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Introduction: projection and splitting algorithms

CONTENTS

1 Introduction: projection and splitting algorithms

Projection algorithms for feasibility problems

Splitting algorithms for monotone inclusions

2 Product space reformulation

Standard Pierra’s approach

New product space refomulation with reduced dimension

3 Numerical comparison

The generalized Heron problem

Sudokus

Rubén Campoy A product space reformulation with reduced dimension Universitat de València
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Introduction: projection and splitting algorithms Projection algorithms for feasibility problems

Let H be a Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.

⇀: weak convergence →: strong convergence

Consider C1,C2, . . . ,Cr ⊆ H.

Feasibility Problem

(P) Find x ∈
r⋂

i=1

Ci .

C1

C2

C3

x

I In many practical situations, finding a point in the intersection of the sets
might be intricate.

I However, the projection onto each of these sets can be easily computed.

I In such cases, and when the sets are convex, the so-called projection algo-
rithms are useful tools to solve the problem.
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Introduction: projection and splitting algorithms Projection algorithms for feasibility problems

Projection mapping

Let C ⊆ H be a closed nonempty set.

The projector onto C is the (possibly set-valued) mapping

PC (x) :=

{
p ∈ C : ‖p − x‖ = inf

c∈C
‖c − x‖

}
.

The reflector with respect to C is the mapping RC := 2PC − I .

x

p1

p2

r1

r2

C

x

p

r

C

When C is closed and convex,
PC and RC are single-valued.
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Introduction: projection and splitting algorithms Projection algorithms for feasibility problems

FUNDAMENTAL PROJECTION ALGORITHMS

Alternating Projections (AP)

1933 Von Neumann

AP for two subspaces

1962 Halperin

Generalization for any finite
number of subspaces

1965 Bregman

Extension for arbitrary closed and
convex sets

Douglas–Rachford (DR)

C1

C2

C3

x0
PC1x0

PC2PC1x0 x1 = PC3PC2PC1x0
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Introduction: projection and splitting algorithms Projection algorithms for feasibility problems

FUNDAMENTAL PROJECTION ALGORITHMS

Alternating Projections (AP)

1933 Von Neumann

AP for two subspaces

1962 Halperin

Generalization for any finite
number of subspaces

1965 Bregman

Extension for arbitrary closed and
convex sets

Douglas–Rachford (DR)

1956 Douglas and Rachford

Originally proposed for solving a
system of linear equations arising

in heat conduction problems.

1979 Lions and Mercier

Extension of the algorithm for
convex feasibility problems

(In fact, for monotone inclusions)
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Introduction: projection and splitting algorithms Projection algorithms for feasibility problems

The Douglas–Rachford algorithm

Definition (Douglas–Rachford operator)

Given two sets A,B ⊆ H, the Douglas–Rachford operator is defined by

DRA,B =
I + RBRA

2
.

I The DR algorithm is the fixed point iteration xn+1 = DRA,B(xn).

I Also known as Averaged Alternating Reflections method:

REFLECT

⇓
REFLECT

⇓
AVERAGE

I Can be generalized to DRA,B,λ = (1− λ)I + λRBRA, for λ ∈ ]0, 1[.

Rubén Campoy A product space reformulation with reduced dimension Universitat de València



Introduction: projection and splitting algorithms Projection algorithms for feasibility problems

Convergence of Douglas–Rachford

xn+1 = DRA,B,λ(xn) := (1− λ)xn + λ(2PB − I )(2PA − I )(xn)

Theorem [Lions and Mercier (1979), Svaiter (2011)]

Let A,B ⊆ H be closed and convex sets. Given any x0 ∈ H, for every n ≥ 0, define
xn+1 = DRA,B,λ(xn). Then, the following holds.

(i) If A ∩ B 6= ∅, then {xn}⇀ x? ∈ FixDRA,B,α such that PA(x?) ∈ A ∩ B.

Moreover, the shadow sequence {PA(xn)} w−⇀ PA(x?) ∈ A ∩ B.

