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Robust recovery

A particular situation in different areas of engineering and science is that one has
the observation

y0 = Φx0 (1)

via a known (or random) linear process Φ ∈ Rm×n and an unknown vector
x0 ∈ Rn.

Solving this linear equation to recover x0 is a challenging task especially for the
case m << n.

With prior information on x0, an optimization is considered to recover x0:

min
x∈Rn

J(x) := J0(D
∗x) subject to Φx = y0, (2)

where J0 : Rp → R+ is non-negative regularizer and D is an n× p matrix.
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Robust recovery

Sparsity: J0(u) = ∥u∥1 =

p∑
k=1

|uk| (ℓ1 norm) for u ∈ Rp.

Group-sparsity: J0(u) = ∥u∥1,2 =

q∑
k=1

∥ugk∥ (ℓ1/ℓ2 norm) for

u = (ug1 , . . . , ugq ) ∈ Rp.

Low-rank: J0(U) = ∥U∥∗ =

r∑
k=1

σk(U) (nuclear norm) for U ∈ Rt×s = Rp and

r = rank (U).
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Robust recovery

When the observation is disrupted by noise, the system (1) is modified by

y = Φx0 + ω (3)

with a small noise ω in Rm with ∥ω∥ ≤ δ.

A typical way to recover x0 via optimization is to solve the following problem

min
x∈Rn

J(x) subject to ∥Φx− y∥ ≤ δ (4)

or its Lagrange form

min
x∈Rn

1

2
∥Φx− y∥2 + µJ(x) (5)

with parameter µ > 0.

A stage of Robust Recovery occurs when

Any solution xδ to (4) converges to x0 as δ → 0.

Any solution xµ to (5) converges to x0 as δ → 0 and µ = cδ.
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Robust recovery

Some well-known results on robust recovery

Theorem 1 (Solution uniqueness for robust recovery)

If J(x) = ∥x∥1, x0 is a unique minimizer to problem (2) if and only if
∥xδ − x0∥ = O(δ) and ∥xµ − x0∥ = O(δ) as µ = cδ.

Grasmair, M., Haltmeier, M., Scherzer, O.: Necessary and sufficient conditions for
linear convergence of ℓ1-regularization, Comm. Pure Applied Math. 64 (2011), 161–182.

Why is solution uniqueness?

Naturally, xδ may converge to a minimizer to problem (2) and we want that
minimizer to be x0 (recovering x0).

If x0 is the unique solution to (2), it is also the unique solution to the
ℓ0-problem

3 4:
min ∥x∥0 subject to Φx = y0.

3
Fuchs, J. J.: Recovery of exact sparse representations in the presence of bounded noise,

IEEE Trans. Inf. Theory, 51 (2005), 3601–3608.
4
Bruckstein, A., M., Donoho, D. L., Elad, M.: From sparse solutions of systems of equations

to sparse modeling of signals and images, SIAM Review 51 (2009), 34–81.
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Robust recovery

Theorem 2 (Robust recovery via descent cone)

Let J be a norm in Rn. Suppose that there exists some α > 0 such that
∥Φw∥ ≥ α∥w∥ for all w ∈ TJ(x0), where TJ(x0) is the descent cone to J at x0

defined by
TJ(x0) := cone {x− x0| J(x) ≤ J(x0)}.

Then any solution xδ to problem (4) satisfies

∥xδ − x0∥ ≤ 2δ

α
.

Chandrasekaran, V., Recht, B., Parrilo, P.A, Willsky, A. S.: The convex geometry of
linear inverse problems, Found Comput Math, 12 (2012), 805–849.

The closure of descent cone is indeed the critical cone to J at x0:

CJ(x0) := {w ∈ Rn| dJ(x0)(w) ≤ 0}.

The descent cone TJ(x0) is not closed. But it is closed in the case J(x) = ∥x∥1.

Where is solution uniqueness?

It is hidden in the red condition, which indeed means KerΦ ∩ CJ(x0) = {0}.
Solution uniqueness is characterized by KerΦ ∩ TJ(x0) = {0}.
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Robust recovery

Example 3 (Solution uniqueness for group-sparsity problems)

Consider the following ℓ1/ℓ2 optimization problem:

min
x∈R3

J(x) =
√

x2
1 + x2

2 + |x3| subject to Φx = Φx0

with Φ =

[
1 1 0
1 0 −1

]
, x0 = (0, 1, 0)T , and y0 = Φx0 = (1, 0)T . We have

KerΦ ∩ CJ(x0) ̸= {0} but KerΦ ∩ TJ(x0) = {0}.
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Robust recovery

Some questions to answer

Q1: What does the condition KerΦ ∩ CJ(x0) = {0} mean?

