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Optimization Model of Federated Learning

Composite Optimization Model in Federated Learning (FL)

T ERP

F* = min {F(a:) = %zn:fi(a:) +g(w)},
=il

> fi:RP - RU{+o0} (i =1,---,n) are smooth and possibly nonconvex;
> g:RP — R is a convex and possibly nonsmooth;

> Define f(z) := %Z?:l fi(x) as a finite-sum function.

]
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Optimization Model of Federated Learning

Composite Optimization Model in Federated Learning (FL)

n
1
* 3 PP .
Fr e i {F(l’) = anz(vay(w)} (1)
i=1
> fi:RP - RU{+o0} (i =1,---,n) are smooth and possibly nonconvex;

> g:RP — R is a convex and possibly nonsmooth;

> Define f(z) := %Z?:l fi(x) as a finite-sum function.

Assumption 1 (Model Assumptions)
> fi is smooth and possibly nonconvex, and g is convex and possibly nonsmooth.
> The domain of F domF := {x € RP : F(z) < 400} is nonempty.
> There exists a [first-order] stationary point of (1), i.e., 0 € V f(z*) + dg(z*).
> Boundedness from below: F* := inf,cgrp F(z) > —o0.
> All functions f;(-) fori € [n] :== {1,--- ,n} are L-smooth, i.e.:
IVfi(z) = VI < Lllz —yll, Va,y € domf;. (2

)
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Federated Learning and Challenges

- g )
WikiepiA ~ Federated learning
et

= From Wikipodia, th free oncyciopodia

samples, without exchanging them. This approach stands in the local d loaded 1o one server, as wellas 1o
Federated to build - privacy, data securty, data
o d a number of indy IoT, and ph i

FL is a machine learning technique that

> trains an algorithm across multiple decentralized edge devices/users

> local devices/users hold data samples locally without exchanging them.

]
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Federated Learning and Challenges

WikiepiA ~ Federated learning
e

From Wikipodia, th free oncyciopodia

b Jgorith data

samples, without exchanging them. This approach stands n contrast the local d uploaded to one server, as well as to

Federated learning enables muliple actors o buid a common, thus allowing privacy, data securty, data
access ts applicat anumber of o, and pharmaceuics.

s
2
a
A
c

What is FL?
FL is a machine learning technique that

> trains an algorithm across multiple decentralized edge devices/users

> local devices/users hold data samples locally without exchanging them.

Main Challenges of FL

> Communication bottleneck: If the number of users n is large, it creates commu-
nication bottleneck during model exchange process between server and users.

> Data or statistical heterogeneity: The local data in each user may be different in
terms of sizes and distribution.

> System heterogeneity: The variety of users with different local storage, computa-
tional power, and network connectivity also creates a major challenge.

> Privacy concern: Accessing and sharing local raw data is not permitted in FL.
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Our Approach and Contribution

Our approach
> Qur goal: Simultaneously address fundamental challenges through two new algo-
rithms for FL composite nonconvex optimization model (1).

> Our approach: Rely on a novel combination between randomized block-coordinate
strategy, nonconvex Douglas-Rachford (DR) splitting, and asynchronous variant.
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Our approach

> Qur goal: Simultaneously address fundamental challenges through two new algo-
rithms for FL composite nonconvex optimization model (1).

> Our approach: Rely on a novel combination between randomized block-coordinate
strategy, nonconvex Douglas-Rachford (DR) splitting, and asynchronous variant.

Our contribution
(a) New Federated Douglas-Rachford algorithm — FedDR

> Combining DR splitting technique and randomized block-coordinate strategy for noncon-
vex composite optimization problem in FL.

> Can handle nonsmooth convex regularizers and inexact evaluation of prox operations.
> Achieves the best known O (5_2) communication complexity for finding a stationary
point under standard assumptions.

> Does not require all users to participate in each communication round.
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Our Approach and Contribution

Our approach

> Qur goal: Simultaneously address fundamental challenges through two new algo-
rithms for FL composite nonconvex optimization model (1).

> Our approach: Rely on a novel combination between randomized block-coordinate
strategy, nonconvex Douglas-Rachford (DR) splitting, and asynchronous variant.

Our contribution
(a) New Federated Douglas-Rachford algorithm — FedDR

> Combining DR splitting technique and randomized block-coordinate strategy for noncon-
vex composite optimization problem in FL.

> Can handle nonsmooth convex regularizers and inexact evaluation of prox operations.

> Achieves the best known O (5_2) communication complexity for finding a stationary
point under standard assumptions.

> Does not require all users to participate in each communication round.

(b) New asynchronous FL Douglas-Rachford algorithm — asyncFedDR
> Each user can asynchronously perform local update and periodically send the update to
the server for aggregation.
> Achieves the same O 872) communication complexity as FedDR (up to a constant

factor) under standard assumptions.