(ii) If A ∩ B = ∅, then ‖xn‖ → +∞.
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Introduction: projection and splitting algorithms Splitting algorithms for monotone inclusions

Framework

Let H be a Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.

⇀: weak convergence →: strong convergence

Monotone inclusion

Find x ∈ H such that 0 ∈ A(x) + B(x),

where A,B : H⇒ H are maximally monotone operators.

Definition: A set-valued operator A : H⇒ H is said to be

I monotone if

〈x − y , u − v〉 ≥ 0, for all (x , u), (y , v) ∈ graA;

I maximally monotone if it is monotone and there exists no other
monotone operator Ã : H⇒ H such that graA ( gra Ã.
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Introduction: projection and splitting algorithms Splitting algorithms for monotone inclusions

Examples of maximally monotone operators

I The subdifferential of a proper lsc convex funcion:

∂f (x) := {u ∈ H | 〈y − x , u〉+ f (x) ≤ f (y), ∀y ∈ H} .

Monotone inclusion

Find x̄ s.t. 0 ∈ ∂f (x̄) + ∂g(x̄)

*Under constraint qualification

⇔

Minimization problem

Min f (x) + g(x)

s.a. x ∈ H.

I The normal cone to a closed and convex set:

NC (x) :=

 {u ∈ H | 〈u, c − x〉 ≤ 0, ∀c ∈ C}, if x ∈ C ;

∅, otherwise.

Monotone inclusion

Find x̄ s.t. 0 ∈ NA(x̄) + NB(x̄) ⇔
Feasibility problem

Find x̄ ∈ A ∩ B
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Introduction: projection and splitting algorithms Splitting algorithms for monotone inclusions

The Douglas–Rachford splitting algorithm

Given x0 ∈ H and γ > 0, the Douglas–Rachford iteration is defined by:

xn+1 =
1

2
xn +

1

2
(2JγB − I )(2JγA − I )(xn), n = 0, 1, 2, . . . .

Definition: Given a set-valued operator A : H⇒ H
I the resolvent of A with parameter γ > 0 is the operator

JγA := (Id +γA)−1.

I the reflected resolvent is RγA := 2JγA − Id.

Fact

A : H⇒ H is maximally monotone ⇔ JγA is firmly nonexpansive with full domain

〈x − y , JγA(x)− JγA(y)〉 ≥ ‖JγA(x)− JγA(y)‖2, ∀x , y ∈ H
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Introduction: projection and splitting algorithms Splitting algorithms for monotone inclusions

Douglas–Rachford for minimization and feasibility problems

I The resolvent of the subdifferential of a proper lsc convex funcion becomes
the proximity mapping

Jγ∂f = proxγf (x) := argmin
u∈H

(
f (u) +

1

2γ
‖x − u‖2

)
.

I The resolvent of the normal cone to a closed and convex set becomes the
projector

JγNC = PC (x) := argmin
c∈C

‖x − c‖,

Rubén Campoy A product space reformulation with reduced dimension Universitat de València



Introduction: projection and splitting algorithms Splitting algorithms for monotone inclusions

Convergence of Douglas–Rachford

xn+1 = (1− λ)xn + λ(2JγB − I )(2JγA − I )(xn)

Theorem [Lions and Mercier (1979), Svaiter (2011)]

Let A,B : H ⇒ H be maximally monotone operators such that zer(A + B) 6= ∅. Let
γ > 0 and let λ ∈ ]0, 1[. Given any x0 ∈ H, set

xn+1 = (1− λ)xn + λRγBRγA(xn), for n = 0, 1, 2, . . . ;

where RγA := 2JγA − I and RγB := 2JγB − I .

Then there exists x? ∈ Fix (RγBRγA) such that following assertions hold:

(i) {xn}⇀ x? with JγA(x?) ∈ zer(A + B).

(ii) {JγA(xn)}⇀ JγA(x?) ∈ zer(A + B).
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Introduction: projection and splitting algorithms Splitting algorithms for monotone inclusions

SPLITTING ALGORITHMS

Those algorithms that solve the monotone inclusion

Find x ∈ H such that 0 ∈ A(x) + B(x),

by taking advantage of the decomposition.

