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Alternating projections invented by Hermann Schwarz in 1869

H. Schwarz. Uber einen Grenziibergang
durch alternirendes Verfahren.

Vierteljahresschrift der Naturforschenden
Gesellschaft in Ziirich, 15(1870), 272-
286.

@ Rigorous solution to Dirichlet problem 1870 - 1901
@ First domain decomposition method ever

@ Modern re-interpretation as MAP by P.-L. Lions 1978, 1988-89.
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Method erroneously attributed to J. von Neumann :

S.L. Sobolev. L'algorithme de Schwarz dans la théorie de I'élasticité.
Comptes Rendus de |'Académie des Sciences de I'URSS, 1V :243-246,
1936.

R. Courant, D. Hilbert. Verfahren der mathematischen Physik, Band 2
1930s.

J. von Neumann. Functional Operators Il. Lecture Notes 1950
@ Presents no citations

@ Claims that original version in 1933 has it already



Convex Alternating Projections

@ Schwarz, Sobolev, v. Neumann : Subspaces
@ W. Cheney, A.A. Goldstein. Proximity maps for convex sets. 19509.

@ L.M. Bregman : Weak convergence for convex sets in Hilbert space.
1965

@ H.H. Bauschke : Convex case essentially settled 1993.

@ H. Hundal. Norm convergence may fail, 2002.
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Given : closed sets A, B in R"
ANB#()
Want : solution x of feasibility problem

xe€EANB
Method :

b1 S PB(al), ar € PA(bl), b2 S PB(ag), as € PA(bz),
or

P, P P P,
31—B>b1—A>32—B>b2—A>...



Given : closed sets A, B in R"”
ANB=10
Want : generalized solution
a* € Pa(b%),b" € Pg(a”),||]a* — b*|| = dist(A, B)
Expect : convergence to gap

ay — a*,bk — b*



Non-convex Alternating Projections :

@ Are there applications?
e Conditions for local convergence ?
@ Conditions for global convergence?

@ May convergence fail 7



Are there applications ?



Non-convex Alternating Projections used in :

@ Color plane interpolation (de-mosaicking)

@ De-noising of time-series (Cadzow's basic algorithm, Singular
Spectrum Analysis)

@ Inverse eigenvalue problems

@ Pole placement (control)

@ Synthesis of low-order feedback controllers (control)

@ Road profile design (western Canada)

@ Recovery of lost image blocks in JPEG and MPEG images
@ Sparse affine feasibility (for error correction in linear codes)

@ Packings in Grassmannian manifolds (wireless communication)



@ Brain signal localization

@ sudokus

@ Nearest correlation matrix

@ Robust matrix completion

@ Bi-proportional matrix scaling (matrix ranking - statistics)
@ EM-algorithm for Gaussian laws.

@ Phase retrieval
— optics
— X-ray crystrallography
— astronomy
— speech proccessing
— computational biology

— blind deconvolution



Failure of convergence



Proposition

Let A, B be closed. Suppose the sequence of alternating projections ay, b
is bounded and satisfies ay — by — 0, ax — ax—1 — 0. Then the set of
accumulation points of ay, by is either singleton or a compact continuum.

Proof. By A. Ostrowski's Theorem. d

(Bauschke, Noll 2013). The case of a non-trivial compact continuum
may indeed occur.
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B ={(cost,sint,s) :0<s<1,0<t<2r}
A= {(cost(l+e7t),sint(l+e7t),e2):0<t<oo}

Bauschke, Noll (2014, Archiv der Mathematik)



Bauschke, Noll (2014 unpublished)

bl

Koch Snowflake

Proposition
(Bauschke, Noll 2014 unpublished). Let F C R" be compact
connected and locally connected and contained in a

(n — 1)-dimensional C' manifold (~ a Peano set). Then there exist
A, B C R" closed bounded with AN B = F such that every
alternating sequence ay, by has all points of F as accumulation
points.




Convergence with transversality



(A.S. Lewis, J. Malick 2008). Let A, B be C?-manifolds in R"
intersecting transversally at x* € AN B. Then there exists a
neighborhood U of x* such that every alternating sequence ay, by
which enters U converges to some a* € AN B with R-linear speed.