)
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Some Related Work in FL
Notable results closely related to our work

> FedAvg: Federated Averaging (FedAvg) is one of the first and popular methods
for FL [Koneveny et al (2016), McMahan et al (2017)].

One of the early attempts to show the convergence of FedAvg is [Stich (2018)].
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One of the early attempts to show the convergence of FedAvg is [Stich (2018)].

> FedProx: [Li et al (2020)] is an extension of FedAvg, which deals with hetero-
geneity in federated networks by introducing a proximal term.

FedProx has been shown to achieve better performance than FedAvg in heteroge-
neous setting.
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neous setting.
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Some Related Work in FL

Notable results closely related to our work

>

FedAvg: Federated Averaging (FedAvg) is one of the first and popular methods
for FL [Koneveny et al (2016), McMahan et al (2017)].

One of the early attempts to show the convergence of FedAvg is [Stich (2018)].

FedProx: [Li et al (2020)] is an extension of FedAvg, which deals with hetero-
geneity in federated networks by introducing a proximal term.

FedProx has been shown to achieve better performance than FedAvg in heteroge-
neous setting.

SCAFFOLD: [Karimireddy et al (2020)] use a control variate to correct the “client-
drift" in local update of FedAvg.

MIME: [Karimireddy et al (2020)] propose MIME another framework that uses
control variate to improve FedAvg for heterogeneous settings.

FedSplit: [Pathak & Wainwright (2020)] instead employs a Peaceman-Rachford
splitting scheme to solve a constrained reformulation of the original problem.

FedPD: [Zhang et al (2020)] propose FedPD, which is essentially a variant of the
standard augmented Lagrangian method in nonlinear optimization.
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Proximal Operator and Gradient Mapping
Proximal operators and evaluation

»> QOur methods make use of prox of both f; and g though f; is nonconvex.

> We define the proximal operator of f; as

prox, s, (z) == argmin { fi(y) + =y — 2}, (1> 0).
Y

> Even f; is nonconvex, under Assumption 1, if we choose 0 < 7 < %, then prox, ,

is well-defined and single-valued.

> Evaluating PIOX, . requires to solve a strongly convex program.
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Proximal Operator and Gradient Mapping
Proximal operators and evaluation
»> QOur methods make use of prox of both f; and g though f; is nonconvex.
> We define the proximal operator of f; as
() = G {fiw)+5ly—=l”},  @>o0). 3)

> Even f; is nonconvex, under Assumption 1, if we choose 0 < 7 < %, then prox, ,
is well-defined and single-valued.

7
> Evaluating PIOX, . requires to solve a strongly convex program.

Gradient mapping
The gradient mapping of F' is defined as

Gn(x) == %(x — prox,,(z — 77Vf(ac)))7 n > 0. (4)

The optimality condition 0 € V f(z*) + dg(z*) of (1) is equivalent to G, (z*) = 0.

)
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Proximal Operator and Gradient Mapping
Proximal operators and evaluation
»> QOur methods make use of prox of both f; and g though f; is nonconvex.
> We define the proximal operator of f; as
() = G {fiw)+5ly—=l”},  @>o0). 3)

> Even f; is nonconvex, under Assumption 1, if we choose 0 < 7 < %, then prox, ,
is well-defined and single-valued.

7
> Evaluating PIOX, . requires to solve a strongly convex program.

Gradient mapping
The gradient mapping of F' is defined as

Gn(2) = L (2 — prox,4(@ = nV f(x))), n>0. (4)
The optimality condition 0 € V f(z*) + dg(z*) of (1) is equivalent to G, (z*) = 0.

Definition 1 (Approximate Stationary Point)

If # € domF satisfies ]E[||g,7(:i)H2] < €2, then 7 is called an e-stationary point of (1).

)
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The Derivation of The Douglas-Rachford Splitting Scheme

Consider a convex minimization problem: miny {F(x) = f(x)+ g(x)}.
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The Derivation of The Douglas-Rachford Splitting Scheme

Consider a convex minimization problem: miny {F(x) = f(x)+ g(x)}.
The derivation of DR splitting scheme
> Starting from the optimality condition V f(x*) + Vg(x*) = 0, we write it as

x* +nVg(x*) = 2x* — [x* + an(x*)] , n > 0.
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The Derivation of The Douglas-Rachford Splitting Scheme

Consider a convex minimization problem: miny {F(x) = f(x)+ g(x)}.
The derivation of DR splitting scheme
> Starting from the optimality condition V f(x*) + Vg(x*) = 0, we write it as
X* +Vg(x*) =2x* — [x* +Vf(x*)], n>0.
> Define y* := x* + nV f(x*) = (I+ nV f)(x*). Taking the inverse, we have

x* = (I+nV )" (y*) = prox, ;(y*).
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> From the above expression, we have (I+7nVg)(x*) = 2x* — y*, equivalently to

x* = (I+nVg) 1 (2x*—y*) = prox,,(2x*—y*) = prox,, (2 - prox, ¢ (y*) — y*) !

