
Randomized Douglas-Rachford Splitting
Algorithms for Nonconvex Federated

Composite Optimization

Quoc Tran-Dinh
quoctd@email.unc.edu

Department of Statistics and Operations Research
The University of North Carolina at Chapel Hill (UNC)

Variational Analysis and Optimization Webinar
Remote [September 29, 2021]

Joint work with

Nhan Pham (UNC), Dzung Phan (IBM), and Lam Nguyen (IBM)

Reference

This talk is based on the following manuscript:

I Q. T-D, N. Pham, D. Phan, and L. Nguyen: FedDR – Randomized
Douglas-Rachford Splitting Algorithms for Nonconvex Federated
Composite Optimization, March, 2021.

Preprint: https://arxiv.org/abs/2103.03452.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 2/34

https://arxiv.org/abs/2103.03452

Outline

Problem Statement, Motivation, and Contribution

Federated Learning with Randomized DR – FedDR

Federated Learning with Asynchronous DR – assyncFedDR

Numerical Examples

Conclusions and Future Research

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 3/34

Outline

Problem Statement, Motivation, and Contribution

Federated Learning with Randomized DR – FedDR

Federated Learning with Asynchronous DR – assyncFedDR

Numerical Examples

Conclusions and Future Research

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 4/34

Optimization Model of Federated Learning

Composite Optimization Model in Federated Learning (FL)

F ? = min
x∈Rp

{
F (x) :=

1
n

n∑
i=1

f i(x) + g(x)
}
, (1)

I f i : Rp → R ∪ {+∞} (i = 1, · · · , n) are smooth and possibly nonconvex;

I g : Rp → R is a convex and possibly nonsmooth;

I Define f(x) := 1
n

∑n

i=1 fi(x) as a finite-sum function.

Assumption 1 (Model Assumptions)
I fi is smooth and possibly nonconvex, and g is convex and possibly nonsmooth.

I The domain of F domF := {x ∈ Rp : F (x) < +∞} is nonempty.

I There exists a [first-order] stationary point of (1), i.e., 0 ∈ ∇f(x∗) + ∂g(x∗).

I Boundedness from below: F ? := infx∈Rp F (x) > −∞.

I All functions fi(·) for i ∈ [n] := {1, · · · , n} are L-smooth, i.e.:

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ domfi. (2)

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 5/34

Optimization Model of Federated Learning

Composite Optimization Model in Federated Learning (FL)

F ? = min
x∈Rp

{
F (x) :=

1
n

n∑
i=1

f i(x) + g(x)
}
, (1)

I f i : Rp → R ∪ {+∞} (i = 1, · · · , n) are smooth and possibly nonconvex;

I g : Rp → R is a convex and possibly nonsmooth;

I Define f(x) := 1
n

∑n

i=1 fi(x) as a finite-sum function.

Assumption 1 (Model Assumptions)
I fi is smooth and possibly nonconvex, and g is convex and possibly nonsmooth.

I The domain of F domF := {x ∈ Rp : F (x) < +∞} is nonempty.

I There exists a [first-order] stationary point of (1), i.e., 0 ∈ ∇f(x∗) + ∂g(x∗).

I Boundedness from below: F ? := infx∈Rp F (x) > −∞.

I All functions fi(·) for i ∈ [n] := {1, · · · , n} are L-smooth, i.e.:

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ domfi. (2)

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 5/34

Federated Learning and Challenges

What is FL?
FL is a machine learning technique that
I trains an algorithm across multiple decentralized edge devices/users

I local devices/users hold data samples locally without exchanging them.

Main Challenges of FL
I Communication bottleneck: If the number of users n is large, it creates commu-

nication bottleneck during model exchange process between server and users.

I Data or statistical heterogeneity: The local data in each user may be different in
terms of sizes and distribution.

I System heterogeneity: The variety of users with different local storage, computa-
tional power, and network connectivity also creates a major challenge.

I Privacy concern: Accessing and sharing local raw data is not permitted in FL.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 6/34

Federated Learning and Challenges

What is FL?
FL is a machine learning technique that
I trains an algorithm across multiple decentralized edge devices/users

I local devices/users hold data samples locally without exchanging them.

Main Challenges of FL
I Communication bottleneck: If the number of users n is large, it creates commu-

nication bottleneck during model exchange process between server and users.

I Data or statistical heterogeneity: The local data in each user may be different in
terms of sizes and distribution.

I System heterogeneity: The variety of users with different local storage, computa-
tional power, and network connectivity also creates a major challenge.

I Privacy concern: Accessing and sharing local raw data is not permitted in FL.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 6/34

Our Approach and Contribution

Our approach
I Our goal: Simultaneously address fundamental challenges through two new algo-

rithms for FL composite nonconvex optimization model (1).
I Our approach: Rely on a novel combination between randomized block-coordinate

strategy, nonconvex Douglas-Rachford (DR) splitting, and asynchronous variant.

Our contribution
(a) New Federated Douglas-Rachford algorithm – FedDR

I Combining DR splitting technique and randomized block-coordinate strategy for noncon-
vex composite optimization problem in FL.

I Can handle nonsmooth convex regularizers and inexact evaluation of prox operations.

I Achieves the best known O
(

ε−2
)

communication complexity for finding a stationary
point under standard assumptions.

I Does not require all users to participate in each communication round.

(b) New asynchronous FL Douglas-Rachford algorithm – asyncFedDR
I Each user can asynchronously perform local update and periodically send the update to

the server for aggregation.

I Achieves the same O
(

ε−2
)

communication complexity as FedDR (up to a constant
factor) under standard assumptions.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 7/34

Our Approach and Contribution

Our approach
I Our goal: Simultaneously address fundamental challenges through two new algo-

rithms for FL composite nonconvex optimization model (1).
I Our approach: Rely on a novel combination between randomized block-coordinate

strategy, nonconvex Douglas-Rachford (DR) splitting, and asynchronous variant.

Our contribution
(a) New Federated Douglas-Rachford algorithm – FedDR

I Combining DR splitting technique and randomized block-coordinate strategy for noncon-
vex composite optimization problem in FL.

I Can handle nonsmooth convex regularizers and inexact evaluation of prox operations.

I Achieves the best known O
(

ε−2
)

communication complexity for finding a stationary
point under standard assumptions.

I Does not require all users to participate in each communication round.

(b) New asynchronous FL Douglas-Rachford algorithm – asyncFedDR
I Each user can asynchronously perform local update and periodically send the update to

the server for aggregation.

I Achieves the same O
(

ε−2
)

communication complexity as FedDR (up to a constant
factor) under standard assumptions.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 7/34

Our Approach and Contribution

Our approach
I Our goal: Simultaneously address fundamental challenges through two new algo-

rithms for FL composite nonconvex optimization model (1).
I Our approach: Rely on a novel combination between randomized block-coordinate

strategy, nonconvex Douglas-Rachford (DR) splitting, and asynchronous variant.

Our contribution
(a) New Federated Douglas-Rachford algorithm – FedDR

I Combining DR splitting technique and randomized block-coordinate strategy for noncon-
vex composite optimization problem in FL.

I Can handle nonsmooth convex regularizers and inexact evaluation of prox operations.

I Achieves the best known O
(

ε−2
)

communication complexity for finding a stationary
point under standard assumptions.

I Does not require all users to participate in each communication round.

