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Alternating projections invented by Hermann Schwarz in 1869

H. Schwarz. Über einen Grenzübergang
durch alternirendes Verfahren.

Vierteljahresschrift der Naturforschenden
Gesellschaft in Zürich, 15(1870), 272–
286.

Rigorous solution to Dirichlet problem 1870 - 1901

First domain decomposition method ever

Modern re-interpretation as MAP by P.-L. Lions 1978, 1988-89.
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Method erroneously attributed to J. von Neumann :

S.L. Sobolev. L’algorithme de Schwarz dans la théorie de l’élasticité.
Comptes Rendus de l’Académie des Sciences de l’URSS, IV :243–246,
1936.

R. Courant, D. Hilbert. Verfahren der mathematischen Physik, Band 2
1930s.

J. von Neumann. Functional Operators II. Lecture Notes 1950

Presents no citations

Claims that original version in 1933 has it already



Convex Alternating Projections

Schwarz, Sobolev, v. Neumann : Subspaces

W. Cheney, A.A. Goldstein. Proximity maps for convex sets. 1959.

L.M. Bregman : Weak convergence for convex sets in Hilbert space.
1965

H.H. Bauschke : Convex case essentially settled 1993.

H. Hundal. Norm convergence may fail, 2002.
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Given : closed sets A,B in Rn

A ∩ B 6= ∅

Want : solution x of feasibility problem

x ∈ A ∩ B

Method :

b1 ∈ PB(a1), a2 ∈ PA(b1), b2 ∈ PB(a2), a3 ∈ PA(b2), . . .

or

a1
PB−→ b1

PA−→ a2
PB−→ b2

PA−→ . . .



Given : closed sets A,B in Rn

A ∩ B = ∅

Want : generalized solution

a∗ ∈ PA(b∗), b∗ ∈ PB(a∗), ‖a∗ − b∗‖ = dist(A,B)

Expect : convergence to gap

ak → a∗, bk → b∗



Non-convex Alternating Projections :

Are there applications ?

Conditions for local convergence ?

Conditions for global convergence ?

May convergence fail ?



Are there applications ?



Non-convex Alternating Projections used in :

Color plane interpolation (de-mosaicking)

De-noising of time-series (Cadzow’s basic algorithm, Singular
Spectrum Analysis)

Inverse eigenvalue problems

Pole placement (control)

Synthesis of low-order feedback controllers (control)

Road profile design (western Canada)

Recovery of lost image blocks in JPEG and MPEG images

Sparse affine feasibility (for error correction in linear codes)

Packings in Grassmannian manifolds (wireless communication)



Brain signal localization

sudokus

Nearest correlation matrix

Robust matrix completion

Bi-proportional matrix scaling (matrix ranking - statistics)

EM-algorithm for Gaussian laws.

Phase retrieval
– optics
– X-ray crystrallography
– astronomy
– speech proccessing
– computational biology
– blind deconvolution



Failure of convergence



Proposition
Let A,B be closed. Suppose the sequence of alternating projections ak , bk
is bounded and satisfies ak − bk → 0, ak − ak−1 → 0. Then the set of
accumulation points of ak , bk is either singleton or a compact continuum.

Proof. By A. Ostrowski’s Theorem. �

Example

(Bauschke, Noll 2013). The case of a non-trivial compact continuum
may indeed occur.



A = {1st, 3rd, 5th, 7th, . . .} ∪ C , B = {2nd, 4th, 6th, . . .} ∪ C .

A ∩ B = C = {z : |z | = 1}



B = {(cos t, sin t, s) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 2π}
A = {(cos t(1 + e−t), sin t(1 + e−t), e−2t) : 0 ≤ t ≤ ∞}

Bauschke, Noll (2014, Archiv der Mathematik)



Bauschke, Noll (2014 unpublished)

Koch Snowflake

Proposition
(Bauschke, Noll 2014 unpublished). Let F ⊂ Rn be compact
connected and locally connected and contained in a
(n − 1)-dimensional C 1 manifold (∼ a Peano set). Then there exist
A,B ⊂ Rn closed bounded with A ∩ B = F such that every
alternating sequence ak , bk has all points of F as accumulation
points.