> Using x* = prox, ¢(y*), this is equivalent to

prox, ¢(y*) = prox,, (2 - prox, ¢ (y*) — y*) .
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The Derivation of The Douglas-Rachford Splitting Scheme

Consider a convex minimization problem: miny {F(x) = f(x)+ g(x)}.
The derivation of DR splitting scheme
> Starting from the optimality condition V f(x*) + Vg(x*) = 0, we write it as
X* +Vg(x*) =2x* — [x* +Vf(x*)], n>0.
> Define y* := x* + nV f(x*) = (I+ nV f)(x*). Taking the inverse, we have
x* = (I+nVf) " (y*) = prox, ;(y*).
> From the above expression, we have (I+7nVg)(x*) = 2x* — y*, equivalently to

x* = (I+nVg) 1 (2x*—y*) = prox,,(2x*—y*) = prox,, (2 - prox, ¢ (y*) — y*) !

> Using x* = prox, ¢(y*), this is equivalent to

prox, ¢(y*) = prox,, (2 - prox, ¢ (y*) — y*) .
> We can write this equivalently to
Y* =y* +aprox,, (2 prox, ;(y*) — y*) — prox,;(y*) = Tor(y*)]-
> y* is a fixed-point of Tpr(y) := y + a[prox, (2 - prox, ;(y) — y) — prox, ¢ (y)]-
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The Douglas-Rachford Splitting Method

The fixed-point iteration of DR splitting method
Starting from yo, compute a sequence {yx} by
Yik+1 = ToR(YK)-

Then x3 = proxnf(yk) is an approximate solution of the problem.

Note: The fixed-point y* of Tpgr(-) is not a solution of our problem, but
x* = prox, ;(y*) is.
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The Douglas-Rachford Splitting Method

The fixed-point iteration of DR splitting method
Starting from yo, compute a sequence {yx} by
Yik+1 = ToR(YK)-

Then x3 = proxnf(yk) is an approximate solution of the problem.

Note: The fixed-point y* of Tpgr(-) is not a solution of our problem, but
x* = prox, ;(y*) is.

The implementation of DR splitting method

> Starting from ygo, update

Wik = prOX'r]f (yk)7
Vi = proxng (2Wk - yk)v
Ye+1 = Yk +a(ve—wg).

> Finally, compute x; = prox, ;(yx)-
> We can circulate these three steps to get different updating orders.

> We can use a change of variable to get different interpretation.

x| Quoc Tran-Dinh, quoctd@email.unc.edu Slide 11/34



Outline

Federated Learning with Randomized DR — FedDR
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Equivalent Reformulations of FL Optimization Model

Constrained reformulation — Duplicating variables

min {F(x) = f(x)+9(x) = %Zfz(xz)+g(ml)} (5)
i=1

Tl HTn
s.t. T2 = T1, L3 =T, T — T
where x := [z1, %2, -+ ,%n] concatenates n variables z; (i € [n]).

Define a linear subspace:

L:={x€R"™ 23 =21, 23 =21, "+ ,zn = z1} CR"™.
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Equivalent Reformulations of FL Optimization Model

Constrained reformulation — Duplicating variables

min {F(x) = f(x) = *Zfz z;) + g( 11)}

1,7 )
s.t. T2 = T1, T3 — T, “',T,L—Tl

where x := [z1, %2, -+ ,%n] concatenates n variables z; (i € [n]).

Define a linear subspace:
L:={xER™ 29 =11, x3 =21, -+ ,&np =1} C R,

Unconstrained reformulation — Handling constraints

Let 0, be the indicator function of £. We can rewrite (5) as

min { () = (0 + 900 + 0c(0) = = Zfl 2)+g(or) +0c9 ). (©)
XERMP

)
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Equivalent Reformulations of FL Optimization Model

Constrained reformulation — Duplicating variables

min {F(x) = f(x) **Zfz fz)Jngl)}
1,7 )
s.t. TQ =1, T3 =1, *** ,Tn AVTL
where x := [z1, %2, -+ ,%n] concatenates n variables z; (i € [n]).

Define a linear subspace:

L:={xER™ 29 =11, x3 =21, -+ ,&np =1} C R,

Unconstrained reformulation — Handling constraints

Let 0, be the indicator function of £. We can rewrite (5) as

min {F( ) = f(x) + g(x) + (%) = *Zfz T +9(1‘1)+6£(X)} (6)

xXERMP

Equivalence between (6) and (1)

A stationary point x* of (6) < z7 is a stationary point of (1).
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Derivation of Douglas-Rachford Splitting Scheme for FL

Douglas-Rachford splitting steps for (6)

vyt = xF 4 a(xk — xF),

xk+1 = proxnnf(yk+1)’

=I5 - k k
ETL = prox,,gys,)(@xFtt —yF L),

where 7 > 0 is a given step-size and a € (0, 2] is a relaxation parameter.