(b) New asynchronous FL Douglas-Rachford algorithm – asyncFedDR
I Each user can asynchronously perform local update and periodically send the update to

the server for aggregation.

I Achieves the same O
(

ε−2
)

communication complexity as FedDR (up to a constant
factor) under standard assumptions.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 7/34

Some Related Work in FL
Notable results closely related to our work
I FedAvg: Federated Averaging (FedAvg) is one of the first and popular methods

for FL [Konevcny et al (2016), McMahan et al (2017)].

One of the early attempts to show the convergence of FedAvg is [Stich (2018)].

I FedProx: [Li et al (2020)] is an extension of FedAvg, which deals with hetero-
geneity in federated networks by introducing a proximal term.

FedProx has been shown to achieve better performance than FedAvg in heteroge-
neous setting.

I SCAFFOLD: [Karimireddy et al (2020)] use a control variate to correct the “client-
drift" in local update of FedAvg.

MIME: [Karimireddy et al (2020)] propose MIME another framework that uses
control variate to improve FedAvg for heterogeneous settings.

I FedSplit: [Pathak & Wainwright (2020)] instead employs a Peaceman-Rachford
splitting scheme to solve a constrained reformulation of the original problem.

I FedPD: [Zhang et al (2020)] propose FedPD, which is essentially a variant of the
standard augmented Lagrangian method in nonlinear optimization.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 8/34

Some Related Work in FL
Notable results closely related to our work
I FedAvg: Federated Averaging (FedAvg) is one of the first and popular methods

for FL [Konevcny et al (2016), McMahan et al (2017)].

One of the early attempts to show the convergence of FedAvg is [Stich (2018)].

I FedProx: [Li et al (2020)] is an extension of FedAvg, which deals with hetero-
geneity in federated networks by introducing a proximal term.

FedProx has been shown to achieve better performance than FedAvg in heteroge-
neous setting.

I SCAFFOLD: [Karimireddy et al (2020)] use a control variate to correct the “client-
drift" in local update of FedAvg.

MIME: [Karimireddy et al (2020)] propose MIME another framework that uses
control variate to improve FedAvg for heterogeneous settings.

I FedSplit: [Pathak & Wainwright (2020)] instead employs a Peaceman-Rachford
splitting scheme to solve a constrained reformulation of the original problem.

I FedPD: [Zhang et al (2020)] propose FedPD, which is essentially a variant of the
standard augmented Lagrangian method in nonlinear optimization.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 8/34

Some Related Work in FL
Notable results closely related to our work
I FedAvg: Federated Averaging (FedAvg) is one of the first and popular methods

for FL [Konevcny et al (2016), McMahan et al (2017)].

One of the early attempts to show the convergence of FedAvg is [Stich (2018)].

I FedProx: [Li et al (2020)] is an extension of FedAvg, which deals with hetero-
geneity in federated networks by introducing a proximal term.

FedProx has been shown to achieve better performance than FedAvg in heteroge-
neous setting.

I SCAFFOLD: [Karimireddy et al (2020)] use a control variate to correct the “client-
drift" in local update of FedAvg.

MIME: [Karimireddy et al (2020)] propose MIME another framework that uses
control variate to improve FedAvg for heterogeneous settings.

I FedSplit: [Pathak & Wainwright (2020)] instead employs a Peaceman-Rachford
splitting scheme to solve a constrained reformulation of the original problem.

I FedPD: [Zhang et al (2020)] propose FedPD, which is essentially a variant of the
standard augmented Lagrangian method in nonlinear optimization.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 8/34

Some Related Work in FL
Notable results closely related to our work
I FedAvg: Federated Averaging (FedAvg) is one of the first and popular methods

for FL [Konevcny et al (2016), McMahan et al (2017)].

One of the early attempts to show the convergence of FedAvg is [Stich (2018)].

I FedProx: [Li et al (2020)] is an extension of FedAvg, which deals with hetero-
geneity in federated networks by introducing a proximal term.

FedProx has been shown to achieve better performance than FedAvg in heteroge-
neous setting.

I SCAFFOLD: [Karimireddy et al (2020)] use a control variate to correct the “client-
drift" in local update of FedAvg.

MIME: [Karimireddy et al (2020)] propose MIME another framework that uses
control variate to improve FedAvg for heterogeneous settings.

I FedSplit: [Pathak & Wainwright (2020)] instead employs a Peaceman-Rachford
splitting scheme to solve a constrained reformulation of the original problem.

I FedPD: [Zhang et al (2020)] propose FedPD, which is essentially a variant of the
standard augmented Lagrangian method in nonlinear optimization.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 8/34

Some Related Work in FL
Notable results closely related to our work
I FedAvg: Federated Averaging (FedAvg) is one of the first and popular methods

for FL [Konevcny et al (2016), McMahan et al (2017)].

One of the early attempts to show the convergence of FedAvg is [Stich (2018)].

I FedProx: [Li et al (2020)] is an extension of FedAvg, which deals with hetero-
geneity in federated networks by introducing a proximal term.

FedProx has been shown to achieve better performance than FedAvg in heteroge-
neous setting.

I SCAFFOLD: [Karimireddy et al (2020)] use a control variate to correct the “client-
drift" in local update of FedAvg.

MIME: [Karimireddy et al (2020)] propose MIME another framework that uses
control variate to improve FedAvg for heterogeneous settings.

I FedSplit: [Pathak & Wainwright (2020)] instead employs a Peaceman-Rachford
splitting scheme to solve a constrained reformulation of the original problem.

I FedPD: [Zhang et al (2020)] propose FedPD, which is essentially a variant of the
standard augmented Lagrangian method in nonlinear optimization.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 8/34

Proximal Operator and Gradient Mapping

Proximal operators and evaluation
I Our methods make use of prox of both fi and g though fi is nonconvex.

I We define the proximal operator of fi as

proxηfi
(x) := arg min

y

{
fi(y) + 1

2η ‖y − x‖
2
}
, (η > 0). (3)

I Even fi is nonconvex, under Assumption 1, if we choose 0 < η < 1
L
, then proxηfi

is well-defined and single-valued.

I Evaluating proxηfi
requires to solve a strongly convex program.

Gradient mapping
The gradient mapping of F is defined as

Gη(x) := 1
η

(
x− proxηg(x− η∇f(x))

)
, η > 0. (4)

The optimality condition 0 ∈ ∇f(x∗) + ∂g(x∗) of (1) is equivalent to Gη(x∗) = 0.

Definition 1 (Approximate Stationary Point)
If x̃ ∈ domF satisfies E

[
‖Gη(x̃)‖2

]
≤ ε2, then x̃ is called an ε-stationary point of (1).

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 9/34

Proximal Operator and Gradient Mapping

Proximal operators and evaluation
I Our methods make use of prox of both fi and g though fi is nonconvex.

I We define the proximal operator of fi as

proxηfi
(x) := arg min

y

{
fi(y) + 1

2η ‖y − x‖
2
}
, (η > 0). (3)

I Even fi is nonconvex, under Assumption 1, if we choose 0 < η < 1
L
, then proxηfi

is well-defined and single-valued.

I Evaluating proxηfi
requires to solve a strongly convex program.

Gradient mapping
The gradient mapping of F is defined as

Gη(x) := 1
η

(
x− proxηg(x− η∇f(x))

)
, η > 0. (4)

The optimality condition 0 ∈ ∇f(x∗) + ∂g(x∗) of (1) is equivalent to Gη(x∗) = 0.