Q2: Does J have to be a norm?

Q3: Can solution uniqueness sufficiently guarantee robust recovery with linear
rate?

We observe that the above condition is equivalent to the so-called sharp minima at
x0: there exists c > 0 such that

J(x)− J(x0) ≥ c∥x− x0∥ for Φx = y0.

This is also equivalent to solution uniqueness in the case of ℓ1 optimization
problem.
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Sharp, strong, and unique minimizers for robust recovery

Sharp minima

Definition 4 (Sharp minima)

We say x̄ to be a sharp solution/minimizer to the (not necessarily convex) function
φ : Rn → R := R ∪ {∞} with a constant c > 0 if there exists ε > 0 such that

φ(x)− φ(x̄) ≥ c∥x− x̄∥ for all x ∈ Bε(x̄).

Polyak, B. T.: Sharp minima, Institute of Control Sciences Lecture Notes, Moscow,
USSR, 1979.

Sharp minima is a global property when φ is a convex function.

Sharp minima plays significant roles in algorithms as it usually guarantees
finite termination.

Sharp minima at x̄ can be characterized by:

dφ(x̄)(w) ≥ c∥w∥ for all w ∈ Rn.
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Sharp, strong, and unique minimizers for robust recovery

Recall problem (2):

min
x∈Rn

J(x) subject to Φx = y0,

Suppose that J : Rn → R is a continuous convex function (not necessary, but for
simplification in this talk).

Proposition 1 (Solution uniqueness for robust recovery)

x0 is a unique solution to problem (2) if and only if:

(i) Any solution xδ to problem (4):

min
x∈Rn

J(x) subject to ∥Φx− y∥ ≤ δ

converges to x0 as δ → 0.

(ii) For any constant c1 > 0, any solution xµ to problem (5):

min
x∈Rn

1

2
∥Φx− y∥2 + µJ(x)

with µ = c1δ converges to x0 as δ → 0.
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Sharp, strong, and unique minimizers for robust recovery

Theorem 5 (Sharp minima for robust recovery)

If x0 is a sharp solution to (2), i.e., x̄ is a sharp solution to the function
φ(x) := J(x) + δΦ−1(y0)

(x), we have:

(i) Any solution xδ to problem (4) satisfies

∥xδ − x0∥ ≤ O(δ).

(ii) For any c1 > 0 and µ = c1δ, every minimizer xµ to (5) satisfies

∥xµ − x0∥ ≤ O(δ).

This theorem covers lots of well-known results.

The precise calculation for O(δ) can be obtained.

The cost function J is not necessarily convex.

In Example 3, we have solution uniqueness, which is not sharp minima. However,
this unique solution is indeed a strong solution.
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Sharp, strong, and unique minimizers for robust recovery

Strong minima

Definition 6 (Strong minima)

We say x̄ is said to be a strong solution/minimizer to the function φ : Rn → R
with a constant κ > 0 if there exists δ > 0 such that

φ(x)− φ(x̄) ≥ κ

2
∥x− x̄∥2 for all x ∈ Bδ(x̄).

Strong minima is desired in many nonlinear algorithms to guarantee fast
convergences.

Strong minima can be characterized by second-order analysis: x̄ is a strong
minima to φ if and only if 0 ∈ ∂φ(x̄) and

d2φ(x̄|0)(w) > 0 for all w ̸= 0.

TRAN T.A. NGHIA Robust recovery Oct 27, 2021 13 / 25



Sharp, strong, and unique minimizers for robust recovery

Theorem 7 (Strong minima for robust recovery)

If x0 is a strong solution to problem (2), the following statements hold:

(i) Any solution xδ to problem (4) satisfies:

∥xδ − x0∥ ≤ O(δ
1
2 ).

(ii) For any constant c1 > 0, every minimizer xµ to problem (5) with µ = c1δ
satisfies

∥xµ − x0∥ ≤ O(δ
1
2 ).

The precise calculation for O(δ
1
2 ) can be obtained.

The cost function J is not necessarily convex.

Robust recovery for the problem in Example 3 has rate O(δ
1
2 ).