Convergence with transversality



Theorem

(A.S. Lewis, J. Malick 2008). Let A,B be C 2-manifolds in Rn

intersecting transversally at x∗ ∈ A ∩ B . Then there exists a
neighborhood U of x∗ such that every alternating sequence ak , bk
which enters U converges to some a∗ ∈ A ∩ B with R-linear speed.

b x∗

A

B

Transversality

TA(x
∗) + TB(x

∗) = R
n



Theorem
(A.S. Lewis, R. Luke, J. Malick 2009). Suppose

1 There exists x∗ ∈ A ∩ B such that NA(x∗) ∩ −NB(x∗) = {0}
(replaces transversality).

2 B is super-regular (replaces convexity).

Then there exists a neighborhood U of x∗ such that every alternating
sequence ak , bk which enters U converges to some a∗ ∈ A ∩ B with
R-linear speed.

A

B

NB(x
∗)

NA(x
∗)

b

NB(x
∗)

NA(x
∗)

b



A.S. Lewis, J. Malick (2008). Alternating projections on manifolds.
Math. Oper. Res. 33 :2008, 216–234.

A.S. Lewis, R. Luke, J. Malick (2009). Local linear convergence for
alternating and averaged non-convex projections.
Foundations Comp. Math. 9 :2009, 485–513.

Transversality too restrictive. Two non-parallel lines in R2 intersect
transversally, but no longer in R3

Same for NA(x∗) ∩ −NB(x∗) ⊂ {0}.

Need an additional regularity hypothesis called super-regularity.



convex prox-regular super-regular



convex prox-regular super-regular



H.H. Bauschke, D.R. Luke, H.M. Phan, X. Wang (2013). Restricted
normal cones and the method of alternating projections.
Set-Valued Var. Anal. 21 :2013, 431 – 473.

Use restricted normal cones instead :

NB
A (x∗) = normals to A at x∗ pointing into B

Transversality at x∗ becomes :

NB
A (x∗) ∩ −NA

B (x∗) ⊂ {0}

Works better, but still not good enough.



Definition
(Noll, Rondepierre 2013). Transversality means α stays away from
0◦ in neighborhood of x∗.

b

b

b

b

α

a+

b

b+

x∗

Could say : A,B intersect at an angle at x∗



What happens when the intersection is tangentiel ?

• Is failure of convergence due to the lack of regularity ?

• or is it because the intersection is (too) tangential ?

Remember convex case :
Linear convergence when intersection at an angle.
Slow convergence when intersection tangential.



.

α ≈ 180◦ (transversal) intersection too tangential

Regularity missing Regularity OK



How to deal with tangential intersection ?



Noll, Rondepierre 2013 :
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Tangential intersection :
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Tangential intersection :

α

a+

b
b+

x∗
r

α = ∠(b − a+, b+ − a+) and r = ‖b+ − a+‖
both shrink to 0 as we approach x∗



Definition
(Noll, Rondepierre 2013). The sets A,B satisfy the angle condition at
x∗ ∈ A ∩ B if there exists γ > 0, ω ∈ [0, 2) and a neighborhood U of x∗

such that for every building block b
PA−→ a+

PB−→ b+ in U and
r = ‖b+ − a+‖ we have

sin2 α

rω
≥ γ

Tangential intersection means α and r both shrink to 0.

Angle condition means they shrink in controlled fashion. Angle does
not shrink too fast.

Special case ω = 0 gives back transversality (angle does not shrink,
but distance r does).



Definition
(Noll 2020). A gap (A∗,B∗, r∗) satisfies the angle condition with
constant γ > 0 and exponent ω ∈ [0, 2) if there exist neighborhoods U of
B∗ and V of A∗ such that, for every building block b → a+ → b+ with
r = ‖a+ − b+‖ > r∗ and a+ ∈ V , b+ ∈ U, the estimate

1− cosα

(r − r∗)ω
≥ γ

holds for the angle α = ∠(b − a+, b+ − a+).

What is a gap between A,B ?