)
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Derivation of Douglas-Rachford Splitting Scheme for FL

Douglas-Rachford splitting steps for (6)

vyt = xF 4 a(xk — xF),
xktl .= proxm]f(yk*'l)7 (7)
xk+1 .= proxm](g+5£)(2xk+1 — ykth,

where 7 > 0 is a given step-size and a € (0, 2] is a relaxation parameter.

Application of DR to FL

> Step 1: Decompose x**1 := prox,m]f(yk""l) into xf"' = prox,r, (y k+1)

i € [n].

for all

> Step 2: Introduce 5:2“'1 = 295?"'1 k‘H for all ¢ € [n].

> Step 3: Line 3 of (7) X" ! := prox,,,,(y1.5,) (%" 1) can be rewritten as

. ~k+1
argmin, {g(e1) + g2 i — %E+1)2)

gkl k41
X = ProX,p(g46,) (X ) = .
st. z;==x1, foralli=2 ... n.

Explicitly solve this problem to get a closed-form update for x*+1.

)
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Parallel DR Splitting Scheme for Solving (1)

From a full parallel to randomized block-coordinate DR splitting scheme

The full parallel DR splitting scheme:

k+1
Yi
k-1
Z;
ghtt
1
i‘k+1

jkﬂ»l

v+ a(zk — ok

_ 1 n o L k+1
T n Zi:1 Ly
= PIox,g (ik+1).

The randomized block-coordinate DR splitting scheme:

)

Vi € [n]

= prox,;, (yi ), Vi€ [n]
= 2kt L

Vi € [n]

> Randomly sample a subset Sy, of users in {1,2,--- ,n}.

> Update yk+1 xf+1, and

i ’

)

Lkl
L;

x | Quoc Tran-Dinh, quoctd@email.unc.edu
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Parallel DR Splitting Scheme for Solving (1)

From a full parallel to randomized block-coordinate DR splitting scheme

The full parallel DR splitting scheme:

nyrl = yF+a(@* —ak), Vien]

J:i.Cle = PIOX, (nyrl), Vi € [n]

gl = 2gh M v e [n) (8)
1 e A3 sk

ghtl = Prox, (ik+1).

The randomized block-coordinate DR splitting scheme:

> Randomly sample a subset Sy, of users in {1,2,--- ,n}.

> Update yf+1, xf+1, and ®f+1 for i € Sk, while keeping other users unchanged.
Challenges in analysis of our block-coordinate DR variant

> Three randomized block-coordinate steps yf+1, xf+1, and :f:f+1
quentially.

are updated se-

> Cannot switch prox, ¢ and prox,, as in the convex case.

)

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 15/34




)

Classical Block-Coordinate Fixed-point Scheme

Classical block-coordinate fixed-point scheme
Given yo, iterate
Vi yf otherwise

B _ {myk) if i = iy ©)

where T is a fixed-point mapping, and i; is “randomly sampled” from [n] blocks.
Example: ARock from [Peng et al (2016)] is an instance of this general scheme.

We find that most existing block-coordinate-based methods rely on this principle.
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Classical Block-Coordinate Fixed-point Scheme

Classical block-coordinate fixed-point scheme

Given yo, iterate

Ti(y®) ifi=ipg

yitt = 470 | ©)
v; otherwise

where T is a fixed-point mapping, and iy is “randomly sampled” from [n] blocks.

Example: ARock from [Peng et al (2016)] is an instance of this general scheme.

We find that most existing block-coordinate-based methods rely on this principle.

The Douglas-Rachford fixed-point interpretation
From (7), define the following Douglas-Rachford mapping:

TDR(y) = ProX,,r (y) +oa- (proxnn(g+55) (2 *ProXgy, r (y) - y)) ° (10)

Then, (7) can be written as
y* = Tor(y").
Finally, X1 = PIOXp,p(g46,) (2 “ ProX,,, f (y*) — yk) as the output.
> If we apply the block-coordinate scheme (9) to (16), then we need to compute
full blocks of prox,, ;. for i € [n].

k

> The output is X* in our analysis, not y* as in the scheme (9).
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The Complete FedDR Algorithm

Algorithm 1 (Federated Learning with Randomized DR (FedDR))

1: Initialization:

2. Take 29 € domF. Choose n > 0 and o > 0, and accuracies €;,0 > 0 (i € [n]).
3 Initialize the server with z° := 20 and 9 := 2°.
4 Initialize all users with y? := 20, 20 :~ prox, s, (¥?), and &9 := 220 — /0.

5. For k:=0,---, K do

6  [Active users| Generate a proper realization Sy, C [n] of S.

7. [Communication] Each user i € Sy, receives z* from the server.

8: [Local update] For each user i € S, do: Choose €; ;1 > 0 and update

utt o= yF @ —ah),
xf""l e proxmci(yf"'l)7
:%i.“rl = 2xf+1 - nyrl.
9:  [Communication] Each user i € Sy, sends AgF := iiﬁl — &% back to the server.