Definition 1 (Approximate Stationary Point)
If x̃ ∈ domF satisfies E

[
‖Gη(x̃)‖2

]
≤ ε2, then x̃ is called an ε-stationary point of (1).

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 9/34

Proximal Operator and Gradient Mapping

Proximal operators and evaluation
I Our methods make use of prox of both fi and g though fi is nonconvex.

I We define the proximal operator of fi as

proxηfi
(x) := arg min

y

{
fi(y) + 1

2η ‖y − x‖
2
}
, (η > 0). (3)

I Even fi is nonconvex, under Assumption 1, if we choose 0 < η < 1
L
, then proxηfi

is well-defined and single-valued.

I Evaluating proxηfi
requires to solve a strongly convex program.

Gradient mapping
The gradient mapping of F is defined as

Gη(x) := 1
η

(
x− proxηg(x− η∇f(x))

)
, η > 0. (4)

The optimality condition 0 ∈ ∇f(x∗) + ∂g(x∗) of (1) is equivalent to Gη(x∗) = 0.

Definition 1 (Approximate Stationary Point)
If x̃ ∈ domF satisfies E

[
‖Gη(x̃)‖2

]
≤ ε2, then x̃ is called an ε-stationary point of (1).

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 9/34

The Derivation of The Douglas-Rachford Splitting Scheme
Consider a convex minimization problem: minx

{
F (x) = f(x) + g(x)

}
.

The derivation of DR splitting scheme
I Starting from the optimality condition ∇f(x?) +∇g(x?) = 0, we write it as

x? + η∇g(x?) = 2x? −
[
x? + η∇f(x?)

]
, η > 0.

I Define y? := x? + η∇f(x?) = (I+ η∇f)(x?). Taking the inverse, we have

x? = (I+ η∇f)−1(y?) = proxηf (y?).

I From the above expression, we have (I+ η∇g)(x?) = 2x? − y?, equivalently to

x? = (I+η∇g)−1(2x?−y?) = proxηg(2x?−y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I Using x? = proxηf (y?), this is equivalent to

proxηf (y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I We can write this equivalently to

y? = y? + α
[
proxηg

(
2 · proxηf (y?)− y?

)
− proxηf (y?) = TDR(y?)

]
.

I y? is a fixed-point of TDR(y) := y + α[proxηg(2 · proxηf (y)− y)− proxηf (y)].

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 10/34

The Derivation of The Douglas-Rachford Splitting Scheme
Consider a convex minimization problem: minx

{
F (x) = f(x) + g(x)

}
.

The derivation of DR splitting scheme
I Starting from the optimality condition ∇f(x?) +∇g(x?) = 0, we write it as

x? + η∇g(x?) = 2x? −
[
x? + η∇f(x?)

]
, η > 0.

I Define y? := x? + η∇f(x?) = (I+ η∇f)(x?). Taking the inverse, we have

x? = (I+ η∇f)−1(y?) = proxηf (y?).

I From the above expression, we have (I+ η∇g)(x?) = 2x? − y?, equivalently to

x? = (I+η∇g)−1(2x?−y?) = proxηg(2x?−y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I Using x? = proxηf (y?), this is equivalent to

proxηf (y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I We can write this equivalently to

y? = y? + α
[
proxηg

(
2 · proxηf (y?)− y?

)
− proxηf (y?) = TDR(y?)

]
.

I y? is a fixed-point of TDR(y) := y + α[proxηg(2 · proxηf (y)− y)− proxηf (y)].

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 10/34

The Derivation of The Douglas-Rachford Splitting Scheme
Consider a convex minimization problem: minx

{
F (x) = f(x) + g(x)

}
.

The derivation of DR splitting scheme
I Starting from the optimality condition ∇f(x?) +∇g(x?) = 0, we write it as

x? + η∇g(x?) = 2x? −
[
x? + η∇f(x?)

]
, η > 0.

I Define y? := x? + η∇f(x?) = (I+ η∇f)(x?). Taking the inverse, we have

x? = (I+ η∇f)−1(y?) = proxηf (y?).

I From the above expression, we have (I+ η∇g)(x?) = 2x? − y?, equivalently to

x? = (I+η∇g)−1(2x?−y?) = proxηg(2x?−y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I Using x? = proxηf (y?), this is equivalent to

proxηf (y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I We can write this equivalently to

y? = y? + α
[
proxηg

(
2 · proxηf (y?)− y?

)
− proxηf (y?) = TDR(y?)

]
.

I y? is a fixed-point of TDR(y) := y + α[proxηg(2 · proxηf (y)− y)− proxηf (y)].

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 10/34

The Derivation of The Douglas-Rachford Splitting Scheme
Consider a convex minimization problem: minx

{
F (x) = f(x) + g(x)

}
.

The derivation of DR splitting scheme
I Starting from the optimality condition ∇f(x?) +∇g(x?) = 0, we write it as

x? + η∇g(x?) = 2x? −
[
x? + η∇f(x?)

]
, η > 0.

I Define y? := x? + η∇f(x?) = (I+ η∇f)(x?). Taking the inverse, we have

x? = (I+ η∇f)−1(y?) = proxηf (y?).

I From the above expression, we have (I+ η∇g)(x?) = 2x? − y?, equivalently to

x? = (I+η∇g)−1(2x?−y?) = proxηg(2x?−y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I Using x? = proxηf (y?), this is equivalent to

proxηf (y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I We can write this equivalently to

y? = y? + α
[
proxηg

(
2 · proxηf (y?)− y?

)
− proxηf (y?) = TDR(y?)

]
.

I y? is a fixed-point of TDR(y) := y + α[proxηg(2 · proxηf (y)− y)− proxηf (y)].

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 10/34

The Derivation of The Douglas-Rachford Splitting Scheme
Consider a convex minimization problem: minx

{
F (x) = f(x) + g(x)

}
.

The derivation of DR splitting scheme
I Starting from the optimality condition ∇f(x?) +∇g(x?) = 0, we write it as

x? + η∇g(x?) = 2x? −
[
x? + η∇f(x?)

]
, η > 0.

I Define y? := x? + η∇f(x?) = (I+ η∇f)(x?). Taking the inverse, we have

x? = (I+ η∇f)−1(y?) = proxηf (y?).

I From the above expression, we have (I+ η∇g)(x?) = 2x? − y?, equivalently to

x? = (I+η∇g)−1(2x?−y?) = proxηg(2x?−y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I Using x? = proxηf (y?), this is equivalent to

proxηf (y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I We can write this equivalently to

y? = y? + α
[
proxηg

(
2 · proxηf (y?)− y?

)
− proxηf (y?) = TDR(y?)

]
.

I y? is a fixed-point of TDR(y) := y + α[proxηg(2 · proxηf (y)− y)− proxηf (y)].

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 10/34

The Derivation of The Douglas-Rachford Splitting Scheme
Consider a convex minimization problem: minx

{
F (x) = f(x) + g(x)

}
.

The derivation of DR splitting scheme
I Starting from the optimality condition ∇f(x?) +∇g(x?) = 0, we write it as

x? + η∇g(x?) = 2x? −
[
x? + η∇f(x?)

]
, η > 0.

I Define y? := x? + η∇f(x?) = (I+ η∇f)(x?). Taking the inverse, we have

x? = (I+ η∇f)−1(y?) = proxηf (y?).