Does this rate remain for any group-sparsity problems?
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Quantitative characterizations for sharp minima

Decomposable norms

In this section, consider the following problem (2)

min
x∈Rn

J(x) := ∥D∗x∥A subject to Φx = y0.

Definition 8 (Decomposable norms)

A norm ∥ · ∥A is called to be decomposable at ū if there is a subspace V ⊂ Rp and
a vector e ∈ V such that

∂∥ū∥A = {z ∈ Rp| PV z = e and ∥PV ⊥z∥∗A ≤ 1} ,

where ∥ · ∥∗A is the dual norm to ∥ · ∥A.

Negahban, S., Ravikumar, P., Wainwright, M.J., Yu, B.: A unified framework for
high-dimensional analysis of m-estimators with decomposable regularizers. In: Advances
in Neural Information Processing Systems, conference proceeding (2009)

Candès, E. and Retch, B.: Simple bounds for recovering low-complexity models,
Math. Program., 141 (2013), 577–589.

For ∥ · ∥A = ∥ · ∥1, we have

e = (sign {ūI}, 0K)T and V = RI × {0K},
where I = supp (ū) = {i ∈ {1, . . . , p| ūi ̸= 0} and K = Ic.
Decomposable norm includes the ℓ1 norm, ℓ1/ℓ2 norm, and nuclear norm.
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Quantitative characterizations for sharp minima

Theorem 9 (Characterizations for sharp solution)

The following statements are equivalent:

(i) x0 is a sharp solution to problem (2).

(ii) The Restricted Injectivity holds at x0 in the sense that

KerΦ ∩Ker (D∗
V ⊥) = {0}

with DV ⊥ = DPV ⊥ and the Source Identity ρ(e) is less than 1, where ρ(e) is
the optimal value to the following convex optimization problem

min ∥z∥∗A subject to NDz = −NDe and z ∈ V ⊥. (6)

with N being the matrix forming the basis to KerΦ.

Restricted Injectivity is a traditional condition necessary for solution
uniqueness.

The matrix N can be chosen from the singular value decomposition of
Φ = UΣV ∗.

Particular cases of Source Condition are sufficient for solution uniqueness and
robust recovery used in many papers.

Problem (6) is a convex problem, we use cvxopt package to solve it.
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Quantitative characterizations for sharp minima

Corollary 10 (Sufficient condition for sharp solution)

If the Restricted Injectivity holds at x0 and the Analysis Exact Recovery Condition
a

τ(e) := ∥(NDV ⊥)†NDV e∥∗A < 1

is satisfied, then x0 is a sharp solution to problem (2).

a
appeared in “Nam, S., Davies, M. E., Elad, M., Gribonval, R.: The cosparse

analysis model and algorithms, Applied and Computational Harmonic Analysis, 34
(2013), 30–56” for the case J0 = ∥ · ∥1.

How can we check sharp minima?

First, check the Restricted Injectivity.

If the Restricted Injectivity holds and τ(e) << 1, then x0 is a sharp minima.

If the Restricted Injectivity holds and τ(e) ≈ 1, check condition ρ(e) < 1.
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Group-sparsity optimization problems

Group-sparsity problems

Suppose that Rp is decomposed into q groups by

Rp =

q⊕
g=1

Vg,

where each Vg is a subspace of Rp with the same dimension G. For any u ∈ Rp and

1 ≤ g ≤ q, we write u =

q∑
g=1

ug with ug ∈ Vg being the vector in group Vg of u.

The ℓ1/ℓ2 norm in Rp is defined by

∥u∥ℓ1/ℓ2 =

q∑
g=1

∥ug∥2.

Its dual is the ℓ∞/ℓ2 norm:

∥u∥ℓ∞/ℓ2 = max
1≤g≤q

∥ug∥2.

ℓ1/ℓ2 norm is decomposable at ū = D∗x0 with V =
⊕
g∈I

Vg,

I := {g ∈ {1, . . . , q}| ug ̸= 0}, and

e =
∑
g∈I

ūg

∥ūg∥2
.

This section devotes to studying the group-sparsity regularized optimization
problem:

min
x∈Rn

∥D∗x∥ℓ1/ℓ2 subject to Φx = Φx0. (7)
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Group-sparsity optimization problems

Theorem 11 (Characterizations for unique/strong solutions to group-sparsity
problems)

The following assertions are equivalent:

(i) x0 is a unique solution to problem (7).

(ii) x0 is a strong solution to problem (7).