10 [Sever aggregation] Aggregate &FT1:= % 4 % Ziesk Ak

11:  [Sever update] Update 2" := prox, , (i’]"’ f 1).
12: End For
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Sampling Scheme and Technical Assumption

Sample scheme for users
> Consider a proper sampling scheme S of [n], which is a random set-valued mapping
with values in 2", the collection of all subsets of [n].

> Let S, be an iid realization of S and F, := 0(So, -+ ,Sk) be the o-algebra
generated by Sp, - - - , Sk-

)
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Sampling Scheme and Technical Assumption

Sample scheme for users

> Consider a proper sampling scheme S of [n], which is a random set-valued mapping
with values in 2", the collection of all subsets of [n].

> Let S, be an iid realization of S and F, := 0(So, -+ ,Sk) be the o-algebra
generated by Sp, - - - , Sk-

Assumption 2

There exist p1,- -+ ,Pn > 0 such that
P(ie8)=pi>0

for all i € [n].
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Main Result 1: Convergence and Communication Complexity

Theorem 2 (Convergence of FedDR)

Suppose that:
> Assumptions 1 and 2 hold.

> Let {(zF,y¥,&F, %)} be generated by the exact variant of Algorithm 1

> The conditions 0 < o < 2 and 0 < n < 2;—; hold.
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Main Result 1: Convergence and Communication Complexity

Theorem 2 (Convergence of FedDR)

Suppose that:
> Assumptions 1 and 2 hold.

> Let {(zF,y¥,&F, %)} be generated by the exact variant of Algorithm 1

> The conditions 0 < o < 2 and 0 < n < 2;—; hold.

Conclusions:
> We have
K
& C[F(z°) — F*]
E[||G, (") |?] <« 222 —— 2 11
w1 2 EllonEhIP] < === (11)
k=0
. __404nL)>(1+L%n%)
where C := g e—attntn 20077 = O
> Let #% be selected uniformly at random from {z°,--- ,z5} as the output of

Algorithm 1. Then, after at most

Ko {C[F(w% F*]J _@ (L)

g2 €2

iterations, we obtain ¥ as an e-stationary point of (1) as in Definition 1.
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Outline

Federated Learning with Asynchronous DR — assyncFedDR

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 20/34



)

Motivation of assyncFedDR

Motivation

> In FL, it is critical to account for system heterogeneity of local users.

> Requiring synchronous aggregation at the end of each communication round may
lead to slow down in training.

> |t is more practical to have asynchronous update from local users.
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Motivation of assyncFedDR

Motivation

> In FL, it is critical to account for system heterogeneity of local users.

> Requiring synchronous aggregation at the end of each communication round may
lead to slow down in training.

> |t is more practical to have asynchronous update from local users.

Main idea of asyncFedDR

. . . _k—dF _
> At each iteration k, each user receives a delay copy = ix of Z¥ from the server
with a delay dfk.

> The active user iy, will update its own local model (y¥,z¥, 2) in an asynchronous
mode without waiting for others to complete.

> Once completing its update, user iy just sends an increment A:f:fk to the server
to update the global model, while others may be still reading.

In our analysis, a transition of iteration from k to k + 1 is triggered whenever a user
completes its update.

)
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The Asynchronous FedDR — asyncFedDR

Algorithm 2 (Asynchronous FedDR (asyncFedDRY))

12

1
2
3
4:
5
6

. Initialization:

Take 20 €domF' and choose n > 0 and a > 0.

Initialize the server with 0 := 20 and z° := 0.

Initialize each user i € [n] with 49 := 20, 20 := prox, s, (¥?), and &9 := 229 —39.
: For k:=0,--- ,K do

Select iy, such that (ig,d*) is a realization of (Ek,cik)

- . . _k—dk . T
[Communication] User i, receives & “ik,a delayed version of z* with delay dfk.
[Local update] User i) updates

k41 _k—dF
yi: = yfk +alz Tk — xfk ,
k+1 ‘_ k+1
z; = proxyg, (yik ),
Lk41 k41 k41
& = 2z, -y
Y LI T k+1 ._ Kk ~k+1 . Ak ..
Other users maintain y; =yl T =z, and &; =27 for i # .
[Communication] User i, sends Afk = Af}:rl - ”fk back to the server.
[Sever aggregation] Aggregate Z*+1 := zF 4 %Afh
[Sever update] Update z"*1 := prox, (ik+l).
: End For
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Joint Probabilistic Model for Users and Delays

Probabilistic model

> Introduce ék = (ik,d’“) as a joint random variable containing the user index
i € [n] and the delay vector d* € D := {0,1,--- ,7}" at iteration k.

> Let £% := (i, d*) be a realization of a random vector.

> Introduce a random vector 50:’“ = (EO,~~~ ,é’“) and its possible values 0% =
(50751’ T 7£k)

> Let Q2 be the sample space of all sequences w := { (i, dk)}kzo.

> Assume that p(£0°F) := P(£0:F = £0:F) > .