B

Transversality
Ta(x*) 4+ Te(x*) =R"

g




Theorem
(A.S. Lewis, R. Luke, J. Malick 2009). Suppose

@ There exists x* € AN B such that Na(x*) N —Ng(x*) = {0}
(replaces transversality).

© B is super-regular (replaces convexity).

Then there exists a neighborhood U of x* such that every alternating
sequence ay, by which enters U converges to some a* € AN B with
R-linear speed.

Np(x*) Ng(x*)

Na(x*)




A.S. Lewis, J. Malick (2008). Alternating projections on manifolds.
Math. Oper. Res. 33 :2008, 216-234.

A.S. Lewis, R. Luke, J. Malick (2009). Local linear convergence for
alternating and averaged non-convex projections.
Foundations Comp. Math. 9 :2009, 485-513.

@ Transversality too restrictive. Two non-parallel lines in R? intersect
transversally, but no longer in R3

@ Same for Na(x*) N —Ng(x*) C {0}.

@ Need an additional regularity hypothesis called super-regularity.
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convex prox-regular super-regular
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convex prox-regular super-regular




H.H. Bauschke, D.R. Luke, H.M. Phan, X. Wang (2013). Restricted
normal cones and the method of alternating projections.

Set-Valued Var. Anal. 21 :2013, 431 — 473.

Use restricted normal cones instead :
N (x*) = normals to A at x* pointing into B
Transversality at x* becomes :
Ng (x*) N —Ng(x*) C {0}

Works better, but still not good enough.



Definition

(Noll, Rondepierre 2013). Transversality means « stays away from
0° in neighborhood of x*.

b

Could say : A, B intersect at an angle at x*



What happens when the intersection is tangentiel ?

e Is failure of convergence due to the lack of regularity 7

e or is it because the intersection is (too) tangential 7

Remember convex case :
Linear convergence when intersection at an angle.
Slow convergence when intersection tangential.



a ~ 180° (transversal) intersection too tangential

Regularity missing Regularity OK




How to deal with tangential intersection ?



Noll, Rondepierre 2013 :




Tangential intersection :




Tangential intersection :




Tangential intersection :

a=/(b—at, bt —at)and r = ||b" — at||

both shrink to 0 as we approach x*



Definition
(Noll, Rondepierre 2013). The sets A, B satisfy the angle condition at
x* € AN B if there exists v > 0, w € [0,2) and a neighborhood U of x*

such that for every building block b Pa o+ P2 bt in U and
r=|b" —a"| we have

sin? a

rv

27

@ Tangential intersection means « and r both shrink to 0.

@ Angle condition means they shrink in controlled fashion. Angle does
not shrink too fast.

@ Special case w = 0 gives back transversality (angle does not shrink,
but distance r does).



Definition

(Noll 2020). A gap (A*, B*, r*) satisfies the angle condition with
constant v > 0 and exponent w € [0, 2) if there exist neighborhoods U of
B* and V of A* such that, for every building block b — a™ — b™ with
r=lat —bT|| > r*and at € V, bt € U, the estimate

1 — cosa
(r—ry =7

holds for the angle & = Z(b—a™, bT — a™).

What is a gap between A, B?

Definition

We call (A*, B*, r*) a gap if for every a* € A* there exists
b* € B* N Pg(a*) with ||a* — b*|| = r*, and vice versa for every b* € B*
there exists a* € A* N Pa(b*) with ||a* — b*|| = r*.




Angle condition extends to gaps :

r=|b" —a"||

1—cosa < sin .
e or B
(r_r*)w =7 (r_r*)w/2 =7



Theorem

(Noll, Rondepierre 2013). Suppose there exists x* € AN B such
that

© A, B satisfy the w-angle condition at x*.
@ B is w/2-Hoélder regular at x* with respect to A.