I From the above expression, we have (I+ η∇g)(x?) = 2x? − y?, equivalently to

x? = (I+η∇g)−1(2x?−y?) = proxηg(2x?−y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I Using x? = proxηf (y?), this is equivalent to

proxηf (y?) = proxηg
(
2 · proxηf (y?)− y?

)
.

I We can write this equivalently to

y? = y? + α
[
proxηg

(
2 · proxηf (y?)− y?

)
− proxηf (y?) = TDR(y?)

]
.

I y? is a fixed-point of TDR(y) := y + α[proxηg(2 · proxηf (y)− y)− proxηf (y)].

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 10/34

The Douglas-Rachford Splitting Method

The fixed-point iteration of DR splitting method
Starting from y0, compute a sequence {yk} by

yk+1 := TDR(yk).

Then xk = proxηf (yk) is an approximate solution of the problem.
Note: The fixed-point y? of TDR(·) is not a solution of our problem, but
x? = proxηf (y?) is.

The implementation of DR splitting method
I Starting from y0, update

wk := proxηf (yk),
vk := proxηg(2wk − yk),
yk+1 := yk + α(vk −wk).

I Finally, compute xk = proxηf (yk).
I We can circulate these three steps to get different updating orders.
I We can use a change of variable to get different interpretation.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 11/34

The Douglas-Rachford Splitting Method

The fixed-point iteration of DR splitting method
Starting from y0, compute a sequence {yk} by

yk+1 := TDR(yk).

Then xk = proxηf (yk) is an approximate solution of the problem.
Note: The fixed-point y? of TDR(·) is not a solution of our problem, but
x? = proxηf (y?) is.

The implementation of DR splitting method
I Starting from y0, update

wk := proxηf (yk),
vk := proxηg(2wk − yk),
yk+1 := yk + α(vk −wk).

I Finally, compute xk = proxηf (yk).
I We can circulate these three steps to get different updating orders.
I We can use a change of variable to get different interpretation.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 11/34

Outline

Problem Statement, Motivation, and Contribution

Federated Learning with Randomized DR – FedDR

Federated Learning with Asynchronous DR – assyncFedDR

Numerical Examples

Conclusions and Future Research

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 12/34

Equivalent Reformulations of FL Optimization Model

Constrained reformulation – Duplicating variables min
x1,··· ,xn

{
F (x) := f(x) + g(x) ≡

1
n

n∑
i=1

fi(xi) + g(x1)
}

s.t. x2 = x1, x3 = x1, · · · , xn = x1.

(5)

where x := [x1, x2, · · · , xn] concatenates n variables xi (i ∈ [n]).
Define a linear subspace:

L := {x ∈ Rnp : x2 = x1, x3 = x1, · · · , xn = x1} ⊂ Rnp.

Unconstrained reformulation – Handling constraints
Let δL be the indicator function of L. We can rewrite (5) as

min
x∈Rnp

{
F (x) := f(x) + g(x) + δL(x) ≡

1
n

n∑
i=1

fi(xi) + g(x1) + δL(x)
}
. (6)

Equivalence between (6) and (1)

A stationary point x? of (6) ⇔ x?1 is a stationary point of (1).

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 13/34

Equivalent Reformulations of FL Optimization Model

Constrained reformulation – Duplicating variables min
x1,··· ,xn

{
F (x) := f(x) + g(x) ≡

1
n

n∑
i=1

fi(xi) + g(x1)
}

s.t. x2 = x1, x3 = x1, · · · , xn = x1.

(5)

where x := [x1, x2, · · · , xn] concatenates n variables xi (i ∈ [n]).
Define a linear subspace:

L := {x ∈ Rnp : x2 = x1, x3 = x1, · · · , xn = x1} ⊂ Rnp.

Unconstrained reformulation – Handling constraints
Let δL be the indicator function of L. We can rewrite (5) as

min
x∈Rnp

{
F (x) := f(x) + g(x) + δL(x) ≡

1
n

n∑
i=1

fi(xi) + g(x1) + δL(x)
}
. (6)

Equivalence between (6) and (1)

A stationary point x? of (6) ⇔ x?1 is a stationary point of (1).

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 13/34

Equivalent Reformulations of FL Optimization Model

Constrained reformulation – Duplicating variables min
x1,··· ,xn

{
F (x) := f(x) + g(x) ≡

1
n

n∑
i=1

fi(xi) + g(x1)
}

s.t. x2 = x1, x3 = x1, · · · , xn = x1.

(5)

where x := [x1, x2, · · · , xn] concatenates n variables xi (i ∈ [n]).
Define a linear subspace:

L := {x ∈ Rnp : x2 = x1, x3 = x1, · · · , xn = x1} ⊂ Rnp.

Unconstrained reformulation – Handling constraints
Let δL be the indicator function of L. We can rewrite (5) as

min
x∈Rnp

{
F (x) := f(x) + g(x) + δL(x) ≡

1
n

n∑
i=1

fi(xi) + g(x1) + δL(x)
}
. (6)

Equivalence between (6) and (1)

A stationary point x? of (6) ⇔ x?1 is a stationary point of (1).

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 13/34

Derivation of Douglas-Rachford Splitting Scheme for FL

Douglas-Rachford splitting steps for (6)
yk+1 := xk + α(x̄k − xk),
xk+1 := proxnηf (yk+1),
x̄k+1 := proxnη(g+δL)(2xk+1 − yk+1),

(7)

where η > 0 is a given step-size and α ∈ (0, 2] is a relaxation parameter.

Application of DR to FL
I Step 1: Decompose xk+1 := proxnηf (yk+1) into xk+1

i := proxηfi
(yk+1
i) for all

i ∈ [n].

I Step 2: Introduce x̂k+1
i := 2xk+1

i − yk+1
i for all i ∈ [n].

I Step 3: Line 3 of (7) x̄k+1 := proxnη(g+δL)(x̂k+1) can be rewritten as

x̄k+1 := proxnη(g+δL)(x̂k+1) =
{

arg minx
{
g(x1) + 1

2nη ‖xi − x̂k+1
i ‖2

}
s.t. xi = x1, for all i = 2, · · · , n.

Explicitly solve this problem to get a closed-form update for x̄k+1.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 14/34

Derivation of Douglas-Rachford Splitting Scheme for FL

Douglas-Rachford splitting steps for (6)
yk+1 := xk + α(x̄k − xk),
xk+1 := proxnηf (yk+1),
x̄k+1 := proxnη(g+δL)(2xk+1 − yk+1),

(7)

where η > 0 is a given step-size and α ∈ (0, 2] is a relaxation parameter.

Application of DR to FL
I Step 1: Decompose xk+1 := proxnηf (yk+1) into xk+1

i := proxηfi
(yk+1
i) for all

i ∈ [n].

I Step 2: Introduce x̂k+1
i := 2xk+1

i − yk+1
i for all i ∈ [n].

I Step 3: Line 3 of (7) x̄k+1 := proxnη(g+δL)(x̂k+1) can be rewritten as

x̄k+1 := proxnη(g+δL)(x̂k+1) =
{

arg minx
{
g(x1) + 1

2nη ‖xi − x̂k+1
i ‖2

}
s.t. xi = x1, for all i = 2, · · · , n.

