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DC optimisation

DC optimisation problems:

min f (x) = g(x)− h(x),

where g and h are convex functions.

For any v ∈ ∂h(x0) one has

f (x) ≤ g(x)− h(x0)− 〈v , x − x0〉.

If x0 is a local minimiser of f , then it is a globally optimal solution of the
convex problem

min g(x)− 〈v , x − x0〉.
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DC Algorithm (DCA)

Algorithm 1: DC Algorithm/The Convex-Concave Procedure (CCP).

Step 1. Choose an initial point x0 and set n := 0.
Step 2. Compute vn ∈ ∂h(xn).
Step 3. Set the value of xn+1 to a solution of the convex problem

min g(x)− 〈vn, x − xn〉.

If xn+1 = xn, Stop. Otherwise, put n := n + 1 and go to Step 2.

Since f (xn+1) ≤ f (xn), the actual stopping criteria:

|f (xn+1)− f (xn)| < ε and ‖xn+1 − xn‖ < ε.
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Constrained problems

Inequality constrained DC optimisation problem:

min f0(x) = g0(x)− h0(x)

subject to fi (x) = gi (x)− hi (x) ≤ 0, i ∈ I = {1, . . . ,m}.

Similar approach:

min g0(x)− 〈v0, x − xn〉
subject to gi (x)− hi (xn)− 〈vi , x − xn〉 ≤ 0, i ∈ I .
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Nonlinear semidefinite programming

Nonlinear semidefinite programming problems:

min f (x) subject to F (x) � 0,

where F : Rd → S`, and S` is the space of symmetric matrices of order `,
and A � B iff B − A is positive semidefinite.

Applications: material optimization, truss topology design, structural opti-
mization with vibration and stability constraints, robust gain-scheduling and
some decentralized control problems, problems of maximizing the minimal
eigenfrequency of a given structure, optimal H2/H∞-static output feedback
problems, etc.1

1Michael Stingl, On the Solution of Nonlinear Semidefinite Programs by
Augmented Lagrangian Methods, PhD Thesis.
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Order-theoretic approach

Let a matrix-valued function F : Rd → S` be given.

Definition 1

The function F is called convex, if for all x1, x2 ∈ Rd and α ∈ [0, 1] one has

F (αx1 + (1− α)x2) � αF (x1) + (1− α)F (x2).

Definition 2

The function F is called DC (Difference-of-Convex), if there exist convex
functions G ,H : Rd → S` such that F = G−H. Any such representation of
the function F (or, equivalently, any such pair of functions (G ,H)) is called
a DC decomposition of F .
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Counterexample

Example 1

Let d = 1, ` = 2, and

F (x) =

(
1 x2

x2 1

)
.

Then for x1 = 1 and x2 = −1 one has

αF (x1) + (1− α)F (x2)− F (αx1 + (1− α)x2) =
(

0 1−(2α−1)2

1−(2α−1)2 0

)
.

This matrix is not positive semidefinite for any α ∈ (0, 1), which implies
that the function F is nonconvex.
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DC decomposition of C 2-functions

Theorem 1

Let F be twice continuously differentiable and suppose that there exists
M > 0 such that ‖∇2Fij(x)‖F ≤ M for all i , j ∈ {1, . . . , `}.

Then the
function F is DC and for any µ ≥ `M the pair (G ,H) with

G (x) = F (x) +
µ

2
|x |2I`, H(x) =

µ

2
|x |2I`, x ∈ Rd ,

is a DC decomposition of F .

A matrix-valued function F is convex if and only if for any z ∈ R` the
real-valued function x 7→ 〈z ,F (x)z〉 is convex.
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Componentwise approach

Definition 3

The function F is called componentwise convex, if each component Fij(·),
i , j ∈ {1, . . . , `}, is convex.

The function F is called componentwise DC,
if there exist componentwise convex functions G ,H : Rd → S` such that
F = G−H. Any such representation of the function F (or, equivalently, any
such pair of functions (G ,H)) is called a componentwise DC decomposition
of F .
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An example

If F is convex, then for z = ei the function Fii (x) = 〈z ,F (x)z〉 is convex.

Example 1

Let d = 1, ` = 2, and

F (x) =

(
0.5x2 sin x
sin x 0.5x2

)
.

Then for all z ∈ R2 and x ∈ R one has

d2

dx2
〈z ,F (x)z〉 = z2

1 − 2(sin x)z1z2 + z2
2 ≥ z2

1 − 2|z1||z2|+ z2
2

= (|z1| − |z2|)2 ≥ 0.

Thus, the function F is convex, despite the fact that non-diagonal elements
of F are nonconvex.
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What about non-diagonal elements?