Then there exists a neighborhood U of x* such that every
alternating sequence ay, by which enters U converges to some point
a* € AN B. The speed of convergence is

—w w

law -l =0 (k%) b -2l =0 (k)

Special case w = 0 gives R-linear convergence



(Noll, Rondepierre 2013). Suppose A, B are sub-analytic sets and
x* € AN B. Then there exists w € [0,2) such that A, B intersect with
w-angle condition at x*.

Semi-analytic set :

N M
A= {x e R": ¢(x) = 0,05(x) > 0}

i=1j=1

with real-analytic functions ¢;;, ¥j;.

A sub-analytic <= Va € A 3r > 0 3A bounded semi-analytic
ANB(a,r)={x:(x,y) € A}



Proposition

(Noll, Rondepierre 2013, Noll 2020). Suppose f = is + %dé satisfies the
tojasiewicz inequality with exponent 6 € [%, 1). Then A, B satisfy the
w-angle condition with w = 46 — 2.

w €[0,2)

@ w = 0 transversality

Gets weaker as w increases.

For w > 2 too weak.

Works also with gaps.



Corollary

(Noll, Rondepierre 2013). Rates for r* = 0. Suppose f = ia + %dé has
tojasiawicz exponent 6 and A, B are (20 — 1)-Hélder regular.

1 . o _1-6
@ For 0 € (3,1) convergence rate is || by — b*|| = O(k™ 27=1).

@ Forf = % speed is R-linear.

Corollary

(Noll 2020). Rates for r* > 0. Suppose f = ip + 2d3 has tojasiewicz
exponent 6 and the gap is (20 — 1)-Hélder regular.

For 6 € (3,1) convergence rate is ||b — b*|| = O(k~ 291:39/2).

@ Forf = % convergence is R-linear.

For 0 € (3,3) convergence is R-linear with rate 3 + € for any € > 0.

@ Forf = % convergence is finite.




xi. = Pg(Pa(x))
Xy + 2ax_3; =X

Xi
= — 1

xy 4 20x;4 (1 + ax?) = x

1
1+2«
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How about Hélder regularity ?



B convex




B convex

B =>90°




B non-convex




B non-convex

[ < 90° possible




B non-convex
B super-regular :

3 not too small
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B non-convex

NN

B superregular :

B not too small




=%

B non-convex

NN

B superregular :

B not too small







here super-regularity fails















Consequence : Our notion of Holder regularity still in business for
packman. Can enter into corners.

@ Super-regular : Aperture increases as distance decreases.
cos3=f(8) = 0asd§ — 0,5 =dist(b", b*)
@ o-Hdlder regular (o € [0,1)) : Aperture increase quantified.
cosB=+/c-r7,r=|a" — bt

What makes the difference :
e relate to r not ¢ ;
e require only for b € B(a™, (14 ¢)r)

@ For o = 0 weaker than existing notions of regularity.



For gaps :
@ cosfS =+/c(r—r*);
@ But still for b € B(a™, (1 + c)r).

Proposition

Slowly shrinking reach implies Hélder regularity. In particular, for r* =0
prox-regularity implies o-Hélder regularity for all o € [0,1) and arbitrarily
small ¢ > 0. For r* > 0 need reach > r*.




Vanishing reach :

\ j&y B ‘X|3/2

1/2

Curvature radius Ry ~ 5|x|



Corollary

(Noll, Rondepierre 2013). Suppose A, B are closed sub-analytic, and B
is Hélder regular with respect to A. Suppose the alternating sequence
ak, bi is bounded and satisfies a, — b, — 0. Then there exists w € [0, 2)
such that it converges to a point a* € AN B with speed

lac—al =0 (k=) fb—a'l =0 (k=)

| \

Corollary

(Noll 2020). Suppose A, B are closed sub-analytic, and B is prox-regular.
Let ay, bk be a bounded alternating sequence with gap r* < reach(B*).
Then ||bx — b*|| = O(k=*) for some p > 0.

A\




Open problems :

@ Prove convergence for sub-analytic A, B without regularity
hypothesis.

@ Construct A, B bounded prox-regular, AN B # (), ay — ax_1 — 0,
ay — by — 0, such that A*, B* are not singleton. (One of the sets
must fail to be sub-analytic).