Definition
We call (A∗,B∗, r∗) a gap if for every a∗ ∈ A∗ there exists
b∗ ∈ B∗ ∩ PB(a∗) with ‖a∗ − b∗‖ = r∗, and vice versa for every b∗ ∈ B∗

there exists a∗ ∈ A∗ ∩ PA(b∗) with ‖a∗ − b∗‖ = r∗.



Angle condition extends to gaps :

α

b

a+ a∗

b∗b+

r r∗

r = ‖b+ − a+‖

1 − cosα

(r − r∗)ω
≥ γ or

sinα

(r − r∗)ω/2
≥ γ′



Theorem
(Noll, Rondepierre 2013). Suppose there exists x∗ ∈ A ∩ B such
that

1 A,B satisfy the ω-angle condition at x∗.
2 B is ω/2-Hölder regular at x∗ with respect to A.

Then there exists a neighborhood U of x∗ such that every
alternating sequence ak , bk which enters U converges to some point
a∗ ∈ A ∩ B . The speed of convergence is

‖ak − a∗‖ = O
(
k−

2−ω
2ω

)
, ‖bk − a∗‖ = O

(
k−

2−ω
2ω

)

Special case ω = 0 gives R-linear convergence



Theorem
(Noll, Rondepierre 2013). Suppose A,B are sub-analytic sets and
x∗ ∈ A ∩ B. Then there exists ω ∈ [0, 2) such that A,B intersect with
ω-angle condition at x∗.

Semi-analytic set :

A =
N⋃
i=1

M⋂
j=1

{x ∈ Rn : φij(x) = 0, ψij(x) > 0}

with real-analytic functions φij , ψij .

A sub-analytic ⇐⇒ ∀a ∈ A ∃r > 0 ∃A bounded semi-analytic
A ∩ B(a, r) = {x : (x , y) ∈ A}



Proposition

(Noll, Rondepierre 2013, Noll 2020). Suppose f = iA + 1
2d

2
B satisfies the

Łojasiewicz inequality with exponent θ ∈ [ 1
2 , 1). Then A,B satisfy the

ω-angle condition with ω = 4θ − 2.

ω ∈ [0, 2)

ω = 0 transversality

Gets weaker as ω increases.

For ω ≥ 2 too weak.

Works also with gaps.



Corollary

(Noll, Rondepierre 2013). Rates for r∗ = 0. Suppose f = iA + 1
2d

2
B has

Łojasiawicz exponent θ and A,B are (2θ − 1)-Hölder regular.

For θ ∈ ( 1
2 , 1) convergence rate is ‖bk − b∗‖ = O(k−

1−θ
2θ−1 ).

For θ = 1
2 speed is R-linear.

Corollary

(Noll 2020). Rates for r∗ > 0. Suppose f = iA + 1
2d

2
B has Łojasiewicz

exponent θ and the gap is (2θ − 1)-Hölder regular.

For θ ∈ ( 3
4 , 1) convergence rate is ‖bk − b∗‖ = O(k−

1−θ
2θ−3/2 ).

For θ = 3
4 convergence is R-linear.

For θ ∈ ( 1
2 ,

3
4 ) convergence is R-linear with rate 1

2 + ε for any ε > 0.

For θ = 1
2 convergence is finite.
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How about Hölder regularity ?
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here super-regularity fails
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Consequence : Our notion of Hölder regularity still in business for
packman. Can enter into corners.

Super-regular : Aperture increases as distance decreases.

cosβ = f (δ)→ 0 as δ → 0, δ = dist(b+, b∗)

σ-Hölder regular (σ ∈ [0, 1)) : Aperture increase quantified.

cosβ =
√
c · rσ, r = ‖a+ − b+‖

What makes the difference :
• relate to r not δ ;
• require only for b ∈ B(a+, (1 + c)r)

For σ = 0 weaker than existing notions of regularity.



For gaps :

cosβ =
√
c(r − r∗)σ ;

But still for b ∈ B(a+, (1 + c)r).

Proposition
Slowly shrinking reach implies Hölder regularity. In particular, for r∗ = 0
prox-regularity implies σ-Hölder regularity for all σ ∈ [0, 1) and arbitrarily
small c > 0. For r∗ > 0 need reach ≥ r∗.