(iii) x0 is a solution to (7), KerΦ ∩ E ∩KerD∗
S = {0}, and

ζ(e) := min
u∈KerMD

V ⊥
∥(MDV ⊥)†MDV e− u∥ℓ∞/ℓ2 < 1,

where E is defined by

E := {w ∈ Rn|D∗
V w ∈ span {eg| g ∈ I}}

and M∗ is a matrix forming a basis matrix to KerΦ ∩ E.

Several known sufficient conditions 5 6 for solution uniqueness to group-sparsity
problems are stronger than the about one.

5
Grasmair, M.: Linear convergence rates for Tikhonov regularization with positively

homogeneous functionals, Inverse Problems, 27(2011) 075014.
6
Roth, V. and Fischer, B.: The group-lasso for generalized linear models: uniqueness of

solutions and efficient algorithms, Proceedings of the 25th ICML, 2008.
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Group-sparsity optimization problems

Corollary 12 (Robust convergence for group-sparsity under solution uniqueness)

If x0 is a unique minimizer to problem (2) with J0 = ∥ · ∥1,2, the following
statements hold :

(i) Any solution xδ to problem (4) with noise ∥ω∥ ≤ δ satisfies:

∥xδ − x0∥ ≤ O(δ
1
2 ).

(ii) For any constant c1 > 0, every minimizer xµ to problem (5) with noise

∥ω∥ ≤ δ and µ = c1δ satisfies ∥xµ − x0∥ ≤ O(δ
1
2 ).

TRAN T.A. NGHIA Robust recovery Oct 27, 2021 20 / 25



Group-sparsity optimization problems

Computing the Strong Source Condition ζ(e)

ζ2(e) is the optimal value to the following smooth convex optimization
problem (second-order cone programming):

min t subject to MDz = −MDe, ∥zg∥2−t ≤ 0, g ∈ Ic and z ∈
⊕
g∈I

Vg

with |I|G+ 1 variables, which can be solved by available packages such as
cvxopt.

An simple upper bound for ζ(e) is

ζ(e) ≤ γ(e) := ∥(MDV ⊥)†MDV e∥ℓ∞/ℓ2 .
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Group-sparsity optimization problems

Unique solutions and sharp solutions in group-sparsity problems

x0 is a solution
100 tests

KerΦ ∩KerD∗
S = {0}

100 tests

τ(e) < 0.99
11 cases

τ(e) ≥ 0.99
89 cases

ρ(e) < 0.95
60 cases

0.95 ≤ ρ(e) < 1.05
29 cases

γ(e) < 0.99
26 cases

γ(e) ≥ 0.99
3 cases

ζ(e) < 0.95
3 casesTRAN T.A. NGHIA Robust recovery Oct 27, 2021 22 / 25



Group-sparsity optimization problems

number of cases

Sharp solution 71
Strong solution (non-sharp) 29

Table: Number of cases with strong and sharp solutions

How can all solutions in these 100 random problems be unique?

This belongs to the area of Exact recovery with high probability. 78

Exact Recovery is strongly studied by involving sharp minima. Strong minima
in Exact Recovery is not yet discovered.

7
Rao, N., Recht, B., Nowak,R.: Universal measurement bounds for structured sparse signal

recovery, Proceedings of AISTATS (2012).
8
Candès, E. and Retch, B.: Simple bounds for recovering low-complexity models, Math.

Program., 141 (2013), 577–589.
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Group-sparsity optimization problems

Nuclear norm minimization problem

Example 13 (Difference between unique solution and strong solution to NNM)

Consider the following optimization problem

min
X∈R2×2

∥X∥∗ subject to Φ(X) :=

[
X11 +X22

X12 −X21 +X22

]
=

[
1
0

]
.

X =

[
1 0
0 0

]
is a unique solution, but it is neither strong nor sharp solution to

NNM.

A study about unique/sharp/strong solutions for NNM is interesting and open.
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Conclusion and ongoing research

In this work, we show that:

Sharp, strong, and unique minimizers play significant roles in robust recovery.

Sharp minima can be characterized numerically.

Unique and strong solutions for group-sparsity problems are the same.

Solution uniqueness for group-sparsity problems is equivalent to robust

recover with O(δ
1
2 ) rate.

We are working on several open questions:

How does solution uniqueness affect on robust recover when dealing with
nuclear norm minimization problems?

What happens when solution uniqueness does not occur?

How to use strong minima in Exact Recovery?
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