)
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Joint Probabilistic Model for Users and Delays

Probabilistic model

> Introduce ék = (ik,d’“) as a joint random variable containing the user index
i € [n] and the delay vector d* € D := {0,1,--- ,7}" at iteration k.

v

Let &% := (i, d*) be a realization of a random vector.

> Introduce a random vector 50:’“ = (EO,~~~ ,é’“) and its possible values 0% =
(50751’ T 7£k)

> Let Q2 be the sample space of all sequences w := { (i, dk)}kzo.

> Assume that p(£0°F) := P(£0:F = £0:F) > .

Assumption 3 (Positive probability for updates and bounded delay)

> Foralli € [n] and w € Q, 3 at least one t € {0,1,--- ,T} with T > 0, such that
D p((id) | € > b ifp(e®*) >0, (12)
deD

for a given p > 0 and any k > 0.

> Assume also that d¥ < v and dfk =0 for all k > 0 and i, iy, € [n].

)
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Technical Parameters for Complexity Bound

272 —n .

> Step 1: Choose 0 < o < & and 0 < 7 < 77 in Algorithm 2, where ¢ := s
given, and & > 0 and 7 > O are respectively computed by

V16—8a—Ta2— .
6—8a—Ta?—a If27’2 Sn’

2L(24o)

_ 1 if2r2 <n, gr
a = an =
% otherwise, K V16-8a—(T+dcticd)a?—a
FLRT(To)a] otherwise.
> Step 2: Introduce the following parameters:
2 2
2(1—a)—(24+a)L“n“—Lan if 272 <n,
p = ann
2 2 2 272y (0 2
n“[2(1—a)—(2+a)L“n“—Lan]—a(l4+n“ L) (27" —n) otherwise.
ann
D = 822(+L2n?)(r242Tnp) + 8n®(1+L%n*+Ta’p)
: 5aTn .

Both p and D are positive.

Remark: When the delay 7 satisfies 7 < \/E, we can use large stepsizes « and 7).
Otherwise, we need to choose smaller stepsizes o and 7.

)
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Main Result 2: Convergence and Communication Complexity

Theorem 3 (Convergence of asyncFedDR)

Suppose that:
> Assumption 1 and 3 hold.
> Let &, 7, p, and D be given in the previous slide, respectively.
> Let {(acf, yf, zF)} be generated by Algorithm 2.

> The conditions o € (0, &) and n € (0,7) hold.

=]
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Main Result 2: Convergence and Communication Complexity

Theorem 3 (Convergence of asyncFedDR)

Suppose that:
> Assumption 1 and 3 hold.

> Let &, 7, p, and D be given in the previous slide, respectively.
> Let {(acf, yf, zF)} be generated by Algorithm 2.

> The conditions o € (0, &) and n € (0,7) hold.
Conclusions:
> Then, the following bound holds:

K A 0 *
1 ior _ C[F@E0) - F¥]
B mE <
7 2 ElIg @) < = (13)
k=0
A~ 2
where C := % > 0 depending on n,L,n, o, T, T, and p.

> Let % be selected uniformly at random from {z°,--- ,z5} as the output of

=7

Algorithm 2. Then, after at most K := O (5 ‘) iterations, ¥
point of (1) as in Definition 1.

K s an e-stationary
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Numerical Examples

]
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Configuration of Experiments

Experiment Configuration

>

>

Our methods: FedDR and asyncFedDR

Competitors: FedAvg, FedProx, and FedPD.

Optimization Models: Neural networks.

Data: Both synthetic and real datasets.

Comparison Metrics: Training loss, training accuracy, and test accuracy.
Parameters: Parameters are tuned to obtain the best performance in all methods.

Local Solvers: Use the same local solver (SGD) for all algorithms.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 27/34



Configuration of Experiments
Experiment Configuration
»> Qur methods: FedDR and asyncFedDR
> Competitors: FedAvg, FedProx, and FedPD.
> Optimization Models: Neural networks.
> Data: Both synthetic and real datasets.
> Comparison Metrics: Training loss, training accuracy, and test accuracy.
> Parameters: Parameters are tuned to obtain the best performance in all methods.

> Local Solvers: Use the same local solver (SGD) for all algorithms.

Implementation

> For synchronous algorithms, we reuse the implementation of FedAvg and FedProx
in [Li et al (2020)] and implement FedDR and FedPD on top of it.

> For asynchronous methods, we implement our algorithms based on the asyn-
chronous framework in DistBelief [Cai (2018)].

> All experiments are run on a Linux-based server with multiple nodes and configu-
ration: 24-core 2.50GHz Intel processors, 30M cache, and 256GB RAM.
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Performance of FedDR and Competitors on Synthetic Datasets

> Compare the algorithms on synthetic dataset with both iid and non-iid settings.

TrainLoss

> Generate 1 iid dataset synthetic-iid and 3 non-iid datasets: synthetic-(r,s)
for (r,s) = {(0,0),(0.5,0.5),(1,1)} as in [Li et al (2020)].