Vanishing reach :

y = |x |3/2

Curvature radius Rx ∼ 4
3 |x |

1/2



Corollary

(Noll, Rondepierre 2013). Suppose A,B are closed sub-analytic, and B
is Hölder regular with respect to A. Suppose the alternating sequence
ak , bk is bounded and satisfies ak − bk → 0. Then there exists ω ∈ [0, 2)
such that it converges to a point a∗ ∈ A ∩ B with speed

‖ak − a∗‖ = O
(
k−

2−ω
2ω

)
, ‖bk − a∗‖ = O

(
k−

2−ω
2ω

)
Corollary

(Noll 2020). Suppose A,B are closed sub-analytic, and B is prox-regular.
Let ak , bk be a bounded alternating sequence with gap r∗ < reach(B∗).
Then ‖bk − b∗‖ = O(k−ρ) for some ρ > 0.



Open problems :

Prove convergence for sub-analytic A,B without regularity
hypothesis.

Construct A,B bounded prox-regular, A ∩ B 6= ∅, ak − ak−1 → 0,
ak − bk → 0, such that A∗,B∗ are not singleton. (One of the sets
must fail to be sub-analytic).

Find case where bk → b∗ but ak fail to
converge, possibly with ak − ak−1 → 0.
Then A must have a crater.



Application : Phase retrieval



Phase retrieval
Reconstruct unknown signal x(t), t = 0, . . . ,N − 1 from known
Fourier magnitude m(f ) = |x̂(f )|, f = 0, . . . ,N − 1.

Retrieve unknown phase x̂(f )/|x̂(f )|, hence the name.
Underdetermined and ill-posed. Solution set leaves ambiguity :

B = {y ∈ CN : |ŷ(f )| = m(f ), f = 0, . . . ,N − 1}



100 200 300 400 500 600 700 800

50

100

150

200

250

300

350

400

450

500

550

100 200 300 400 500 600 700 800

50

100

150

200

250

300

350

400

450

500

550

rte
iφt rwe

iφw

rte
iφw rwe

iφt

100 200 300 400 500 600 700 800

50

100

150

200

250

300

350

400

450

500

550

100 200 300 400 500 600 700 800

50

100

150

200

250

300

350

400

450

500

550



100 200 300 400 500 600 700 800

50

100

150

200

250

300

350

400

450

500

550

100 200 300 400 500 600 700 800

50

100

150

200

250

300

350

400

450

500

550

rte
iφt rwe

iφw

rte
iφw rwe

iφt

100 200 300 400 500 600 700 800

50

100

150

200

250

300

350

400

450

500

550

100 200 300 400 500 600 700 800

50

100

150

200

250

300

350

400

450

500

550



Consequences :

Phase of Fourier transform x̂/|x̂ | gives the essential information
about x .

Magnitude of Fourier transform |x̂ | does not help to localize image
x .

Example : shift in time domain changes phase but not magnitude.

Hence phase retrieval must be difficult. And it is !



Some history



Max von Laue (1912) proposes to use X-rays to visualise crystal
structure via diffraction.

David Sayre (1952) argues non-periodic x could in principle also be
retrieved from |x̂ | if m(f ) = |x̂(f )| were sampled twice the Nyquist
rate in every dimension.

R.W. Gerchberg - O.W. Saxton (1972). First algorithm.

J. Miao, P. Charalambous, J. Kirz, D. Sayre, Extending the
methodology of X-ray crystallography to imaging micrometre-sized
non-crystalline specimens, Nature 400, 342-44, 1999.

2017. Individual proteins and nano-crystals can be visualized by CDI.

Coherent Diffraction Imaging : 10nm = 10−8m (organic)
2 nm = 2 · 10−9m (inorganic)

Fluorescence Microscopy : 1µm = 10−6m (organic)
Electron microscopy : 0.1 nm = 10−10m (inorganic)



David Sayre
(1924–2012)

Crystallographer who pioneered methods of X-ray imaging and modern computing.

David Sayre, who died on 23 February, 
was a pioneer in crystallography and 
diffraction imaging, a visionary in 

X-ray microscopy and an architect of modern 
computing. A superb scientist, deep thinker 
and wonderful mentor, he could have 
built a scientific empire. But that was 
not his style. He was driven by the 
desire to do pure and original science. 