@ Find case where by — b* but a, fail to 7
converge, possibly with a, — ax_1 — 0. hee 8 ,:
Then A must have a crater. -~

o’



Application : Phase retrieval



Phase retrieval

Reconstruct unknown signal x(t), t =0,..., N — 1 from known
Fourier magnitude m(f) = |x(f)|, f =0,...,N — 1.

@ Retrieve unknown phase X(f)/|x(f)|, hence the name.

@ Underdetermined and ill-posed. Solution set leaves ambiguity :

B={yeCV:|y(f)| =m(f),f=0,...,N—1}









Consequences :

@ Phase of Fourier transform X/|X]| gives the essential information
about x.

@ Magnitude of Fourier transform |x| does not help to localize image
X.

@ Example : shift in time domain changes phase but not magnitude.

@ Hence phase retrieval must be difficult. And it is!



Some history



@ Max von Laue (1912) proposes to use X-rays to visualise crystal
structure via diffraction.

@ David Sayre (1952) argues non-periodic x could in principle also be
retrieved from |x]| if m(f) = |X(f)| were sampled twice the Nyquist
rate in every dimension.

@ R.W. Gerchberg - O.W. Saxton (1972). First algorithm.

@ J. Miao, P. Charalambous, J. Kirz, D. Sayre, Extending the
methodology of X-ray crystallography to imaging micrometre-sized
non-crystalline specimens, Nature 400, 342-44, 1999.

@ 2017. Individual proteins and nano-crystals can be visualized by CDI.

Coherent Diffraction Imaging : 10nm = 10~8m (organic)
2 nm =2-10"°m (inorganic)
Fluorescence Microscopy : 1um = 10~°m (organic)

Electron microscopy : 0.1 nm = 10~m (inorganic)



Source of X-rays

- ,,"//'.'/
Max von Laue David Sayre W. O. Saxton
(photo 1929) (photo 1972) (photo 2012)




Gerchberg-Saxton error reduction (1972)

© Given current estimate x compute X and correct Fourier

x(f)

IX(FA)I

@ Take inverse Fourier transform y of y, and correct physical
domain constraint by putting x™ = Pa(y)

magnitude y(f) := m(f)

© Replace x by x and loop on.

@ Add prior information x € A (= prior or pattern)
@ y € B (= possible phase retrievals)

@ Fourier magnitude correction y = Pg(x). Physical domain
correction x = Pa(y).

= No convergence proof since 1972. We gave the first in 2013.



Challenge : not enough samples to retrieve phase y* € B

@ (Unique solution). Ideally pattern A such that AN B = {y*}, i.e.,
pattern removes ambiguity.

@ (Converge to particular solution). If not possible want at least
Xk € A, yk € B to converge to x* = y* € AN B which has pattern
and is phase retrieval.

@ (Unique generalized solution). In case of noise : Want pattern A to
single out gap ({x*}, {y*}, r*) to determine phase retrieval y*.

@ (Converge to generalized solution). Due to noise : accept
Xk = x* € A, yk = y* € Bwith Pa(y*) = x*, Pg(x*) = y*. That
is, x* with that pattern has phase retrieval y*, and among elements
with pattern x* is closest to y*.



Typical priors or pattern x € A
@ Historically first instance : 2°d Fourier plane
A={x:|x(t)] = m(t),t=0,...,N—1}
@ Localization in physical domain (known support)
A={x:x(t)=0fort ¢ S}
@ Sparsity n < N

A = {x: x(t) # 0 for at most n of the x(t)}

@ Sparse phase n < N

A= {x:arg(x(f)) # 0 for at most n frequencies f}



(Noll, Rondepierre 2013). Let the phase retrieval problem have an exact
solution x* € AN B. Suppose the physical domain constraint is
represented by a sub-analytic set A. Then Gerchberg-Saxton error
reduction converges in a neighborhood of x* with speed of convergence

O (k_zz;ww> for some w € (0,2).