Explicitly solve this problem to get a closed-form update for x̄k+1.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 14/34

Parallel DR Splitting Scheme for Solving (1)

From a full parallel to randomized block-coordinate DR splitting scheme
The full parallel DR splitting scheme:

yk+1
i := yki + α(x̄k − xki), ∀i ∈ [n]

xk+1
i := proxηfi

(yk+1
i), ∀i ∈ [n]

x̂k+1
i := 2xk+1

i − yk+1
i , ∀i ∈ [n]

x̃k+1 := 1
n

∑n

i=1 x̂
k+1
i ,

x̄k+1 := proxηg
(
x̃k+1

)
.

(8)

The randomized block-coordinate DR splitting scheme:
I Randomly sample a subset Sk of users in {1, 2, · · · , n}.
I Update yk+1

i , xk+1
i , and x̂k+1

i for i ∈ Sk, while keeping other users unchanged.

Challenges in analysis of our block-coordinate DR variant
I Three randomized block-coordinate steps yk+1

i , xk+1
i , and x̂k+1

i are updated se-
quentially.

I Cannot switch proxηfi
and proxηg as in the convex case.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 15/34

Parallel DR Splitting Scheme for Solving (1)

From a full parallel to randomized block-coordinate DR splitting scheme
The full parallel DR splitting scheme:

yk+1
i := yki + α(x̄k − xki), ∀i ∈ [n]

xk+1
i := proxηfi

(yk+1
i), ∀i ∈ [n]

x̂k+1
i := 2xk+1

i − yk+1
i , ∀i ∈ [n]

x̃k+1 := 1
n

∑n

i=1 x̂
k+1
i ,

x̄k+1 := proxηg
(
x̃k+1

)
.

(8)

The randomized block-coordinate DR splitting scheme:
I Randomly sample a subset Sk of users in {1, 2, · · · , n}.
I Update yk+1

i , xk+1
i , and x̂k+1

i for i ∈ Sk, while keeping other users unchanged.

Challenges in analysis of our block-coordinate DR variant
I Three randomized block-coordinate steps yk+1

i , xk+1
i , and x̂k+1

i are updated se-
quentially.

I Cannot switch proxηfi
and proxηg as in the convex case.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 15/34

Classical Block-Coordinate Fixed-point Scheme

Classical block-coordinate fixed-point scheme
Given y0, iterate

yk+1
i =

{
Ti(yk) if i = ik
yki otherwise

(9)

where T is a fixed-point mapping, and ik is “randomly sampled” from [n] blocks.
Example: ARock from [Peng et al (2016)] is an instance of this general scheme.
We find that most existing block-coordinate-based methods rely on this principle.

The Douglas-Rachford fixed-point interpretation
From (7), define the following Douglas-Rachford mapping:

TDR(y) = proxnηf (y) + α ·
(
proxnη(g+δL)

(
2 · proxnηf (y)− y

))
. (10)

Then, (7) can be written as
yk+1 = TDR(yk).

Finally, x̄k+1 = proxnη(g+δL)
(
2 · proxnηf (yk)− yk

)
as the output.

I If we apply the block-coordinate scheme (9) to (16), then we need to compute
full blocks of proxηfi

for i ∈ [n].
I The output is x̄k in our analysis, not yk as in the scheme (9).

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 16/34

Classical Block-Coordinate Fixed-point Scheme

Classical block-coordinate fixed-point scheme
Given y0, iterate

yk+1
i =

{
Ti(yk) if i = ik
yki otherwise

(9)

where T is a fixed-point mapping, and ik is “randomly sampled” from [n] blocks.
Example: ARock from [Peng et al (2016)] is an instance of this general scheme.
We find that most existing block-coordinate-based methods rely on this principle.

The Douglas-Rachford fixed-point interpretation
From (7), define the following Douglas-Rachford mapping:

TDR(y) = proxnηf (y) + α ·
(
proxnη(g+δL)

(
2 · proxnηf (y)− y

))
. (10)

Then, (7) can be written as
yk+1 = TDR(yk).

Finally, x̄k+1 = proxnη(g+δL)
(
2 · proxnηf (yk)− yk

)
as the output.

I If we apply the block-coordinate scheme (9) to (16), then we need to compute
full blocks of proxηfi

for i ∈ [n].
I The output is x̄k in our analysis, not yk as in the scheme (9).

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 16/34

The Complete FedDR Algorithm

Algorithm 1 (Federated Learning with Randomized DR (FedDR))

1: Initialization:
2: Take x0 ∈ domF . Choose η > 0 and α > 0, and accuracies εi,0 ≥ 0 (i ∈ [n]).
3: Initialize the server with x̄0 := x0 and x̃0 := x0.
4: Initialize all users with y0

i := x0, x0
i :≈ proxηfi

(y0
i), and x̂0

i := 2x0
i − y

0
i .

5: For k := 0, · · · ,K do
6: [Active users] Generate a proper realization Sk ⊆ [n] of Ŝ.
7: [Communication] Each user i ∈ Sk receives x̄k from the server.
8: [Local update] For each user i ∈ Sk do: Choose εi,k+1 ≥ 0 and update

yk+1
i := yki + α(x̄k − xki),
xk+1
i :≈ proxηfi

(yk+1
i),

x̂k+1
i := 2xk+1

i − yk+1
i .

9: [Communication] Each user i ∈ Sk sends ∆x̂ki := x̂k+1
i − x̂ki back to the server.

10: [Sever aggregation] Aggregate x̃k+1 := x̃k + 1
n

∑
i∈Sk

∆x̂ki .

11: [Sever update] Update x̄k+1 := proxηg
(
x̃k+1

)
.

12: End For

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 17/34

Sampling Scheme and Technical Assumption

Sample scheme for users
I Consider a proper sampling scheme Ŝ of [n], which is a random set-valued mapping

with values in 2[n], the collection of all subsets of [n].
I Let Sk be an iid realization of Ŝ and Fk := σ(S0, · · · ,Sk) be the σ-algebra

generated by S0, · · · ,Sk.

Assumption 2
There exist p1, · · · ,pn > 0 such that

P
(
i ∈ Ŝ

)
= pi > 0

for all i ∈ [n].

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 18/34

Sampling Scheme and Technical Assumption

Sample scheme for users
I Consider a proper sampling scheme Ŝ of [n], which is a random set-valued mapping

with values in 2[n], the collection of all subsets of [n].
I Let Sk be an iid realization of Ŝ and Fk := σ(S0, · · · ,Sk) be the σ-algebra

generated by S0, · · · ,Sk.

Assumption 2
There exist p1, · · · ,pn > 0 such that

P
(
i ∈ Ŝ

)
= pi > 0

for all i ∈ [n].

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 18/34

Main Result 1: Convergence and Communication Complexity

Theorem 2 (Convergence of FedDR)
Suppose that:
I Assumptions 1 and 2 hold.

I Let {(xki , y
k
i , x̂

k
i , x̄

k)} be generated by the exact variant of Algorithm 1

I The conditions 0 < α < 2 and 0 < η < 2−α
2L hold.

Conclusions:
I We have

1
K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤
C[F (x0)− F ?]

K + 1
, (11)

where C := 4(1+ηL)2(1+L2η2)
p̂ηα(2−α(Lη+1)−2L2η2) > 0.

I Let x̃K be selected uniformly at random from {x̄0, · · · , x̄K} as the output of
Algorithm 1. Then, after at most

K :=
⌊
C[F (x0)− F ?]

ε2

⌋
≡ O

(1
ε2

)
iterations, we obtain x̃K as an ε-stationary point of (1) as in Definition 1.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 19/34

Main Result 1: Convergence and Communication Complexity

Theorem 2 (Convergence of FedDR)
Suppose that:
I Assumptions 1 and 2 hold.