Sayre was born on 2 March 1924 in 
New York. His father was an organic 
chemist whose ancestors helped to 
found the town of Southampton, 
New York, in the sixteenth century. 
His mother was the daughter of  
Jewish immigrants. Sayre was edu-
cated at Yale University in New Haven, 
Connecticut, graduating in 1943 at the 
age of 19 with a bachelor’s degree in 
physics. The Second World War was 
at its height, so Sayre worked on radar 
at the Radiation Laboratory at the  
Massachusetts Institute of Technology 
in Cambridge.

In 1946, guessing biology would be 
the next exciting field, Sayre became a 
graduate student in biology at the Uni-
versity of Pennsylvania in Philadelphia  
and then at Harvard University in  
Cambridge. He was not initially inter-
ested in what he was learning, but in 
1947 Sayre came across an article about 
X-ray crystallography that changed his 
life. He joined Raymond Pepinsky’s 
crystallography laboratory at Auburn 
University in Alabama, where he used 
a mathematical operation known as the 
Fourier transform to analyse the structures  
of crystals probed with X-ray beams. 

That  year,  Sayre married Anne 
Colquhoun, a fiction writer. She took a 
teaching position at the Tuskegee Institute, 
but her involvement in the school, which 
enrolled black students, was controversial  
in the Deep South at that time, and 
the Sayres soon left. They moved to Oxford, 
UK, where Sayre completed his PhD in the 
lab of Dorothy Hodgkin in 1951. 

Sayre produced his most profound papers 
during this period, solving the ‘phase 
problem’ in crystallography — the loss of 
phase information in the measurement of 
diffraction intensity. In 1952, he proposed 
atomicity — the fact that atoms are small and 
discrete points relative to the space between 
them — as a constraint for determining the 
phases of crystals of small molecules, giving 

rise to what is now called Sayre’s equation. 
Atomicity is the key concept behind the 
direct methods used for crystallography 
today, although Sayre did not share the 
1985 chemistry Nobel prize awarded for 

it. In 1952, Sayre also realized that, even 
in the absence of regular crystal structure, 
information could be gleaned from the 
fine sampling of diffraction patterns. 

Sayre saw early on that solving complex 
crystal structures would require substantial 
computational resources. In 1956 he joined 
IBM’s Watson Research Center in New York, 
and eventually became assistant manager  
of the team that wrote the original 
FORTRAN compiler. He became corporate 
director of programming, and later head of 
the IBM programming research group. In 
1969, he and his team proved the efficiency 
of virtual memory in computing. 

In 1972–73, Sayre took a sabbatical, 
returning to Hodgkin’s lab and to crystal-
lography. It was during this time that one of 
us (J.K.) met the Sayres, forming a lasting 
friendship and collaboration. Anne Sayre 
also wrote the influential book Rosalind 

Franklin and DNA, about the outstanding 
crystallographer and Sayre family friend 
who had died of cancer at an early age.

After returning to IBM, Sayre became 
interested in X-ray microscopy. His 1971 idea 

of how to fabricate Fresnel zone plates 
for focusing X-rays became a reality 
through the use of IBM’s nanofabrica-
tion technology and with the advent 
of synchrotron radiation sources such 
as the National Synchrotron Light 
Source at Brookhaven National Labo-
ratory in Upton, New York. X-ray 
microscopy based on zone plates is now 
used in synchrotron-radiation facilities  
worldwide. 

Around 1990, Anne developed 
scleroderma, a debilitating disease, 
and David retired from work to care for 
her. But he continued working to real-
ize his 1952 dream: the reconstruction 
of molecular structures without the use 
of crystals. The idea came to fruition  
almost 50 years later, with the publica-
tion in 1999 of the first reconstruction 
of a non-crystalline model object from 
its diffraction pattern (which was J.M.’s 
PhD project). This paper established 
coherent diffraction imaging (CDI), 
also called lensless imaging or diffrac-
tion microscopy, as the most promising 
form of  high-resolution X-ray imaging. 
CDI is now one of the fastest-growing 
fields in X-ray science. 