Their iteration is described by:

I Direct evaluations of A or B (forward-steps)

I Computations of the resolvents JA and/or JB (backward-steps)

Douglas–Rachford Forward-Backward

ADMM
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Introduction: projection and splitting algorithms Splitting algorithms for monotone inclusions

SPLITTING ALGORITHMS

Those algorithms that solve the monotone inclusion

Find x ∈ H such that 0 ∈ A1(x) + A2(x) + · · ·+ Ar (x),

by taking advantage of the decomposition.

Their iteration is described by:

I Direct evaluations of Ai (forward-steps)

I Computations of the resolvent JAi (backward-steps)

Douglas–Rachford Forward-Backward

ADMM

What if we deal with more than two operators?

Let’s study first the case of feasibility problems with more than two sets
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Introduction: projection and splitting algorithms Splitting algorithms for monotone inclusions

FUNDAMENTAL PROJECTION ALGORITHMS

Alternating Projections (AP)

1933 Von Neumann

AP for two subspaces

1962 Halperin

Generalization for any finite
number of subspaces

1965 Bregman

Extension for arbitrary closed and
convex sets

Douglas–Rachford (DR)

C1

C2

C3

x0
PC1x0

PC2PC1x0 x1 = PC3PC2PC1x0
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Introduction: projection and splitting algorithms Splitting algorithms for monotone inclusions

The Douglas–Rachford algorithm

Definition (Douglas–Rachford operator)

Given two sets A,B ⊆ H, the Douglas–Rachford operator is defined by

DRA,B =
I + RBRA

2
.

I The DR algorithm is the fixed point iteration xn+1 = DRA,B(xn).

I Also known as Averaged Alternating Reflections method:

REFLECT

⇓
REFLECT

⇓
AVERAGE

I Can be generalized to DRA,B,λ = (1− λ)I + λRBRA, for λ ∈ ]0, 1[.
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Introduction: projection and splitting algorithms Splitting algorithms for monotone inclusions

Douglas–Rachford for 3 sets

DRA,B,C :=
Id +RCRBRA

2

I The iteration generated by the above operator still converges

xn ⇀ x? ∈ FixDRA,B,C

I However the reached fixed point may not lead to a solution.

A

B

C
x0 = RCRBRAx0

RAx0 RBRAx0
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Product space reformulation

CONTENTS

1 Introduction: projection and splitting algorithms

Projection algorithms for feasibility problems

Splitting algorithms for monotone inclusions

2 Product space reformulation

Standard Pierra’s approach

New product space refomulation with reduced dimension

3 Numerical comparison

The generalized Heron problem

Sudokus

Rubén Campoy A product space reformulation with reduced dimension Universitat de València
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Product space reformulation Standard Pierra’s approach

Product space reformulation

I Finitely many sets C1,C2, . . . ,Cr ⊆ H, can be handled by a product space formulation.

I We work on the product Hilbert space Hr := H×H× · · · × H.

I Define C := C1 × C2 × · · · × Cr and Dr := {(x , x , . . . , x) ∈ Hr : x ∈ H}.

I We now have an equivalent two-set feasibility problem since

x ∈
r⋂

i=1

Ci ⇔ (x , x , . . . , x) ∈ C ∩Dr .

I Moreover, knowing the projections onto C1, . . . ,Cr , the projections onto C and D can
be easily computed. Indeed, for any x = (x1, . . . , xr ) ∈ Hr ,

PC (x) =
(
PC1 (x1), PC2 (x2), . . . , PCr (xr )

)
,

PDr (x) =

(
1

r

r∑
i=1

xi ,
1

r

r∑
i=1

xi , · · · ,
1

r

r∑
i=1

xi

)
.
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Product space reformulation Standard Pierra’s approach

Product space reformulation

Example:

Find x ∈C1∩C2∩C3⊆ R, with

C1 := [0.5, 2],

C2 := [1.5, 2.5],

C3 := [1, 3]. 0.5 1 1.5 2 2.5 3

0 1 2 3 0
1

2
3

0

1

2

3C1 × C2 × C3 D3

0 1 2 3
0

1

2

3

Standard product space reformulation

Product space reformulation
with reduced dimension
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Product space reformulation
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1

r
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1

r
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r
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Product space reformulation

Example:
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Product space reformulation Standard Pierra’s approach

Product space reformulation

Example:

Find x ∈C1∩C2∩C3⊆ R, with

C1 := [0.5, 2],

C2 := [1.5, 2.5],

C3 := [1, 3]. 0.5 1 1.5 2 2.5 3
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3

0

1

2
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Product space reformulation
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Product space reformulation

Example:

Find x ∈C1∩C2∩C3⊆ R, with

C1 := [0.5, 2],

C2 := [1.5, 2.5],

C3 := [1, 3]. 0.5 1 1.5 2 2.5 3
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1

2
3
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1

2
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0 1 2 3
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2
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Standard product space reformulation

Product space reformulation
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Product space reformulation Standard Pierra’s approach

Product space reformulation

I The product space trick is commonly known as Pierra’s product space reformulation,
credited to Guy Pierra in the paper:

< Pierra, G.: Decomposition through formalization in a product space. Math. Pro-
gram. 28(1), 96–115 (1984)

I The reformulation was indepedently employed in earlier papers such as:

< Kruger, A. Y., Mordukhovich, B. S.: Generalized normals and derivatives and necessary
conditions for an extremum in problems of nondifferentiable programming II. VINITI, no. 494-
80 (1980)

< Kruger, A. Y.: Generalized differentials of nonsmooth functions. VINITI, no. 1332-81
(1981)

< Spingarn, J. E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10(1),
247–265 (1983)

I It seems it first appeared in Pierra’s thesis:

< Pierra, G.: Méthodes de décomposition et croisement d’algorithmes pour des problèmes

d’optimisation. Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG; Uni-

versité Joseph-Fourier-Grenoble I, 1976.
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Product space reformulation Standard Pierra’s approach

Product space reformulation for splitting algorithms

Find x ∈ H such that 0 ∈ A1(x) + A2(x) + · · ·+ Ar (x),

with A1,A2, . . . ,Ar : H⇒ H maximally monotone.

Define the operator A : Hr ⇒ Hr as

A(x) := A1(x1)× A2(x2)× · · · × Ar (xr ), ∀x = (x1, x2, . . . , xr ) ∈ Hr .

Proposition (Standard product space reformulation)

1 A is maximally monotone and

JγA(x) = (JγA1 (x1), JγA2 (x2), · · · , JγAr (xr )) , ∀x = (x1, x2, . . . , xr ) ∈ Hr .

2 The normal cone to Dr , NDr , is a maximally monotone operator and

JγNDr
(x) = PDr (x) = jr

(
1

r

r∑
i=1

xi

)
, ∀x = (x1, x2, . . . , xr ) ∈ Hr .

3 zer (A + NDr ) = jr
(
zer
(∑r

i=1 Ai

))
. jr : H → Dr : x 7→ (x , x , . . . , x)
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Product space reformulation Standard Pierra’s approach

Parallel Douglas–Rachford splitting algorithm

Given x0 ∈ Hr , set

xn+1 = (1− λ)xn + λ(2JγA − I )(2JγNDr
− I )(xn), n = 0, 1, 2, . . . .

Given x1,0, x2,0, . . . , xr,0 ∈ H, set

for k = 0, 1, 2, . . . :

pk = 1
r

∑r
i=1 xi,k ,

for i = 1, 2, . . . , r : zi,k = JγAi (2pk − xi,k) ,

xi,k+1 = xi,k + λ (zi,k − pk) .

Then pk ⇀ p∗ ∈ zer(
∑r

i=1 Ai ).

C1

C2

C3
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Parallel Douglas–Rachford splitting algorithm

Given x0 ∈ Hr , set
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Product space reformulation Standard Pierra’s approach

Parallel Douglas–Rachford splitting algorithm

Given x0 ∈ Hr , set

xn+1 = (1− λ)xn + λ(2JγA − I )(2JγNDr
− I )(xn), n = 0, 1, 2, . . . .