I Let {(xki , y
k
i , x̂

k
i , x̄

k)} be generated by the exact variant of Algorithm 1

I The conditions 0 < α < 2 and 0 < η < 2−α
2L hold.

Conclusions:
I We have

1
K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤
C[F (x0)− F ?]

K + 1
, (11)

where C := 4(1+ηL)2(1+L2η2)
p̂ηα(2−α(Lη+1)−2L2η2) > 0.

I Let x̃K be selected uniformly at random from {x̄0, · · · , x̄K} as the output of
Algorithm 1. Then, after at most

K :=
⌊
C[F (x0)− F ?]

ε2

⌋
≡ O

(1
ε2

)
iterations, we obtain x̃K as an ε-stationary point of (1) as in Definition 1.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 19/34

Outline

Problem Statement, Motivation, and Contribution

Federated Learning with Randomized DR – FedDR

Federated Learning with Asynchronous DR – assyncFedDR

Numerical Examples

Conclusions and Future Research

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 20/34

Motivation of assyncFedDR

Motivation
I In FL, it is critical to account for system heterogeneity of local users.

I Requiring synchronous aggregation at the end of each communication round may
lead to slow down in training.

I It is more practical to have asynchronous update from local users.

Main idea of asyncFedDR

I At each iteration k, each user receives a delay copy x̄k−d
k
ik of x̄k from the server

with a delay dkik .

I The active user ik will update its own local model (yki , x
k
i , x̂

k
i) in an asynchronous

mode without waiting for others to complete.

I Once completing its update, user ik just sends an increment ∆x̂kik to the server
to update the global model, while others may be still reading.

In our analysis, a transition of iteration from k to k + 1 is triggered whenever a user
completes its update.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 21/34

Motivation of assyncFedDR

Motivation
I In FL, it is critical to account for system heterogeneity of local users.

I Requiring synchronous aggregation at the end of each communication round may
lead to slow down in training.

I It is more practical to have asynchronous update from local users.

Main idea of asyncFedDR

I At each iteration k, each user receives a delay copy x̄k−d
k
ik of x̄k from the server

with a delay dkik .

I The active user ik will update its own local model (yki , x
k
i , x̂

k
i) in an asynchronous

mode without waiting for others to complete.

I Once completing its update, user ik just sends an increment ∆x̂kik to the server
to update the global model, while others may be still reading.

In our analysis, a transition of iteration from k to k + 1 is triggered whenever a user
completes its update.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 21/34

The Asynchronous FedDR – asyncFedDR

Algorithm 2 (Asynchronous FedDR (asyncFedDR))

1: Initialization:
2: Take x0∈domF and choose η > 0 and α > 0.
3: Initialize the server with x̄0 := x0 and x̃0 := 0.
4: Initialize each user i ∈ [n] with y0

i := x0, x0
i := proxηfi

(y0
i), and x̂0

i := 2x0
i −y

0
i .

5: For k := 0, · · · ,K do
6: Select ik such that (ik, dk) is a realization of (̂ik, d̂k).

7: [Communication] User ik receives x̄k−d
k
ik , a delayed version of x̄k with delay dkik .

8: [Local update] User ik updates
yk+1
ik

:= ykik
+ α(x̄k−d

k
ik − xkik),

xk+1
ik

:= proxηfik
(yk+1
ik

),

x̂k+1
ik

:= 2xk+1
ik
− yk+1

ik
.

Other users maintain yk+1
i := yki , xk+1

i := xki , and x̂
k+1
i := x̂ki for i , ik.

9: [Communication] User ik sends ∆k
ik

:= x̂k+1
ik
− x̂kik back to the server.

10: [Sever aggregation] Aggregate x̃k+1 := x̃k + 1
n

∆k
ik
.

11: [Sever update] Update x̄k+1 := proxηg
(
x̃k+1

)
.

12: End For

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 22/34

Joint Probabilistic Model for Users and Delays

Probabilistic model
I Introduce ξ̂k := (̂ik, d̂k) as a joint random variable containing the user index
îk ∈ [n] and the delay vector d̂k ∈ D := {0, 1, · · · , τ}n at iteration k.

I Let ξk := (ik, dk) be a realization of a random vector.

I Introduce a random vector ξ̂0:k := (ξ̂0, · · · , ξ̂k) and its possible values ξ0:k =
(ξ0, ξ1, · · · , ξk).

I Let Ω be the sample space of all sequences ω := {(ik, dk)}k≥0.

I Assume that p(ξ0:k) := P(ξ̂0:k = ξ0:k) > 0.

Assumption 3 (Positive probability for updates and bounded delay)
I For all i ∈ [n] and ω ∈ Ω, ∃ at least one t ∈ {0, 1, · · · , T} with T > 0, such that∑

d∈D

p((i, d) | ξ0:k+t−1) ≥ p̂ if p(ξ0:k) > 0, (12)

for a given p̂ > 0 and any k ≥ 0.

I Assume also that dki ≤ τ and dkik = 0 for all k ≥ 0 and i, ik ∈ [n].

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 23/34

Joint Probabilistic Model for Users and Delays

Probabilistic model
I Introduce ξ̂k := (̂ik, d̂k) as a joint random variable containing the user index
îk ∈ [n] and the delay vector d̂k ∈ D := {0, 1, · · · , τ}n at iteration k.

I Let ξk := (ik, dk) be a realization of a random vector.

I Introduce a random vector ξ̂0:k := (ξ̂0, · · · , ξ̂k) and its possible values ξ0:k =
(ξ0, ξ1, · · · , ξk).

I Let Ω be the sample space of all sequences ω := {(ik, dk)}k≥0.

I Assume that p(ξ0:k) := P(ξ̂0:k = ξ0:k) > 0.

Assumption 3 (Positive probability for updates and bounded delay)
I For all i ∈ [n] and ω ∈ Ω, ∃ at least one t ∈ {0, 1, · · · , T} with T > 0, such that∑

d∈D

p((i, d) | ξ0:k+t−1) ≥ p̂ if p(ξ0:k) > 0, (12)

for a given p̂ > 0 and any k ≥ 0.

I Assume also that dki ≤ τ and dkik = 0 for all k ≥ 0 and i, ik ∈ [n].

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 23/34

Technical Parameters for Complexity Bound

I Step 1: Choose 0 < α < ᾱ and 0 < η < η̄ in Algorithm 2, where c := 2τ2−n
n2 is

given, and ᾱ > 0 and η̄ > 0 are respectively computed by

ᾱ :=
{

1 if 2τ2 ≤ n,
2

2+c otherwise,
and η̄ :=

{ √
16−8α−7α2−α

2L(2+α) if 2τ2 ≤ n,
√

16−8α−(7+4c+4c2)α2−α
2L[2+(1+c)α] otherwise.

I Step 2: Introduce the following parameters:

ρ :=

{
2(1−α)−(2+α)L2η2−Lαη

αηn
if 2τ2 ≤ n,

n2[2(1−α)−(2+α)L2η2−Lαη]−α(1+η2L2)(2τ2−n)
αηn3 otherwise.

D := 8α2(1+L2η2)(τ2+2Tnp̂) + 8n2(1+L2η2+Tα2p̂)
p̂α2n2 .