Anne died in 1998, and in the last 
decade of his life David suffered from 

Parkinson’s disease. But he continued to 
participate in research and to offer advice. A 
researcher with exceptional intuition, David 
lived for science. His passing is a huge loss for 
all of us. ■

Janos Kirz is distinguished professor 
emeritus at Stony Brook University, New 
York, and scientific adviser for the Advanced 
Light Source, Lawrence Berkeley National 
Laboratory, Berkeley, California 94720, 
USA. He was a collaborator and friend of 
David for nearly 40 years. Jianwei Miao is a 
professor in the Department of Physics and 
Astronomy and the California NanoSystems 
Institute, University of California, Los 
Angeles, California 90095, USA. He worked 
with David on coherent diffraction imaging 
beginning in 1996, first as a student, then as a 
collaborator and friend.  
e-mail: miao@physics.ucla.edu
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Max von Laue
(photo 1929)

David Sayre
(photo 1972)

W. O. Saxton
(photo 2012)



Gerchberg-Saxton error reduction (1972)

1 Given current estimate x compute x̂ and correct Fourier

magnitude ŷ(f ) := m(f )
x̂(f )

|x̂(f )|
.

2 Take inverse Fourier transform y of ŷ , and correct physical
domain constraint by putting x+ = PA(y)

3 Replace x by x+ and loop on.

Add prior information x ∈ A (= prior or pattern)

y ∈ B (= possible phase retrievals)

Fourier magnitude correction y = PB(x). Physical domain
correction x = PA(y).

=⇒ No convergence proof since 1972. We gave the first in 2013.



Challenge : not enough samples to retrieve phase y∗ ∈ B

(Unique solution). Ideally pattern A such that A ∩ B = {y∗}, i.e.,
pattern removes ambiguity.

(Converge to particular solution). If not possible want at least
xk ∈ A, yk ∈ B to converge to x∗ = y∗ ∈ A ∩ B which has pattern
and is phase retrieval.

(Unique generalized solution). In case of noise : Want pattern A to
single out gap ({x∗}, {y∗}, r∗) to determine phase retrieval y∗.

(Converge to generalized solution). Due to noise : accept
xk → x∗ ∈ A, yk → y∗ ∈ B with PA(y∗) = x∗, PB(x∗) = y∗. That
is, x∗ with that pattern has phase retrieval y∗, and among elements
with pattern x∗ is closest to y∗.



Typical priors or pattern x ∈ A

Historically first instance : 2nd Fourier plane

A = {x : |x(t)| = m̃(t), t = 0, . . . ,N − 1}

Localization in physical domain (known support)

A = {x : x(t) = 0 for t 6∈ S}

Sparsity n� N

A = {x : x(t) 6= 0 for at most n of the x(t)}

Sparse phase n� N

A = {x : arg(x̂(f )) 6= 0 for at most n frequencies f }



Theorem
(Noll, Rondepierre 2013). Let the phase retrieval problem have an exact
solution x∗ ∈ A ∩ B. Suppose the physical domain constraint is
represented by a sub-analytic set A. Then Gerchberg-Saxton error
reduction converges in a neighborhood of x∗ with speed of convergence
O
(
k−

2−ω
2ω

)
for some ω ∈ (0, 2).

Proof. Equivalent to non-convex alternating projections between A and :

B = {y ∈ CN : |ŷ(f )| = m(f ) for f = 0, . . . ,N − 1}

B is sub-analytic and prox-regular. �



Definition
The physical domain prior set A allows a guess better than 0 if there
exists x0 ∈ A with dist(x0,B) < ‖m‖ = dist(0,B).

Theorem
(Noll, 2020). Suppose A is closed sub-analytic and allows a guess x0 ∈ A
better that 0. If Gerchberg-Saxton xk ∈ A, yk ∈ B is started from that
guess, then yk → y∗ ∈ B with speed ‖yk − y∗‖ = O(k−ρ) for some
ρ > 0. That is, there is a unique phase retrieval y∗, and all accumulation
points x∗ ∈ A of the xk admit the same y∗ as their phase retrieval.