> Update all users without sampling and non-composite model of (1).

synthetic-(0.5,0.5)

TrainAcc

—— FedAvg
-~ FedProx
—&— FedPD

-®- FedDR

0 50 100 150
# Comm. Rounds

0 50 100 150
# Comm. Rounds

0 50 100 150

# Comm. Rounds

Figure: The performance of 4 algorithms on non-iid synthetic datasets without user sampling
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Performance of FedDR and Competitors on Synthetic Datasets
> Compare the algorithms on synthetic dataset with both iid and non-iid settings.

> Generate 1 iid dataset synthetic-iid and 3 non-iid datasets: synthetic-(r,s)
for (r,s) = {(0,0),(0.5,0.5),(1,1)} as in [Li et al (2020)].
> Update all users without sampling and non-composite model of (1).

synthetic-(0.5,0.5)

08
a PN TV
0.6 W LU \"i\ﬂ
@ < o
8
g g 2
s G 04 7 o.
= = = —4— FedAvg
m- FedProx
02 02 FedPD
-®- FedDR
0 50 100 150 0 50 100 150 0 50 100 150

# Comm. Rounds # Comm. Rounds # Comm. Rounds

Figure: The performance of 4 algorithms on non-iid synthetic datasets without user sampling

Observation
> FedDR and FedPD are comparable in these datasets.
> They both outperform FedProx and FedAvg.
> FedProx works better than FedAvg which was observed before.

> Comparing on more datasets, our algorithm overall performs better than others.

x | Quoc Tran-Dinh, quoctd@email.unc.edu Slide 28/34




]

=)

Performance of FedDR and Competitors on Synthetic Datasets

> Sample of 10 users out of 30 to update at each communication round for FedAvg,
FedProx, and FedDR.

> Use all users for FedPD.

> The evaluation metric is the number of bytes communicated between users and
server at each communication round.

synthetic-(0.5,0.5)

—4— FedAvg
~m- FedProx
—&— FedPD
-®- FedDR
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
# Bytes 1e6 # Bytes 1e6 # Bytes 1e6

Figure: The performance of 4 algorithms with user sampling scheme on non-iid synthetic datasets.
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Performance of FedDR and Competitors on Synthetic Datasets

> Sample of 10 users out of 30 to update at each communication round for FedAvg,
FedProx, and FedDR.

> Use all users for FedPD.

> The evaluation metric is the number of bytes communicated between users and
server at each communication round.
synthetic-(0.5,0.5)

PRIy LIEXY SEWNTY CT oty et

TrainLoss

—4— FedAvg
m- FedProx
021 —&— FedPD
-®- FedDR
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
# Bytes 1e6 # Bytes 1e6 # Bytes 1e6

Figure: The performance of 4 algorithms with user sampling scheme on non-iid synthetic datasets.

Observation

> FedDR performs well compared to others.

> FedProx using user sampling scheme performs better and is slightly behind FedPD.

> FedDR, FedPD, and FedProx outperform FedAvg.
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Performance of FedDR and Competitors on FEMNIST Datasets
» FEMNIST is an extended version of MNIST.

> It has a total of 62 classes (10 digits, 26 upper-case and 26 lower-case letters) with
over 800,000 samples.

> There are total of 200 users and we sample 50 users to update FedAvg, FedProx,
and FedDR, while we use all users to perform update for FedPD.

FEMNIST

e ——— @~ =@

Pl iy
o~

TrainAcc

—4— FedAvg
~m- FedProx
—4— FedPD
-@- FedDR

TrainLoss

4 8 4 8 4
# Bytes 1le8 # Bytes le8 # Bytes le8

Figure: The performance of 4 algorithms on the FEMNIST dataset.
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Performance of FedDR and Competitors on FEMNIST Datasets

> FEMNIST is an extended version of MNIST.
> It has a total of 62 classes (10 digits, 26 upper-case and 26 lower-case letters) with
over 800,000 samples.

> There are total of 200 users and we sample 50 users to update FedAvg, FedProx,
and FedDR, while we use all users to perform update for FedPD.

FEMNIST
P @
- 0.8 S8 -
“ o 0.6
2 9 Y
2 H 3
s s 204
= = = —4— FedAvg
0.2 ~m- FedProx
—4— FedPD
0o -@- FedDR
4 4 0 2 4
# Bytes le8 # Bytes le8 # Bytes 1le8

Figure: The performance of 4 algorithms on the FEMNIST dataset.

Observation
> FedDR can achieve lower loss and higher training accuracy than other algorithms.
> FedPD can reach the same test accuracy as ours at the end.

> Overall, FedDR seems working better than other algorithms in this test.
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The Composite Case with /1-Norm Regularizer

> Choose g(x) := 0.01 ||z[|; and different inexactness levels ¢; ;.
> Run Algorithm 1 on the FEMNIST dataset.