Theorem 2

Let F be convex. Then for all i , j ∈ {1, . . . , `}, i 6= j , the function Fij is
DC.

Let ` = 2. For z = (1, 1) one has

〈z ,F (x)z〉 = F11(x) + 2F12(x) + F22(x),

which implies

F12(x) = F21(x) = 〈z ,F (x)z〉 −
(

F11(x) + F22(x)
)
.
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Corollaries

Corollary 2

Let F be convex. Then F is Lipschitz continuous on bounded sets.

Corollary 3 (Aleksandrov-Busemann-Feller theorem for matrix-valued
functions)

Let F be convex. Then F is twice differentiable almost everywhere.

Corollary 4

Any matrix-valued DC function F is componentwise DC.
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Quadratic/Bilinear constraints

Suppose that

F (x) = C +
d∑

i=1

xiBi +
d∑

i ,j=1

xixjAij (1)

In particular, one can suppose that F is bilinear/biaffine, that is,

F (x , y) = A00 +
d∑

i=1

xiAi0 +
m∑
j=1

yjA0j +
d∑

i=1

m∑
j=1

xiyjAij . (2)

Examples: simultaneous stabilisation of single-input single-output linear
systems by one fixed controller of a given order, robust gain-scheduling,
maximizing the minimal eigenfrequency of a given structure, etc.
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Quadratic/Bilinear constraints

For any µ ≥ ` max
s,k∈{1,...,`}

∑d
i ,j=1[Aij ]

2
sk the pair

G (x) = C +
d∑

i=1

xiBi +
d∑

i ,j=1

xixjAij +
µ

2
|x |2I`, H(x) =

µ

2
|x |2I`

is a DC decomposition of F .

Let

A =

A11 . . . A1d

. . . . . . . . . . . . . .
Ad1 . . . Add


If a decomposition A = A+ + A− is known, one can define

G (x) = C +
d∑

i=1

xiBi +
d∑

i ,j=1

xixj(A+)ij , H(x) = −
d∑

i ,j=1

xixj(A−)ij .
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Bilinear/Biaffine Matrix Constraints

Let

F (X1,X2,X3) =

[
X1 (A + BX2C )X3

X3(A + BX2C )T X3

]
� 0

for all X1,X3 ∈ S`, X2 ∈ Rm×m.

(Examples: optimalH2/H∞-static output
feedback problems.) For any µ ≥ `M, where

M2 = max
i∈{1,...,`}

m∑
k1=1

m∑
k2=1

∑̀
k3=1

(
Bik1Ck2k3

)2
,

the pair

G (x) = F (x) +
µ

2

(
‖X2‖2

F + ‖X3‖2
F

)
I2`, H(x) =

µ

2

(
‖X2‖2

F + ‖X3‖2
F

)
I2`

is a DC decomposition of F , where ‖X‖F =
√

Tr X 2 is the Frobenius norm.
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The Stiefel manifold/orthogonality constraint

Consider the equality constraint

XTX = I`, (3)

which is known as the Stiefel manifold or orthogonality constraint appearing
in many applications (e.g. multi-matrix principal component analysis).

We can rewrite the constraint as follows:

G (X ) = XTX − I` � 0, H(X ) = I` − XTX � 0.

The functions G and −H are convex.2

2T. Lipp, S. Boyd, Variations and extension of the convex-concave procedure,
Optimization and Engineering, 2016.
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Equivalent reformulation

Nonlinear semidefinite programming problem

min f (x) subject to F (x) � 0,

can be rewritten as

min f (x) subject to λmax(F (x)) ≤ 0.

Is λmax(F (·)) DC, when F is componentwise DC?
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Maximal eigenvalue

Theorem 3

Let F be componentwise DC and Fij = Gij − Hij be a DC decomposition
of each component of F , i , j ∈ {1, . . . , `}.

Then the function λmax(F (·)) is
DC and the pair (g , h) with

g(x) = max
|v |≤1

∑̀
i ,j=1

(
(vivj + 1)Gij(x) + (1− vivj)Hij(x)

)
,

h(x) =
∑̀
i ,j=1

(
Gij(x) + Hij(x)

) (4)

for all x ∈ Rd is a DC decomposition of the function λmax(F (·)).
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Maximal eigenvalue

Note that g(x) = λmax(F (x)) + h(x).