Both ρ and D are positive.
Remark: When the delay τ satisfies τ ≤

√
n
2 , we can use large stepsizes α and η.

Otherwise, we need to choose smaller stepsizes α and η.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 24/34

Main Result 2: Convergence and Communication Complexity

Theorem 3 (Convergence of asyncFedDR)
Suppose that:
I Assumption 1 and 3 hold.

I Let ᾱ, η̄, ρ, and D be given in the previous slide, respectively.

I Let {(xki , y
k
i , x̄

k)} be generated by Algorithm 2.

I The conditions α ∈ (0, ᾱ) and η ∈ (0, η̄) hold.

Conclusions:
I Then, the following bound holds:

1
K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤
Ĉ
[
F (x0)− F ?

]
K + 1

, (13)

where Ĉ := 2(1+ηL)2D
nη2ρ

> 0 depending on n,L, η, α, τ, T, and p̂.

I Let x̃K be selected uniformly at random from {x̄0, · · · , x̄K} as the output of
Algorithm 2. Then, after at most K := O

(
ε−2
)
iterations, x̃K is an ε-stationary

point of (1) as in Definition 1.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 25/34

Main Result 2: Convergence and Communication Complexity

Theorem 3 (Convergence of asyncFedDR)
Suppose that:
I Assumption 1 and 3 hold.

I Let ᾱ, η̄, ρ, and D be given in the previous slide, respectively.

I Let {(xki , y
k
i , x̄

k)} be generated by Algorithm 2.

I The conditions α ∈ (0, ᾱ) and η ∈ (0, η̄) hold.
Conclusions:
I Then, the following bound holds:

1
K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤
Ĉ
[
F (x0)− F ?

]
K + 1

, (13)

where Ĉ := 2(1+ηL)2D
nη2ρ

> 0 depending on n,L, η, α, τ, T, and p̂.

I Let x̃K be selected uniformly at random from {x̄0, · · · , x̄K} as the output of
Algorithm 2. Then, after at most K := O

(
ε−2
)
iterations, x̃K is an ε-stationary

point of (1) as in Definition 1.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 25/34

Outline

Problem Statement, Motivation, and Contribution

Federated Learning with Randomized DR – FedDR

Federated Learning with Asynchronous DR – assyncFedDR

Numerical Examples

Conclusions and Future Research

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 26/34

Configuration of Experiments

Experiment Configuration
I Our methods: FedDR and asyncFedDR

I Competitors: FedAvg, FedProx, and FedPD.

I Optimization Models: Neural networks.

I Data: Both synthetic and real datasets.

I Comparison Metrics: Training loss, training accuracy, and test accuracy.

I Parameters: Parameters are tuned to obtain the best performance in all methods.

I Local Solvers: Use the same local solver (SGD) for all algorithms.

Implementation
I For synchronous algorithms, we reuse the implementation of FedAvg and FedProx

in [Li et al (2020)] and implement FedDR and FedPD on top of it.

I For asynchronous methods, we implement our algorithms based on the asyn-
chronous framework in DistBelief [Cai (2018)].

I All experiments are run on a Linux-based server with multiple nodes and configu-
ration: 24-core 2.50GHz Intel processors, 30M cache, and 256GB RAM.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 27/34

Configuration of Experiments

Experiment Configuration
I Our methods: FedDR and asyncFedDR

I Competitors: FedAvg, FedProx, and FedPD.

I Optimization Models: Neural networks.

I Data: Both synthetic and real datasets.

I Comparison Metrics: Training loss, training accuracy, and test accuracy.

I Parameters: Parameters are tuned to obtain the best performance in all methods.

I Local Solvers: Use the same local solver (SGD) for all algorithms.

Implementation
I For synchronous algorithms, we reuse the implementation of FedAvg and FedProx

in [Li et al (2020)] and implement FedDR and FedPD on top of it.

I For asynchronous methods, we implement our algorithms based on the asyn-
chronous framework in DistBelief [Cai (2018)].

I All experiments are run on a Linux-based server with multiple nodes and configu-
ration: 24-core 2.50GHz Intel processors, 30M cache, and 256GB RAM.
x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 27/34

Performance of FedDR and Competitors on Synthetic Datasets
I Compare the algorithms on synthetic dataset with both iid and non-iid settings.
I Generate 1 iid dataset synthetic-iid and 3 non-iid datasets: synthetic-(r,s)

for (r, s) = {(0, 0), (0.5, 0.5), (1, 1)} as in [Li et al (2020)].
I Update all users without sampling and non-composite model of (1).

0 50 100 150
Comm. Rounds

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

nL
os

s

0 50 100 150
Comm. Rounds

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 50 100 150
Comm. Rounds

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(0.5,0.5)

Figure: The performance of 4 algorithms on non-iid synthetic datasets without user sampling

Observation
I FedDR and FedPD are comparable in these datasets.
I They both outperform FedProx and FedAvg.
I FedProx works better than FedAvg which was observed before.
I Comparing on more datasets, our algorithm overall performs better than others.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 28/34

Performance of FedDR and Competitors on Synthetic Datasets
I Compare the algorithms on synthetic dataset with both iid and non-iid settings.
I Generate 1 iid dataset synthetic-iid and 3 non-iid datasets: synthetic-(r,s)

for (r, s) = {(0, 0), (0.5, 0.5), (1, 1)} as in [Li et al (2020)].
I Update all users without sampling and non-composite model of (1).

0 50 100 150
Comm. Rounds

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

nL
os

s

0 50 100 150
Comm. Rounds

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 50 100 150
Comm. Rounds

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(0.5,0.5)

Figure: The performance of 4 algorithms on non-iid synthetic datasets without user sampling

Observation
I FedDR and FedPD are comparable in these datasets.
I They both outperform FedProx and FedAvg.
I FedProx works better than FedAvg which was observed before.
I Comparing on more datasets, our algorithm overall performs better than others.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 28/34

Performance of FedDR and Competitors on Synthetic Datasets
I Sample of 10 users out of 30 to update at each communication round for FedAvg,

FedProx, and FedDR.
I Use all users for FedPD.
I The evaluation metric is the number of bytes communicated between users and

server at each communication round.

0 1 2 3 4
Bytes 1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

nL
os

s

0 1 2 3 4
Bytes 1e6

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 1 2 3 4
Bytes 1e6

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(0.5,0.5)

Figure: The performance of 4 algorithms with user sampling scheme on non-iid synthetic datasets.

Observation
I FedDR performs well compared to others.
I FedProx using user sampling scheme performs better and is slightly behind FedPD.
I FedDR, FedPD, and FedProx outperform FedAvg.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 29/34

Performance of FedDR and Competitors on Synthetic Datasets
I Sample of 10 users out of 30 to update at each communication round for FedAvg,

FedProx, and FedDR.
I Use all users for FedPD.
I The evaluation metric is the number of bytes communicated between users and

server at each communication round.

0 1 2 3 4
Bytes 1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

nL
os

s

0 1 2 3 4
Bytes 1e6

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 1 2 3 4
Bytes 1e6

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(0.5,0.5)

Figure: The performance of 4 algorithms with user sampling scheme on non-iid synthetic datasets.

Observation
I FedDR performs well compared to others.
I FedProx using user sampling scheme performs better and is slightly behind FedPD.
I FedDR, FedPD, and FedProx outperform FedAvg.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 29/34

Performance of FedDR and Competitors on FEMNIST Datasets
I FEMNIST is an extended version of MNIST.
I It has a total of 62 classes (10 digits, 26 upper-case and 26 lower-case letters) with

over 800,000 samples.
I There are total of 200 users and we sample 50 users to update FedAvg, FedProx,

and FedDR, while we use all users to perform update for FedPD.

