the following statements hold true:
(1) the sequence $\left\{x_{n}\right\}$ is feasible for the problem (\mathcal{P});
(2) for any $n \in \mathbb{N} \cup\{0\}$ either x_{n} is critical and the process terminates at step n or $f_{0}\left(x_{n+1}\right)<f_{0}\left(x_{n}\right)$; moreover, if the algorithm does not terminate, then the sequence $\left\{f_{0}\left(x_{n}\right)\right\}$ converges;

DCA for cone constrained problems

Theorem 5

Let f_{0} be bounded below on the feasible region. Then the following statements hold true:
(1) the sequence $\left\{x_{n}\right\}$ is feasible for the problem (\mathcal{P});
(2) for any $n \in \mathbb{N} \cup\{0\}$ either x_{n} is critical and the process terminates at step n or $f_{0}\left(x_{n+1}\right)<f_{0}\left(x_{n}\right)$; moreover, if the algorithm does not terminate, then the sequence $\left\{f_{0}\left(x_{n}\right)\right\}$ converges;
(3) if h_{0} is strongly convex with constant $\mu>0$, then

$$
\begin{equation*}
f_{0}\left(x_{n+1}\right) \leq f_{0}\left(x_{n}\right)-\frac{\mu}{2}\left|x_{n+1}-x_{n}\right|^{2} ; \tag{6}
\end{equation*}
$$

(9) if x_{*} is a limit point of the sequence $\left\{x_{n}\right\}$ such that

$$
0 \in \operatorname{int}\left\{G(x)-H\left(x_{*}\right)-D H\left(x_{*}\right)\left(x-x_{*}\right)+K \mid x \in A\right\},
$$

then x_{*} is critical.

DCA2/Penalty Convex-Concave Procedure

Algorithm 4: DCA2/Penalty CCP.

Step 1. Choose an initial point $x_{0} \in A$, penalty parameter $t_{0} \succ_{K^{*}} 0$, the maximal norm of the penalty parameter $\tau_{\max }>0, \mu>1$, infeasibility tolerance $\varkappa>0$, and set $n:=0$.
Step 2. Compute $v_{n} \in \partial h_{0}\left(x_{n}\right)$ and $D H\left(x_{n}\right)$.
Step 3. Set the value of x_{n+1} to a solution of the convex problem

$$
\min _{(x, s)} g_{0}(x)-\left\langle v, x-x_{n}\right\rangle+\left\langle t_{n}, s\right\rangle
$$

subject to $G(x)-H\left(x_{n}\right)-D H\left(x_{n}\right)\left(x-x_{n}\right) \preceq_{K} s, \quad s \succeq_{K} 0, \quad x \in A$.
If $x_{n+1}=x_{n}$, Stop.
Step 4. Define

$$
t_{n+1}= \begin{cases}\mu t_{n}, & \text { if }\left\|s_{n+1}\right\| \geq \varkappa \text { and } \mu\left\|t_{n}\right\| \leq \tau_{\max } \\ t_{n}, & \text { otherwise }\end{cases}
$$

DCA2/Penalty CCP

Let the problem have the form $\min f_{0}(x)$ subject to $f_{i}(x)=g_{i}(x)-h_{i}(x) \leq 0, \quad i \in\{1, \ldots, m\}$.

One can define $K=\mathbb{R}_{+}^{m}$.

DCA2/Penalty CCP

Let the problem have the form $\min f_{0}(x)$ subject to $f_{i}(x)=g_{i}(x)-h_{i}(x) \leq 0, \quad i \in\{1, \ldots, m\}$.