Proof. The reach of B is ‖m‖. Hence started from x0 iterates stay within
reach of B. �



Historically first case. Phase measurements in second Fourier plane
(Gerchberg-Saxton 1972). (Ptychography).

B = {y ∈ CN : |ŷ(f )| = m(f )}, A = {x ∈ CN : |x(t)| = m̃(t)}

‖m‖ = ‖m̃‖

Theorem
(Noll 2020). Suppose there exists an initial guess better than 0. If started
from that guess, Gerchberg-Saxton converges xk → x∗ ∈ A, yk → y∗ ∈ B
with speed ‖xk − x∗‖ = O(k−ρ), ‖yk − y∗‖ = O(k−ρ) for some ρ > 0,
and the limits give generalized solution

|x∗| = m̃, |ŷ∗| = m, ŷ∗ = m · x̂∗

|x̂∗|
, x∗ = m̃ · y∗

|y∗|



Sparsity as prior. Fix n� N.

B = {y ∈ CN : |ŷ(f )| = m(f ), f = 0, . . . ,N − 1}

A = {x ∈ CN : at most n of the x(t) are non-zero}

Projection x ∈ PA(y) :

|y(t0)| ≤ |y(t1)| ≤ · · · ≤ |y(tN−1)| (permutation of 0, . . . ,N − 1)

Put

x(t0) = 0, . . . , x(tN−n−1) = 0︸ ︷︷ ︸
zero the first N − n

, x(tN−n) = y(tN−n), . . . , x(tN−1) = y(tN−1)︸ ︷︷ ︸
keep n largest

Possible ambiguity if
|y(tN−n−s)| = · · · = |y(tN−n−1)| = · · · = |y(tN−n−1+r )|



Theorem
(Noll 2020). Let xk , yk be the Gerchberg-Saxton sequence for the sparsity
prior started from a guess better than 0. Then yk → y∗ with speed
‖yk − y∗‖ = O(k−ρ) for some ρ > 0. The xk admit a finite set of
accumulation points, all having y∗ as their phase retrieval. If
xk − xk+1 → 0, then the xk converge to a unique sparse prior with that
same speed.

Proof. Sparsity set A is sub-analytic. �



Fourier phase and magnitude
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Ideal image x0 is PI-image enlarged to size 1024× 1024 by
0-padding.
0 is black, 256 is white.
Initial guess is blurred and noisy version of the PI-image which
is then rotated 90◦.
Fourier magnitude m = |x̂0| is known exactly.
B = {y ∈ C1024×1024 : |ŷ(f )| = m(f ) for all frequencies f }.
A = {x ∈ C1024×1024 : x(t) = 0 for all pixels t not in mask}.
Mask is gray region around the PI-symbol. Prior assumption is
that values outside that mask equal 0.
MAP slow convergence.



Convergence for cactus sets and counterexamples

H.H. Bauschke, D. Noll (2013). On cluster points of alternating
projections. Serdica Math. J. 39 (2013), 355-364.

H.H. Bauschke, D. Noll (2014). On the local convergence of the
Douglas–Rachford algorithm. Archiv der Mathematik 102, 589 – 600.

Counterexamples for Gerchberg-Saxton, Fienup variants

D. Noll (2020). Alternating projections with applications to
Gerchberg-Saxton error reduction. SVVA.



Convergence for non-convex alternating projections

A.S. Lewis, J. Malick (2008). Alternating projections on manifolds.
Math. Oper. Res.

A.S. Lewis, R. Luke, J. Malick (2009). Local linear convergence for
alternating and averaged non-convex projections.
Foundations Comp. Math.

H.H. Bauschke, D.R. Luke, H.M. Phan, X. Wang (2013). Restricted
normal cones and the method of alternating projections. SVVA.

D. Noll, A. Rondepierre (2013). On local convergence of the method of
alternating projections. Foundations of Comp. Math. 2015

Z. Zhu, X. Li (2018). Convergence analysis of alternating projection
method for nonconvex sets. arXiv 2019.

D. Noll (2020). Alternating projections with applications to
Gerchberg-Saxton error reduction. SVVA 2021.



Łojasiewicz inequality

J. Bolte, A. Daniilidis, A.S. Lewis. The Łojasiewicz inequality for
nonsmooth subanalytic functions with applications to subgradient
dynamical systems. SIAM J. Opt. 17(4) :2007, 1205-1223.