0 2 4 6 8
Bytes 1e8

1

2

3

4

Tr
ai

nL
os

s

0 2 4 6 8
Bytes 1e8

0.0

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 2 4 6 8
Bytes 1e8

0.0

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

FEMNIST

Figure: The performance of 4 algorithms on the FEMNIST dataset.

Observation
I FedDR can achieve lower loss and higher training accuracy than other algorithms.
I FedPD can reach the same test accuracy as ours at the end.
I Overall, FedDR seems working better than other algorithms in this test.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 30/34

Performance of FedDR and Competitors on FEMNIST Datasets
I FEMNIST is an extended version of MNIST.
I It has a total of 62 classes (10 digits, 26 upper-case and 26 lower-case letters) with

over 800,000 samples.
I There are total of 200 users and we sample 50 users to update FedAvg, FedProx,

and FedDR, while we use all users to perform update for FedPD.

0 2 4 6 8
Bytes 1e8

1

2

3

4

Tr
ai

nL
os

s

0 2 4 6 8
Bytes 1e8

0.0

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 2 4 6 8
Bytes 1e8

0.0

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

FEMNIST

Figure: The performance of 4 algorithms on the FEMNIST dataset.

Observation
I FedDR can achieve lower loss and higher training accuracy than other algorithms.
I FedPD can reach the same test accuracy as ours at the end.
I Overall, FedDR seems working better than other algorithms in this test.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 30/34

The Composite Case with `1-Norm Regularizer
I Choose g(x) := 0.01 ‖x‖1 and different inexactness levels εi,k.
I Run Algorithm 1 on the FEMNIST dataset.

0 50 100 150 200
Comm. Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.6

0.7

0.8

0.9

1.0

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.5

0.6

0.7

0.8

0.9

Te
st

Ac
c

lr = 0.001
lr = 0.003
lr = 0.005
lr = 0.008
lr = 0.01

FEMNIST, g = || ||1

0 50 100 150 200
Comm. Rounds

0

1

2

3

4

5

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

Ac
c

epoch = 5
epoch = 10
epoch = 15
epoch = 20
epoch = 30

FEMNIST, g = || ||1

Observation
I Algorithm 1 works best when local learning rate is 0.003.
I It also performs better when we decrease εi,k by increasing the number of epochs.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 31/34

The Composite Case with `1-Norm Regularizer
I Choose g(x) := 0.01 ‖x‖1 and different inexactness levels εi,k.
I Run Algorithm 1 on the FEMNIST dataset.

0 50 100 150 200
Comm. Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.6

0.7

0.8

0.9

1.0

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.5

0.6

0.7

0.8

0.9

Te
st

Ac
c

lr = 0.001
lr = 0.003
lr = 0.005
lr = 0.008
lr = 0.01

FEMNIST, g = || ||1

0 50 100 150 200
Comm. Rounds

0

1

2

3

4

5

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

Ac
c

epoch = 5
epoch = 10
epoch = 15
epoch = 20
epoch = 30

FEMNIST, g = || ||1

Observation
I Algorithm 1 works best when local learning rate is 0.003.
I It also performs better when we decrease εi,k by increasing the number of epochs.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 31/34

Performance of asyncFedDR over FedDR
I Illustrate the advantages of asyncFedDR over FedDR.

I Use MNIST dataset with a sample of 20 users per round.

I Since the computing nodes have identical configurations, we add variable delay to
users to simulate a computing power discrepancy.

0 1500 3000 4500 6000
Time in seconds

0.00

0.15

0.30

0.45

0.60

Tr
ai

nL
os

s

0 1500 3000 4500 6000
Time in seconds

0.80

0.84

0.88

0.92

0.96

1.00

Tr
ai

nA
cc

0 1500 3000 4500 6000
Time in seconds

0.80

0.84

0.88

0.92

0.96

1.00

Te
st

Ac
c

FedDR
asyncFedDR

MNIST

Figure: The performance of FedDR and asyncFedDR on the MNIST dataset.

Observation
I asyncFedDR can achieve better performance than FedDR in terms of training time.

I This illustrate the advantage of asynchronous update in heterogeneous systems.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 32/34

Performance of asyncFedDR over FedDR
I Illustrate the advantages of asyncFedDR over FedDR.

I Use MNIST dataset with a sample of 20 users per round.

I Since the computing nodes have identical configurations, we add variable delay to
users to simulate a computing power discrepancy.

0 1500 3000 4500 6000
Time in seconds

0.00

0.15

0.30

0.45

0.60

Tr
ai

nL
os

s

0 1500 3000 4500 6000
Time in seconds

0.80

0.84

0.88

0.92

0.96

1.00

Tr
ai

nA
cc

0 1500 3000 4500 6000
Time in seconds

0.80

0.84

0.88

0.92

0.96

1.00

Te
st

Ac
c

FedDR
asyncFedDR

MNIST

Figure: The performance of FedDR and asyncFedDR on the MNIST dataset.

Observation
I asyncFedDR can achieve better performance than FedDR in terms of training time.

I This illustrate the advantage of asynchronous update in heterogeneous systems.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 32/34

Outline

Problem Statement, Motivation, and Contribution

Federated Learning with Randomized DR – FedDR

Federated Learning with Asynchronous DR – assyncFedDR

Numerical Examples

Conclusions and Future Research

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 33/34

Conclusions and Future Research

Conclusions
I Develop two new algorithms for FL using randomized DR splitting idea.

I The new algorithms have several advantages: subset of users per round, asyn-
chronous implementation, inexact computation, composite form, etc.

I Prove the best-known complexity for communication under standard assumptions.

I Numerical experiments overall show the advantages over their competitors.

Future research directions
I Focus on the convex setting and apply compression to improve communication.

I Study accelerated methods and adaptive variants.

I Incorporate second-order information to develop second-order methods.

Thank you very much for your
attention!

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 34/34

Conclusions and Future Research

Conclusions
I Develop two new algorithms for FL using randomized DR splitting idea.

I The new algorithms have several advantages: subset of users per round, asyn-
chronous implementation, inexact computation, composite form, etc.

I Prove the best-known complexity for communication under standard assumptions.

I Numerical experiments overall show the advantages over their competitors.

Future research directions
I Focus on the convex setting and apply compression to improve communication.

I Study accelerated methods and adaptive variants.

I Incorporate second-order information to develop second-order methods.

Thank you very much for your
attention!

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 34/34

Conclusions and Future Research

Conclusions
I Develop two new algorithms for FL using randomized DR splitting idea.

I The new algorithms have several advantages: subset of users per round, asyn-
chronous implementation, inexact computation, composite form, etc.

I Prove the best-known complexity for communication under standard assumptions.

I Numerical experiments overall show the advantages over their competitors.

Future research directions
I Focus on the convex setting and apply compression to improve communication.

I Study accelerated methods and adaptive variants.

I Incorporate second-order information to develop second-order methods.

Thank you very much for your
attention!

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 34/34

	Problem Statement, Motivation, and Contribution
	Federated Learning with Randomized DR – FedDR
	Federated Learning with Asynchronous DR – assyncFedDR
	Numerical Examples
	Conclusions and Future Research