One can define $K=\mathbb{R}_{+}^{m}$. Then $t_{0}=\left(t_{0}^{(1)}, \ldots, t_{0}^{(m)}\right), t_{0}^{(i)}>0$, and penalty subproblem can be rewritten as

$$
\min _{x \in A} g_{0}(x)-\left\langle v, x-x_{n}\right\rangle+\sum_{i=1}^{m} t_{n}^{(i)} \max \left\{0, g_{i}(x)-h_{i}(x)-\left\langle v, x-x_{n}\right\rangle\right\} .
$$

DCA2/Penalty CCP

Let the problem have the form

$$
\min f_{0}(x) \text { subject to } f_{i}(x)=g_{i}(x)-h_{i}(x) \leq 0, \quad i \in\{1, \ldots, m\}
$$

One can define $K=\mathbb{R}_{+}^{m}$. Then $t_{0}=\left(t_{0}^{(1)}, \ldots, t_{0}^{(m)}\right), t_{0}^{(i)}>0$, and penalty subproblem can be rewritten as

$$
\min _{x \in A} g_{0}(x)-\left\langle v, x-x_{n}\right\rangle+\sum_{i=1}^{m} t_{n}^{(i)} \max \left\{0, g_{i}(x)-h_{i}(x)-\left\langle v, x-x_{n}\right\rangle\right\}
$$

DCA2 is, in essence, an application of DCA to the weighted ℓ_{1} penalty function

$$
\Phi_{t}(x)=f_{0}(x)+\sum_{i=1}^{m} t^{(i)} \max \left\{f_{i}(x), 0\right\}
$$

DCA2/Penalty CCP

The constraint $F(x) \preceq_{K} 0$ can be rewritten as $F(x) \in-K$.

DCA2/Penalty CCP

The constraint $F(x) \preceq_{K} 0$ can be rewritten as $F(x) \in-K$.

Lemma 1

Let Y be finite dimensional, the cone K be generating (i.e. $K-K=Y$), and the penalty function $\Phi_{c}(\cdot)=f_{0}(\cdot)+c \operatorname{dist}(F(\cdot),-K)$ be coercive on A for some $c>0$. Then the iterations of DCA2/Penalty CCP are correctly defined, provided $\left\|t_{0}\right\|$ is sufficiently large.

DCA2/Penalty CCP

Definition 4

A point $x_{*} \in A$ is said to be a generalized critical point for vector $t \succ_{K^{*}} 0$, if there exist $v_{*} \in \partial h_{0}\left(x_{*}\right)$ and $s_{*} \succeq_{K} 0$ such that the pair $\left(x_{*}, s_{*}\right)$ is a globally optimal solution of the problem

$$
\begin{align*}
& \min _{(x, s)} g_{0}(x)-\left\langle v_{*}, x-x_{*}\right\rangle+\langle t, s\rangle \tag{7}\\
& \text { s.t. } G(x)-H\left(x_{*}\right)-D H\left(x_{*}\right)\left(x-x_{*}\right) \preceq_{K} s, \quad s \succeq_{K} 0, \quad x \in A .
\end{align*}
$$

DCA2/Penalty CCP

Definition 4

A point $x_{*} \in A$ is said to be a generalized critical point for vector $t \succ_{K^{*}} 0$, if there exist $v_{*} \in \partial h_{0}\left(x_{*}\right)$ and $s_{*} \succeq_{K} 0$ such that the pair $\left(x_{*}, s_{*}\right)$ is a globally optimal solution of the problem

$$
\begin{equation*}
\min _{(x, s)} g_{0}(x)-\left\langle v_{*}, x-x_{*}\right\rangle+\langle t, s\rangle \tag{7}
\end{equation*}
$$

s.t. $G(x)-H\left(x_{*}\right)-D H\left(x_{*}\right)\left(x-x_{*}\right) \preceq_{K} s, \quad s \succeq_{K} 0, \quad x \in A$.

Under some additional assumptions x_{*} is a generalized critical point if and only if $0 \in \partial \Phi_{t}\left(x_{*}\right)$, where ∂ is the Dini subdifferential.

DCA2/Penalty CCP

Lemma 2

Let a sequence $\left\{\left(x_{n}, s_{n}\right)\right\}$ be generated by Algorithm 4. Then

$$
f_{0}\left(x_{n+1}\right)+\left\langle t_{n}, s_{n+1}\right\rangle \leq f_{0}\left(x_{n}\right)+\left\langle t_{n}, s_{n}\right\rangle, \quad \forall n \in \mathbb{N} .
$$

and this inequality is strict, if x_{n} is not a generalized critical point for t_{n}.