Proof. Equivalent to non-convex alternating projections between A and :

B={ycC"N:|9(f)|=m(f)for f=0,...,N—1}

B is sub-analytic and prox-regular. a



Definition

The physical domain prior set A allows a guess better than 0 if there
exists xg € A with dist(xg, B) < ||m|| = dist(0, B).

(Noll, 2020). Suppose A is closed sub-analytic and allows a guess x € A
better that 0. If Gerchberg-Saxton x, € A, yx € B is started from that
guess, then y, — y* € B with speed ||yx — y*|| = O(k~*) for some

p > 0. That is, there is a unique phase retrieval y*, and all accumulation
points x* € A of the xx admit the same y* as their phase retrieval.

Proof. The reach of B is ||m||. Hence started from xg iterates stay within
reach of B. 0



Historically first case. Phase measurements in second Fourier plane
(Gerchberg-Saxton 1972). (Ptychography).

B={yeC":[y(Al =m(f)}, A={xeC":|x(t)|=m(t)}

[[ml| = [|ml|

Theorem

(Noll 2020). Suppose there exists an initial guess better than 0. If started
from that guess, Gerchberg-Saxton converges xx — x* € A, yx — y* € B
with speed ||xx — x*|| = O(k="), |lyx — y*|| = O(k—") for some p > 0,
and the limits give generalized solution

x| =m, [y ]=m em e L
- I yil= ) y = |)/<\*|7 — |y*|




Sparsity as prior. Fix n < N.

B={yeC":|y(f)|=m(f),f=0,...,N—1}
A = {x € CV : at most n of the x(t) are non-zero}
Projection x € Pa(y) :
ly(to)| < ly(t)] < -+ <|y(tn-1) (permutation of 0,..., N — 1)
Put

X(to) =0,... 7X(t'[\/_,,_l) = O,X(t/\/_,,) = )/(tN—n)a e ,X(t[\/_l) = y(t/\/_l)

zero the first N — n keep n largest

Possible ambiguity if
ly(tn—n—s)| = = |y(tn—n-1)| = - = [y(tn—n—14/)]



Theorem

(Noll 2020). Let xk, yx be the Gerchberg-Saxton sequence for the sparsity
prior started from a guess better than 0. Then y, — y* with speed

llyx — y*|l = O(k=") for some p > 0. The x, admit a finite set of
accumulation points, all having y* as their phase retrieval. If

Xk — Xk+1 — 0, then the xx converge to a unique sparse prior with that
same speed.

Proof. Sparsity set A is sub-analytic. O



Fourier phase and magnitude



original (unknown) Fourier pase (uknown)

Fourier magnitude (known) estimated support (prior)






Ideal image xg is Pl-image enlarged to size 1024 x 1024 by
0-padding.

@ 0 is black, 256 is white.

Initial guess is blurred and noisy version of the Pl-image which
is then rotated 90°.

Fourier magnitude m = |Xp| is known exactly.
B = {y € C1024x1024 . |5()| = m(f) for all frequencies f}.
A = {x € C1024x1024 . »(+) = 0 for all pixels t not in mask}.

Mask is gray region around the Pl-symbol. Prior assumption is
that values outside that mask equal 0.

MAP slow convergence.



Convergence for cactus sets and counterexamples

H.H. Bauschke, D. Noll (2013). On cluster points of alternating
projections. Serdica Math. J. 39 (2013), 355-364.

H.H. Bauschke, D. Noll (2014). On the local convergence of the
Douglas—Rachford algorithm. Archiv der Mathematik 102, 589 — 600.

Counterexamples for Gerchberg-Saxton, Fienup variants

D. Noll (2020). Alternating projections with applications to
Gerchberg-Saxton error reduction. SVVA.



Convergence for non-convex alternating projections

A.S. Lewis, J. Malick (2008). Alternating projections on manifolds.
Math. Oper. Res.

A.S. Lewis, R. Luke, J. Malick (2009). Local linear convergence for
alternating and averaged non-convex projections.
Foundations Comp. Math.

H.H. Bauschke, D.R. Luke, H.M. Phan, X. Wang (2013). Restricted
normal cones and the method of alternating projections. SVVA.