Given x1,0, x2,0, . . . , xr,0 ∈ H, set

for k = 0, 1, 2, . . . :

pk = 1
r

∑r
i=1 xi,k ,

for i = 1, 2, . . . , r : zi,k = JγAi (2pk − xi,k) ,

xi,k+1 = xi,k + λ (zi,k − pk) .

Then pk ⇀ p∗ ∈ zer(
∑r

i=1 Ai ).

C1

C2

C3

x1, 0

x2, 0
x3, 0
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Product space reformulation Standard Pierra’s approach

Parallel Douglas–Rachford splitting algorithm

Given x0 ∈ Hr , set

xn+1 = (1− λ)xn + λ(2JγA − I )(2JγNDr
− I )(xn), n = 0, 1, 2, . . . .
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Product space reformulation Standard Pierra’s approach

Parallel Douglas–Rachford splitting algorithm

Given x0 ∈ Hr , set

xn+1 = (1− λ)xn + λ(2JγA − I )(2JγNDr
− I )(xn), n = 0, 1, 2, . . . .

Given x1,0, x2,0, . . . , xr,0 ∈ H, set

for k = 0, 1, 2, . . . :

pk = 1
r

∑r
i=1 xi,k ,

for i = 1, 2, . . . , r : zi,k = JγAi (2pk − xi,k) ,

xi,k+1 = xi,k + λ (zi,k − pk) .

Then pk ⇀ p∗ ∈ zer(
∑r

i=1 Ai ).

C1

C2

C3

p0

x1, 0

x2, 0
x3, 0

Rubén Campoy A product space reformulation with reduced dimension Universitat de València
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Parallel algorithm

We need to work simultaneously
with r sequences

This has been recently called

r-fold lifting
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Douglas–Rachford with minimal lifting

I Consider a monotone inclusion described by two operators:

I DR on the product space reformulation: 2-fold lifting

I DR on the original problem: no lifting (1-fold lifting) ← Minimal

I Consider now the case of three operators:

I DR on the product space reformulation: 3-fold lifting ← Minimal?

< Ryu, E. K.: Uniqueness of DRS as the 2 operator resolvent-splitting and impos-
sibility of 3 operator resolvent-splitting. Math. Program. 182(1), 233–273 (2020)

Imposibility of 1-fold lifting + Minimal lifting: 2-fold

I Can it be generalized for an arbitrary family of r operators?

I DR on the product space reformulation: r -fold lifting ← Minimal?

I Minimal lifting: (r − 1)-fold

< Malitsky, Y., Tam, M. K.: Resolvent Splitting for Sums of Monotone Operators
with Minimal Lifting. ArXiv Prerprint (2021)
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CONTENTS

1 Introduction: projection and splitting algorithms

Projection algorithms for feasibility problems

Splitting algorithms for monotone inclusions

2 Product space reformulation

Standard Pierra’s approach

New product space refomulation with reduced dimension

3 Numerical comparison

The generalized Heron problem

Sudokus

Rubén Campoy A product space reformulation with reduced dimension Universitat de València
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New product space reformulation with reduced dimension

Find x ∈ zer{A1(x)+A2(x)+· · ·+Ar (x)}, A1,A2, . . . ,Ar : H⇒ H maximally monotone.

Consider the operators B,K : Hr−1 ⇒ Hr−1 defined, at x = (x1, . . . , xr−1) ∈ Hr−1, by

B(x) :=A1(x1)× · · · × Ar−1(xr−1)×Ar (xr )

K(x) := 1
r−1

(Ar (x1)× · · · × Ar (xr−1)) + NDr−1 (x).

Theorem (Product space reformulation with reduced dimension)

1 B is maximally monotone and

JγB(x) =
(
JγA1 (x1), . . . , JγAr−1 (xr−1)

)
, ∀x = (x1, . . . , xr−1) ∈ Hr−1.