DCA2/Penalty CCP

Lemma 2

Let a sequence $\left\{\left(x_{n}, s_{n}\right)\right\}$ be generated by Algorithm 4. Then

$$
f_{0}\left(x_{n+1}\right)+\left\langle t_{n}, s_{n+1}\right\rangle \leq f_{0}\left(x_{n}\right)+\left\langle t_{n}, s_{n}\right\rangle, \quad \forall n \in \mathbb{N} .
$$

and this inequality is strict, if x_{n} is not a generalized critical point for t_{n}.

The inequalities

$$
\left|f_{0}\left(x_{n+1}\right)+\left\langle t_{n}, s_{n+1}\right\rangle-f_{0}\left(x_{n}\right)+\left\langle t_{n}, s_{n}\right\rangle\right|<\varepsilon, \quad\left\|s_{n}\right\|<\varepsilon_{\text {feas }}
$$

can be used as a stopping criterion.

DCA2/Penalty CCP

Theorem 6

Let Y be finite dimensional, K be generating, and the penalty function $\Phi_{c}(x)=f_{0}(x)+c \operatorname{dist}(F(x),-K)$ be bounded below on A for

$$
c=\min \left\{\left\langle t_{0}, s\right\rangle \mid s \in K,\|s\|=1\right\}>0 .
$$

DCA2/Penalty CCP

Theorem 6

Let Y be finite dimensional, K be generating, and the penalty function $\Phi_{c}(x)=f_{0}(x)+c \operatorname{dist}(F(x),-K)$ be bounded below on A for

$$
c=\min \left\{\left\langle t_{0}, s\right\rangle \mid s \in K,\|s\|=1\right\}>0 .
$$

Then all limits points of the sequence $\left\{x_{n}\right\}$ generated by Algorithm 4 are generalized critical points for $t_{*}=\lim t_{n}$.

DCA2/Penalty CCP

Let $\varkappa=0$ and $\tau_{\text {max }}=+\infty$.

DCA2/Penalty CCP

Let $\varkappa=0$ and $\tau_{\text {max }}=+\infty$.

Theorem 7

Let K be finite dimensional and $\Phi_{c}(\cdot)=f_{0}(\cdot)+c \operatorname{dist}(F(\cdot),-K)$ be coercive on A for some $c \geq 0$. Suppose also that $\left\{x_{n}\right\}$ converges to a point x_{*} satisfying the following constraint qualification:

$$
\begin{equation*}
0 \in \operatorname{int}\left\{G(x)-H\left(x_{*}\right)-D H\left(x_{*}\right)\left(x-x_{*}\right)+K \mid x \in A\right\} . \tag{8}
\end{equation*}
$$

DCA2/Penalty CCP

Let $\varkappa=0$ and $\tau_{\text {max }}=+\infty$.

Theorem 7

Let K be finite dimensional and $\Phi_{c}(\cdot)=f_{0}(\cdot)+c \operatorname{dist}(F(\cdot),-K)$ be coercive on A for some $c \geq 0$. Suppose also that $\left\{x_{n}\right\}$ converges to a point x_{*} satisfying the following constraint qualification:

$$
\begin{equation*}
0 \in \operatorname{int}\left\{G(x)-H\left(x_{*}\right)-D H\left(x_{*}\right)\left(x-x_{*}\right)+K \mid x \in A\right\} . \tag{8}
\end{equation*}
$$

Then the sequence $\left\{t_{n}\right\}$ is bounded, there exists $m \in \mathbb{N}$ such that for all $n \geq m$ the point x_{n} is feasible for the problem (\mathcal{P}), and the point x_{*} is feasible and critical for the problem (\mathcal{P}).

The End!

Thank you!

[^0]: ${ }^{1}$ Michael Stingl, On the Solution of Nonlinear Semidefinite Programs by Augmented Lagrangian Methods, PhD Thesis.

[^1]: ${ }^{2}$ T. Lipp, S. Boyd, Variations and extension of the convex-concave procedure, Optimization and Engineering, 2016.

[^2]: ${ }^{2}$ T. Lipp, S. Boyd, Variations and extension of the convex-concave procedure, Optimization and Engineering, 2016.

[^3]: ${ }^{3}$ T. Lipp, S. Boyd, Variations and extension of the convex-concave procedure, Optimization and Engineering, 2016.