D. Noll, A. Rondepierre (2013). On local convergence of the method of
alternating projections. Foundations of Comp. Math. 2015

Z. Zhu, X. Li (2018). Convergence analysis of alternating projection
method for nonconvex sets. arXiv 2019.

D. Noll (2020). Alternating projections with applications to
Gerchberg-Saxton error reduction. SVVA 2021.



tojasiewicz inequality

J. Bolte, A. Daniilidis, A.S. Lewis. The tojasiewicz inequality for
nonsmooth subanalytic functions with applications to subgradient
dynamical systems. SIAM J. Opt. 17(4) :2007, 1205-1223.

H. Attouch, J. Bolte, P. Redont, A. Soubeyran. Proximal alternating
minimization and projection methods for nonconvex problems : an
approach based on the Kurdyka-tojasiewicz inequality. Math. Oper. Res.,
35(2) :2010, 438-457.



Structured low-rank matrix approximation



Cadzow’s basic denoising algorithm

@ Noisy time series ¢y, C1,...,Ch1

@ Encode as Toeplitz matrix

Co [ I Ch—1
Ch—1 Qo C1 e Ch—2
T =
G r a
a & ... (o)

@ Find Toeplitz matrix T with rank(T) < r as close as possible to T.
Decoding T gives denoised signal cp,...,ch 1.

@ Heuristic : apply MAP to A= {T € C™" : T Toeplitz},
B ={R e C"™" :rank(R) < r}, starting at T



Generalized Cadzow method

A = closed sub-analytic set of structured matrices T € C"™*™
B ={R e C"™™ :rank(R) < r} (non-convex)

Find T € A with rank < r'

Apply non-convex MAP in Frobenius norm || - ||¢

@ How to compute R € Pg(T)?
o T = UZVT, 2= diag(ol,...,omin(n)m))
¥, = diag(o1,...,0,,0,...); R= UL, VT.

Finite number of possibilities if o, has multiplicity.

Reach of Bat R€ Bis o,.



(Noll 2020). Let A be closed subanalytic matrix structure, Ry, Ty a
bounded Cadzow alternating sequence with gap r*. Suppose r* < o for
the accumulation points R* of the Ry. Then ||Rx — R*|| = O(k—") for
some p > 0. All accumulation points T* of the Ty have structure A and
admit the same R* as their low-rank approximation.

Proof. R € B < all (r +1) x (r + 1) minors of R vanish. Therefore
set of polynomial equations (semi-algebraic). Known as determinantal
variety of dimension r(n+ m —r). O

Theorem

(Noll 2020). Suppose the matrix structure set A is closed subanalytic and
prox-regular. Let Ty, Ry be a bounded Cadzow sequence with gap r*,
where r* < reach(A). Then the Ty converge to a structured matrix

T* € A with speed || Tx — T*|| = O(k=") for some p > 0. The sequence
Ry has a finite set of accumulation points R*, and each of these R* is a
low-rank approximation of the same T*.




For convex A convergence from arbitrary starting point.

Many convergence claims in literature - evoking transversality.
All wrong.

Transversality cannot be checked - need not be satisfied.

Boundedness hypothesis needed.

1
2

el e

ANB = { B :ﬂ } Convergence of MAP sublinear.

B=2x20frank§1.A={[




Application : EM-algorithm



A.P. Dempster, N.M. Laird, D.B. Rubin. Maximum likelihood from
incomplete data via the EM-algorithm.
J. Royal Stat. Soc. Series B, vol. 39, no. 1 (1977), 1 — 38.

= Cited 38230 times since 1977
— However, convergence proof incorrect.
— Since then only proofs for specific situations.

Our approach gives the first local convergence proof for Gaussian laws
when parameter set is not convex.

H.H. Bauschke, J.M. Borwein, A. Celler, D. Noll. An EM-algorithm for
dynamic SPEC tomography. IEEE Transactions on Medical Imaging 18,
no. 3, 1999, 252 - 261.



Thanks for your attention !