2 K = S + NDr−1 is maximally monotone and

JγK (x) = Jγ(S+NDr−1
)(x) = JγS

(
JγNDr−1

(x)
)

= jr−1

(
J γ

r−1
Ar

(
1

r − 1

r−1∑
i=1

xi

))
.

3 zer (B + K) = jr−1

(
zer
(∑r

i=1 Ai

))
.

S(x)
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New product space reformulation for feasibility problems

I We can again tackle a feasibility problem described by C1,C2, . . . ,Cr ⊆ H.

I We now work on the product Hilbert space Hr−1 := H× · · · × H.

I Define the sets B :=C1 × · · · × Cr−1⊆ Hr−1,

K := (Cr × · · · × Cr ) ∩Dr−1⊆ Hr−1.

I We still have an equivalent two-set feasibility problem since

x ∈
r⋂

i=1

Ci ⇔ (x , . . . , x) ∈ B ∩ K .

I Moreover, knowing the projections onto C1, . . . ,Cr , the projections onto B and K can
be easily computed. Indeed, for any x = (x1, . . . , xr ) ∈ Hr ,

PB(x) =
(
PC1 (x1), . . . , PCr−1 (xr−1)

)
,

PK (x) =

(
PCr

(
1

r

r∑
i=1

xi

)
, · · · ,PCr

(
1

r

r∑
i=1

xi

))
.

(r − 1)

(r − 1)

(r − 1)

(r − 1)
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Product space reformulation

Example:

Find x ∈C1∩C2∩C3⊆ R, with

C1 := [0.5, 2],

C2 := [1.5, 2.5],

C3 := [1, 3]. 0.5 1 1.5 2 2.5 3

0 1 2 3 0
1

2
3

0

1

2

3C1 × C2 × C3 D3

PC

PD3

0 1 2 3
0

1

2

3

C 1
×

C 2

C3 × C3
D2

K

Standard product space reformulation
Product space reformulation

with reduced dimension
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Product space reformulation
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Product space reformulation

Example:
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Parallel Douglas–Rachford splitting algorithm

Given x0 ∈ Hr−1, set

xn+1 = (1− λ)xn + λ(2JγB − I )(2JγK − I )(xn), n = 0, 1, 2, . . . .

Given x1,0, x2,0, . . . , xr,0 ∈ H, set

for k = 0, 1, 2, . . . :

pk = 1
r

∑r
i=1 xi,k ,

for i = 1, 2, . . . , r : zi,k = JγAi (2pk − xi,k) ,

xi,k+1 = xi,k + λ (zi,k − pk) .

Then pk ⇀ p∗ ∈ zer(
∑r

i=1 Ai ).

Given x1,0, . . . , xr−1,0 ∈ H, set

for k = 0, 1, 2, . . . :

pk = J γ
r−1

Ar

(
1

r−1

∑r−1
i=1 xi,k

)
,

for i = 1, 2, . . . , r − 1 : zi,k = JγAi (2pk − xi,k) ,

xi,k+1 = xi,k + λ (zi,k − pk) .

Then pk ⇀ p∗ ∈ zer(
∑r

i=1 Ai ).

Standard product space reformulation
Product space reformulation

with reduced dimension

Standard-DR Reduced-DR
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Product space reformulation New product space refomulation with reduced dimension

Convergence of Douglas–Rachford

xn+1 = DRA,B(xn) := (1− α)xn + α(2PB − I )(2PA − I )(xn)

Theorem [Lions and Mercier (1979)]

Let A,B ⊆ H be closed and convex sets. Given any x0 ∈ H, for every n ≥ 0, define
xn+1 = DRA,B,α(xn). Then, the following holds.

(i) If A ∩ B 6= ∅, then {xn} → x? ∈ FixDRA,B,α such that PA(x?) ∈ A ∩ B.

(ii) If A ∩ B = ∅, then ‖xn‖ → +∞.
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Product space reformulation New product space refomulation with reduced dimension

Douglas–Rachford in Non-Convex Settings

I The method has been successfully employed for solving many different
nonconvex optimization problems, specially those of combinatorial nature.