For any x one has

∂g(x) = co
{ ∑̀

i ,j=1

(
(vivj + 1)∂Gij(x) + (1− vivj)∂Hij(x)

) ∣∣∣
v ∈ Emax(A) : |v | = 1

}
,

where Emax(F (x)) is the corresponding eigenspace.
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Cone constrained DC optimisation

Consider the following problem:

min f0(x) = g0(x)− h0(x),

subject to F (x) = G (x)− H(x) �K 0, x ∈ A.
(P)

Here K is a proper cone in a real Banach space Y , �K is the partial order
induced by the cone K , i.e. x �K y iff y − x ∈ K , and F is DC with
respect to this partial order, i.e. the functions G ,H : Rd → Y are convex
with respect to the cone K (or K -convex):

G (αx1 + (1− α)x2) �K αG (x1) + (1− α)G (x2)

for all α ∈ [0, 1] and x1, x2 ∈ Rd .
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Optimality conditions

We suppose that H is Fréchet differentiable.

Theorem 4

Let x∗ be a locally optimal solution of the problem (P). Then for any
v ∈ ∂h0(x∗) the point x∗ is a globally optimal solutions of the convex
problem:

min g0(x)− 〈v , x − x∗〉
subject to G (x)− H(x∗)− DH(x∗)(x − x∗) �K 0, x ∈ A,

(5)

where DH(x∗) is the Fréchet derivative of H at x∗.

Points x∗ that are optimal solutions of problem (5) are called critical.
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Theorem 4

Let x∗ be a locally optimal solution of the problem (P). Then for any
v ∈ ∂h0(x∗) the point x∗ is a globally optimal solutions of the convex
problem:

min g0(x)− 〈v , x − x∗〉
subject to G (x)− H(x∗)− DH(x∗)(x − x∗) �K 0, x ∈ A,

(5)
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Theorem 4

Let x∗ be a locally optimal solution of the problem (P). Then for any
v ∈ ∂h0(x∗) the point x∗ is a globally optimal solutions of the convex
problem:

min g0(x)− 〈v , x − x∗〉
subject to G (x)− H(x∗)− DH(x∗)(x − x∗) �K 0, x ∈ A,

(5)
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Optimality conditions

Theorem 5

Suppose that the problem is smooth and

0 ∈ int
{

G (x)− H(x∗)− DH(x∗)(x − x∗) + K
∣∣∣ x ∈ A

}
.

Then x∗ is critical if and only if there exists a Lagrange multiplier λ∗ ∈ K ∗

such that 〈λ∗,F (x∗)〉 = 0 and

〈DxL(x∗, λ∗), x − x∗〉 ≥ 0 ∀x ∈ A,

where L(x , λ) = f0(x) + 〈λ,F (x)〉.

If K has nonempty interior, then: G (x)−H(x∗)−DH(x∗)(x−x∗) ∈ − int K
for some x ∈ A (Slater’s condition for problem (5)).
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DCA for cone constrained problems

If x0 is non-optimal, then one can find a “better” point by solving the convex
problem

min g0(x)− 〈v , x − x0〉
subject to G (x)− H(x0)− DH(x0)(x − x0) �K 0, x ∈ A,

for some v ∈ ∂h0(x0). Interior point methods, augmented Lagrangian meth-
ods, etc. can be applied.3

If x1 is a solution, then x1 is feasible, and

f0(x1) = g0(x1)− h0(x1) ≤ g0(x1)− h0(x0)− 〈v , x1 − x0〉
≤ g0(x0)− h0(x0) = f0(x0),

i.e. f0(x1) ≤ f0(x0). If x0 is not critical, then f0(x1) < f0(x0).

3T. Lipp, S. Boyd, Variations and extension of the convex-concave procedure,
Optimization and Engineering, 2016.
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DCA for cone constrained problems

Algorithm 3: DC Algorithm/The Convex-Concave Procedure (CCP).

Step 1. Choose a feasible initial point x0 and set n := 0.
Step 2. Compute vn ∈ ∂h0(xn) and DH(xn).
Step 3. Set the value of xn+1 to a solution of the convex problem

min g0(x)− 〈vn, x − xn〉
subject to G (x)− H(xn)− DH(xn)(x − xn) �K 0, x ∈ A.

If xn+1 = xn, Stop. Otherwise, put n := n + 1 and go to Step 2.
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DCA for cone constrained problems

Theorem 5

Let f0 be bounded below on the feasible region. Then the following state-
ments hold true:

1 the sequence {xn} is feasible for the problem (P);

2 for any n ∈ N ∪ {0} either xn is critical and the process terminates
at step n or f0(xn+1) < f0(xn); moreover, if the algorithm does not
terminate, then the sequence {f0(xn)} converges;

3 if h0 is strongly convex with constant µ > 0, then

f0(xn+1) ≤ f0(xn)− µ

2
|xn+1 − xn|2; (6)

4 if x∗ is a limit point of the sequence {xn} such that

0 ∈ int
{

G (x)− H(x∗)− DH(x∗)(x − x∗) + K
∣∣ x ∈ A

}
,

then x∗ is critical.
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DCA2/Penalty Convex-Concave Procedure

Algorithm 4: DCA2/Penalty CCP.