FEMNIST, g =||-||1
3.0 10 0.9
25
0.9 0.8
2.0 o
¥ y
215 Zos 207
s g &
10
0.7 0.6
05
0.0 0.6 05 .
[ 50 100 150 200 [ 50 100 150 200 [ 50 100 150 200
# Comm. Rounds # Comm. Rounds # Comm. Rounds
FEMNIST, g=||- ||
5 1.00 85
4 0.95 0.80
45 g 0% 075
s < <
z € 0.85 3 0.70 epoch=5
3 s g
=2 = = —— epoch =10
0.80 0.65 — epoch=15
1 075 0.60 —— epoch =20
—— epoch =30
0 0.70 0.55 A +
0 50 100 150 200 [ 50 100 150 200 [ 50 100 150 200
# Comm. Rounds # Comm. Rounds. # Comm. Rounds
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The Composite Case with /1-Norm Regularizer

> Choose g(x) := 0.01 ||z[|; and different inexactness levels ¢; ;.
> Run Algorithm 1 on the FEMNIST dataset.

FEMNIST, g = ||,
3.0 1.0 0.9
25
0.9 0.8
2.0 o .
g g g
215 Zos 207
g £ ©
10
0.7 0.6
05
0.0 0.6 0.5 . |
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
# Comm. Rounds # Comm. Rounds # Comm. Rounds
FEMNIST, g =1 -1
5 1.00 0.85
4 0.95 0.80
" 0.90 0.75
w3 9 v
s < < -
£ £0.85 12 0.70 epoch=5
] © 8
E2 = = ~——— epoch =10
0.80 0.65 — epoch=15
1 0.75 0.60 —— epoch =20
—— epoch =30
0 0.70 0.55 . '
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
# Comm. Rounds # Comm. Rounds. # Comm. Rounds

Observation
> Algorithm 1 works best when local learning rate is 0.003.

> It also performs better when we decrease ¢; j, by increasing the number of epochs.
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Performance of asyncFedDR over FedDR
> [llustrate the advantages of asyncFedDR over FedDR.
> Use MNIST dataset with a sample of 20 users per round.

> Since the computing nodes have identical configurations, we add variable delay to
users to simulate a computing power discrepancy.

MNIST

0.45

TrainLoss
o
w
8
TrainAcc
TestAcc

°
®
&

0.15

08411 —4+— FedDR
g i m- asyncFedDR
0.00 0.80 0.80 . . '
0 1500 3000 4500 6000 0 1500 3000 4500 6000 0 1500 3000 4500 6000
Time in seconds Time in seconds Time in seconds

Figure: The performance of FedDR and asyncFedDR on the MNIST dataset.
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Performance of asyncFedDR over FedDR
> [llustrate the advantages of asyncFedDR over FedDR.
> Use MNIST dataset with a sample of 20 users per round.

> Since the computing nodes have identical configurations, we add variable delay to
users to simulate a computing power discrepancy.

MNIST

0.45

TrainLoss
o
w
8
TrainAcc
TestAcc
°
®
&

0.15 |
08411 —4— FedDR

| m- asyncFedDR

.80

0.80 o ' ' '
0 1500 3000 4500 6000 0 1500 3000 4500 6000 0 1500 3000 4500 6000

Time in seconds Time in seconds Time in seconds

Figure: The performance of FedDR and asyncFedDR on the MNIST dataset.

Observation

> asyncFedDR can achieve better performance than FedDR in terms of training time.

> This illustrate the advantage of asynchronous update in heterogeneous systems.
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Conclusions and Future Research
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Conclusions and Future Research

Conclusions
> Develop two new algorithms for FL using randomized DR splitting idea.

> The new algorithms have several advantages: subset of users per round, asyn-
chronous implementation, inexact computation, composite form, etc.

> Prove the best-known complexity for communication under standard assumptions.

> Numerical experiments overall show the advantages over their competitors.
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Conclusions and Future Research

Conclusions
> Develop two new algorithms for FL using randomized DR splitting idea.

> The new algorithms have several advantages: subset of users per round, asyn-
chronous implementation, inexact computation, composite form, etc.

> Prove the best-known complexity for communication under standard assumptions.

> Numerical experiments overall show the advantages over their competitors.

Future research directions
> Focus on the convex setting and apply compression to improve communication.
> Study accelerated methods and adaptive variants.

> Incorporate second-order information to develop second-order methods.
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Conclusions and Future Research

Conclusions
> Develop two new algorithms for FL using randomized DR splitting idea.

> The new algorithms have several advantages: subset of users per round, asyn-
chronous implementation, inexact computation, composite form, etc.

> Prove the best-known complexity for communication under standard assumptions.

> Numerical experiments overall show the advantages over their competitors.

Future research directions
> Focus on the convex setting and apply compression to improve communication.
> Study accelerated methods and adaptive variants.

> Incorporate second-order information to develop second-order methods.

Thank you very much for your
attention!

)
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