Protein reconstruction Sudoku 8 Queens Graph coloring

I There are very few results explaining why the algorithm still works in
nonconvex settings, and even less justifying its good global performance.

S
L

A sphere and a line,

Benoist (2015).

H

Q
q1

q2

q3

q4

q5

q6

q7
q8

q9

A half-space and a potentially non-convex set,

Aragón Artacho, Borwein and Tam (2016).
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Product space reformulation

Example:
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Numerical comparison The generalized Heron problem

The Heron problem

Find the point in a line L that minimizes the sum of the distances to two given points
x1, x2 ∈ R2 in the plane:

(H) Min ‖x1 − x‖2 + ‖x2 − x‖2

s.t. x ∈ L ⊆ R2.
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Numerical comparison The generalized Heron problem

The generalized Heron problem

Find the point in a set Ωr ⊆ Rn that minimizes the sum of the distances to r − 1 given
sets Ω1, . . . ,Ωr−1 ⊆ Rn in a eculidean space:

(GH) Min
∑r−1

i=1 dΩi (x)

s.t. x ∈ Ωr ⊆ Rn.

The problem can be solved through

Find x∗ ∈ Rn such that 0 ∈
r−1∑
i=1

∂dΩi (x
∗) + NΩr (x

∗).

< Mordukhovich, B.S., Nam, N.M, Salinas, J.: Solving a generalized Heron problem by means of
convex analysis. Amer. Math. Monthly 119(2), 87–99 (2012)

< Mordukhovich, B.S., Nam, N.M, Salinas, J.: Applications of variational analysis to a generalized
Heron problem. Appl. Anal. 91(10), 1915–1942 (2012)
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Numerical comparison The generalized Heron problem

The generalized Heron problem

Find the point in a set Ωr ⊆ Rn that minimizes the sum of the distances to r − 1 given
sets Ω1, . . . ,Ωr−1 ⊆ Rn in a eculidean space:

(GH) Min
∑r−1

i=1 dΩi (x)

s.t. x ∈ Ωr ⊆ Rn.

I We consider randomly generated instances with

Ωr := ball and Ωi := hypercube, ∀i = 1, . . . , r − 1.

I We compare the performance of Standard-DR vs Reduced-DR.
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Numerical comparison The generalized Heron problem

Parallel Douglas–Rachford splitting algorithm

Given x0 ∈ Hr−1, set

xn+1 = (1− λ)xn + λ(2JγB − I )(2JγK − I )(xn), n = 0, 1, 2, . . . .

Given x1,0, x2,0, . . . , xr,0 ∈ H, set

for k = 0, 1, 2, . . . :

pk = 1
r

∑r
i=1 xi,k ,

for i = 1, 2, . . . , r : zi,k = JγAi (2pk − xi,k) ,

xi,k+1 = xi,k + λ (zi,k − pk) .

Then pk ⇀ p∗ ∈ zer(
∑r

i=1 Ai ).

Given x1,0, . . . , xr−1,0 ∈ H, set

for k = 0, 1, 2, . . . :

pk = J γ
r−1

Ar

(
1

r−1

∑r−1
i=1 xi,k

)
,

for i = 1, 2, . . . , r − 1 : zi,k = JγAi (2pk − xi,k) ,

xi,k+1 = xi,k + λ (zi,k − pk) .

Then pk ⇀ p∗ ∈ zer(
∑r

i=1 Ai ).

Standard product space reformulation
Product space reformulation

with reduced dimension

Standard-DR Reduced-DR

Rubén Campoy A product space reformulation with reduced dimension Universitat de València



Numerical comparison The generalized Heron problem

The generalized Heron problem

Find the point in a set Ωr ⊆ Rn that minimizes the sum of the distances to r − 1 given
sets Ω1, . . . ,Ωr−1 ⊆ Rn in a eculidean space:

(GH) Min
∑r−1

i=1 dΩi (x)

s.t. x ∈ Ωr ⊆ Rn.