Step 1. Choose an initial point x0 ∈ A, penalty parameter t0 �K∗ 0,
the maximal norm of the penalty parameter τmax > 0, µ > 1, infeasibility
tolerance κ > 0, and set n := 0.
Step 2. Compute vn ∈ ∂h0(xn) and DH(xn).
Step 3. Set the value of xn+1 to a solution of the convex problem

min
(x ,s)

g0(x)− 〈v , x − xn〉+ 〈tn, s〉

subject to G (x)− H(xn)− DH(xn)(x − xn) �K s, s �K 0, x ∈ A.

If xn+1 = xn, Stop.
Step 4. Define

tn+1 =

{
µtn, if ‖sn+1‖ ≥ κ and µ‖tn‖ ≤ τmax,

tn, otherwise,

where (xn+1, sn+1) is a solution of the subproblem on Step 3. Put n := n+1
and go to Step 2.
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DCA2/Penalty CCP

Let the problem have the form

min f0(x) subject to fi (x) = gi (x)− hi (x) ≤ 0, i ∈ {1, . . . ,m}.

One can define K = Rm
+.

Then t0 = (t
(1)
0 , . . . , t

(m)
0 ), t

(i)
0 > 0, and penalty

subproblem can be rewritten as

min
x∈A

g0(x)− 〈v , x − xn〉+
m∑
i=1

t
(i)
n max{0, gi (x)− hi (x)− 〈v , x − xn〉}.

DCA2 is, in essence, an application of DCA to the weighted `1 penalty
function

Φt(x) = f0(x) +
m∑
i=1

t(i) max{fi (x), 0}.
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DCA2/Penalty CCP

The constraint F (x) �K 0 can be rewritten as F (x) ∈ −K .

Lemma 1

Let Y be finite dimensional, the cone K be generating (i.e. K − K = Y ),
and the penalty function Φc(·) = f0(·) + c dist(F (·),−K ) be coercive on A
for some c > 0. Then the iterations of DCA2/Penalty CCP are correctly
defined, provided ‖t0‖ is sufficiently large.
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DCA2/Penalty CCP

Definition 4

A point x∗ ∈ A is said to be a generalized critical point for vector t �K∗ 0,
if there exist v∗ ∈ ∂h0(x∗) and s∗ �K 0 such that the pair (x∗, s∗) is a
globally optimal solution of the problem

min
(x ,s)

g0(x)− 〈v∗, x − x∗〉+ 〈t, s〉

s.t. G (x)− H(x∗)− DH(x∗)(x − x∗) �K s, s �K 0, x ∈ A.
(7)

Under some additional assumptions x∗ is a generalized critical point if and
only if 0 ∈ ∂Φt(x∗), where ∂ is the Dini subdifferential.
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DCA2/Penalty CCP

Lemma 2

Let a sequence {(xn, sn)} be generated by Algorithm 4. Then

f0(xn+1) + 〈tn, sn+1〉 ≤ f0(xn) + 〈tn, sn〉, ∀n ∈ N.

and this inequality is strict, if xn is not a generalized critical point for tn.

The inequalities∣∣∣f0(xn+1) + 〈tn, sn+1〉 − f0(xn) + 〈tn, sn〉
∣∣∣ < ε, ‖sn‖ < εfeas

can be used as a stopping criterion.
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DCA2/Penalty CCP

Theorem 6

Let Y be finite dimensional, K be generating, and the penalty function
Φc(x) = f0(x) + c dist(F (x),−K ) be bounded below on A for

c = min{〈t0, s〉 | s ∈ K , ‖s‖ = 1} > 0.

Then all limits points of the sequence {xn} generated by Algorithm 4 are
generalized critical points for t∗ = lim tn.
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DCA2/Penalty CCP

Let κ = 0 and τmax = +∞.

Theorem 7

Let K be finite dimensional and Φc(·) = f0(·)+c dist(F (·),−K ) be coercive
on A for some c ≥ 0. Suppose also that {xn} converges to a point x∗
satisfying the following constraint qualification:

0 ∈ int
{

G (x)− H(x∗)− DH(x∗)(x − x∗) + K
∣∣ x ∈ A

}
. (8)

Then the sequence {tn} is bounded, there exists m ∈ N such that for all
n ≥ m the point xn is feasible for the problem (P), and the point x∗ is
feasible and critical for the problem (P).
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The End!

Thank you!
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