H. Attouch, J. Bolte, P. Redont, A. Soubeyran. Proximal alternating
minimization and projection methods for nonconvex problems : an
approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res.,
35(2) :2010, 438–457.



Structured low-rank matrix approximation



Cadzow’s basic denoising algorithm

Noisy time series c̃0, c̃1, . . . , c̃n−1

Encode as Toeplitz matrix

T̃ =


c̃0 c̃1 . . . c̃n−1

c̃n−1 c̃0 c̃1 . . . c̃n−2

. . .
. . . . . .

c̃2
. . . c̃1

c̃1 c̃2 . . . c̃0


Find Toeplitz matrix T with rank(T ) ≤ r as close as possible to T̃ .
Decoding T gives denoised signal c0, . . . , cn−1.

Heuristic : apply MAP to A = {T ∈ Cn×n : T Toeplitz},
B = {R ∈ Cn×n : rank(R) ≤ r}, starting at T̃



Generalized Cadzow method

A = closed sub-analytic set of structured matrices T ∈ Cn×m

B = {R ∈ Cn×m : rank(R) ≤ r} (non-convex)

Find T ∈ A with rank ≤ r

Apply non-convex MAP in Frobenius norm ‖ · ‖F

How to compute R ∈ PB(T ) ?

T = UΣV>, Σ = diag(σ1, . . . , σmin(n,m))

Σr = diag(σ1, . . . , σr , 0, . . . ) ; R = UΣrV
>.

Finite number of possibilities if σr has multiplicity.

Reach of B at R ∈ B is σr .



Theorem
(Noll 2020). Let A be closed subanalytic matrix structure, Rk ,Tk a
bounded Cadzow alternating sequence with gap r∗. Suppose r∗ < σ∗r for
the accumulation points R∗ of the Rk . Then ‖Rk − R∗‖ = O(k−ρ) for
some ρ > 0. All accumulation points T ∗ of the Tk have structure A and
admit the same R∗ as their low-rank approximation.

Proof. R ∈ B ⇐⇒ all (r + 1)× (r + 1) minors of R vanish. Therefore
set of polynomial equations (semi-algebraic). Known as determinantal
variety of dimension r(n + m − r). �

Theorem
(Noll 2020). Suppose the matrix structure set A is closed subanalytic and
prox-regular. Let Tk ,Rk be a bounded Cadzow sequence with gap r∗,
where r∗ < reach(A). Then the Tk converge to a structured matrix
T ∗ ∈ A with speed ‖Tk − T ∗‖ = O(k−ρ) for some ρ > 0. The sequence
Rk has a finite set of accumulation points R∗, and each of these R∗ is a
low-rank approximation of the same T ∗.



For convex A convergence from arbitrary starting point.
Many convergence claims in literature - evoking transversality.
All wrong.
Transversality cannot be checked - need not be satisfied.
Boundedness hypothesis needed.

Example

B = 2× 2 of rank ≤ 1. A =

{[
1 −1
2 −2

]
+ t

[
1 0
1 1

]
: t ∈ R

}
A ∩ B =

{[
1 −1
2 −2

]}
. Convergence of MAP sublinear.



Application : EM-algorithm



A.P. Dempster, N.M. Laird, D.B. Rubin. Maximum likelihood from
incomplete data via the EM-algorithm.
J. Royal Stat. Soc. Series B, vol. 39, no. 1 (1977), 1 – 38.

=⇒ Cited 38230 times since 1977
=⇒ However, convergence proof incorrect.
=⇒ Since then only proofs for specific situations.

Our approach gives the first local convergence proof for Gaussian laws
when parameter set is not convex.

H.H. Bauschke, J.M. Borwein, A. Celler, D. Noll. An EM-algorithm for
dynamic SPEC tomography. IEEE Transactions on Medical Imaging 18,
no. 3, 1999, 252 - 261.



Thanks for your attention !