First we compute numerical experiments to
choose the parameters of both algorithms

(results not shown)
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Numerical comparison The generalized Heron problem

The generalized Heron problem

Find the point in a set Ωr ⊆ Rn that minimizes the sum of the distances to r − 1 given
sets Ω1, . . . ,Ωr−1 ⊆ Rn in a eculidean space:

(GH) Min
∑r−1

i=1 dΩi (x)

s.t. x ∈ Ωr ⊆ Rn.
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Numerical comparison The generalized Heron problem

Douglas–Rachford with minimal lifting

I Consider a monotone inclusion described by two operators:

I DR on the product space reformulation: 2-fold lifting

I DR on the original problem: no lifting (1-fold lifting) ← Minimal

I Consider now the case of three operators:

I DR on the product space reformulation: 3-fold lifting ← Minimal?

< Ryu, E. K.: Uniqueness of DRS as the 2 operator resolvent-splitting and impos-
sibility of 3 operator resolvent-splitting. Math. Program. 182(1), 233–273 (2020)

Imposibility of 1-fold lifting + Minimal lifting: 2-fold

I Can it be generalized for an arbitrary family of r operators?

I DR on the product space reformulation: r -fold lifting ← Minimal?

I Minimal lifting: (r − 1)-fold

< Malitsky, Y., Tam, M. K.: Resolvent Splitting for Sums of Monotone Operators
with Minimal Lifting. ArXiv Prerprint (2021)
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The generalized Heron problem

Find the point in a set Ωr ⊆ Rn that minimizes the sum of the distances to r − 1 given
sets Ω1, . . . ,Ωr−1 ⊆ Rn in a eculidean space:
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Numerical comparison Sudokus

Sudokus

A Sudoku is a puzzle whose objective is to fill a 9× 9 grid with digits from 1 to 9
verifying the following constraints:

I Some cells are already filled and fixex.

I Each row must contain all digits from 1
to 9 exactly once.

I Each column must contain all digits
from 1 to 9 exactly once.

I Each 3× 3 subrid must contain all digits
from 1 to 9 exactly once.
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Sudokus as feasibility problems

A Sudoku can be modeled as a feasibility problem.

Consider the following sets:

I C1 := {Completions of the given matrix}

I C2 := {Matrices whose rows are permutations of {1, 2, . . . 9}}

I C3 := {Matrices whose columns are permutations of {1, 2, . . . 9}}

I C4 := {Matrices whose 3x3 subgrids are permutations of {1, 2, . . . 9}}

Rubén Campoy A product space reformulation with reduced dimension Universitat de València
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Sudokus as feasibility problems

Solving the Sudoku is equivalent to solving the following nonconvex feasibility problem:

(P) Find M ∈ C1 ∩ C2 ∩ C3 ∩ C4

DR fails to solve the previous feasibility problem
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Sudokus as feasibility problems (reformulated)

The problem can be reformulated as a 3-dimensional multiarray X ∈ R9×9×9 with binary
entries defined componentwise as

X [i , j , k] =

 1, if digit k is assigned to the (i , j)th entry of the Sudoku,

0, otherwise;

1 3 9 8 2 4 5 7 6
2

5
9

8
7

4
3

6

Feasibility constraint sets
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< Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps.
Proc. Natl. Acad. Sc. 104(2), 418–423 (2007)

< Aragón Artacho, F.J., Borwein, J.M., Tam, M.K.: Recent results on
Douglas-Rachford methods for combinatorial optimization problem. J.
Optim. Theory. Appl. 163(1), 1–30 (2014)
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Feasibility constraint setsProjections onto the constraint sets are
computed through the projector onto the
canonical basis:
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Sudokus as feasibility problems (reformulated)

I Again, we compare the performance of Standard-DR vs Reduced-DR.

I We consider 95 hard Sudokus from the dataset top95.

I For each sudoku: 10 random initializations.

I Instances were labeled as unsolved after 5 minutes of CPU running time.

Algorithm Solved Wins Average time

Standard-DR 89.68% 23.79% 3.95 s

Reduced-DR 90.42% 66.52% 3.11 s
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Thank you for your attention!
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