
Rational approximation, its role in different branches of
mathematics and applications

Nadezda Sukhorukova

Swinburne University of Technology

nsukhorukova@swin.edu.au

November 3, 2021

Nadezda Sukhorukova ( Swinburne University of Technology nsukhorukova@swin.edu.au )Rational approximation and application November 3, 2021 1 / 39



Overview

1 Origins and motivation
Chebyshev approximation
Rational approximation

2 Approximation and Optimisation
Formulation and methods
Quasiconvexity
Methods

3 Applications
Computational Chemistry
Deep learning

Nadezda Sukhorukova ( Swinburne University of Technology nsukhorukova@swin.edu.au )Rational approximation and application November 3, 2021 2 / 39



Chebyshev approximation

In this talk, we are working with uniform (Chebyshev) approximation:

min
A

max
t∈Q
|f (t)− g(A, t)|,

where A are the decision variables.
The optimality conditions are based on maximal deviation points. In the
case of univariate function approximation, the conditions are based on the
notion of of alternating sequence.
In the case of univariate polynomial approximation:

min
A=(a0,...,an)

max
t∈[a,b]

|f (t)− (a0 + a1t + a2t
2 + · · ·+ ant

n)|.

Theorem

(Chebyshev) The solution is optimal if and only there are n + 2 alternating
points.
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Multivariate Chebyshev approximation

In the case of multivariate function approximation, the points are not
totally ordered and therefore the extension is problematic, but there are
some results: more complex geometrical constructions are involved.
In some papers the authors reduce multivariate alternating sequence
(alternance) to the alternation of certain determinants.
The main computational problem here is that multivariate monomials do
NOT form a Chebyshev system.
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From polynomial to rational approximation.

Polynomial approximation (approximation by a linear combination of
monomials). The coefficients are subject to optimisation. Most results can
be extended to the case when the basis functions are not restricted to
monomials, but form a Chebyshev system.

Polynomial approximation (approximation by a linear combination of
monomials). The coefficients are the decision variables.

Polynomial splines or piecewise polynomials (fixed or free knots:
points of switching from one polynomial to another).

Rational approximation (approximation by a ratio of two polynomials).

Generalised rational approximation (ratio of linear forms, the basis
functions are not limited to monomials).
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Approximation of sign(x): the degree of the polynomials
is 4. The picture was produced by Grigoriy Tamasyan.
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Free knot spline approximation and rational approximation
are related

A number of studies (Petrushev and Popov [12]) indicate that rational
functions may be a suitable substitution for free knot polynomial spline
approximation whose corresponding optimisation problems are very
complex and there is no efficient computational tool for constructing the
corresponding approximations (Nurnberger et. al. [4]). In particular, this
problem was listed as one of the most important open problem in
approximation [4].
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Approximation

Consider uniform approximation by a rational function Rnk(t), the degree
of the polynomials in the numerator and denominator are n and k,
respectively. Achiezer in 1956 [1].

Theorem

There exists a unique optimal rational function Rnk . The number of
alternating points is n + k + 2− d, where d is the defect.

d = min{ν, µ}, Rnk = Pn−ν

Pk−µ
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Rational Approximation methods

Remez-like method

Linear inequality method [11]

Differential correction [3]

Many other, many of them rely on linear programming.
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Optimisation

The objective function is quasiconvex (all the sublevel sets are convex).
Sketch of the proof.

1 Rnk is a quasililear (quasiaffine) as a function of the coefficients.

2 The objective function is the supremum for t

max{f (t)− Rnk(A, t),Rnk(A, t)− f (t)}.

3 Supremum of quasiconvex functions is quasiconvex.
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The optimisation problem is as follows

min
A,B

sup
t∈[c,d ]

|f (t)− ATG(t)

BTH(t)
|, (1)

subject to
BTH(t) > 0, t ∈ [c, d], (2)

where f (t) ∈ C 0
[c,d ] is a function to approximate,

A = (a0, a1, . . . , an)T ∈ Rn+1 and B = (b0, b1, . . . , bm)T ∈ Rm+1 are the
decision variables,
G(t) = (g0(t), . . . , gn(t))T ∈ Rn+1 and H(t) = (h0(t), . . . , hm(t))T ∈ Rm+1

are known functions, in the rest of the paper we refer to them as basis
functions. Therefore, we construct the approximations in the form of the
ratios of linear combinations of basis functions. Note that the constraint
set is an open convex set.
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How to reformulate

min z (3)

subject to

f (ti )−
ATG(ti )

BTH(ti )
≤ z , i = 1, . . . ,N (4)

ATG(ti )

BTH(ti )
− f (ti ) ≤ z , i = 1, . . . ,N (5)

BTH(ti ) > 0, i = 1, . . . ,N (6)

Now, do the bisection for z , at each iteration z is fixed (Bisection method
is coming).
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It appeared that Linear Inequality method is Bisection.

Bisection algorithm for quasiconvex optimisation.
Absolute precision for maximal deviation ε.
Set l ← 0
Set u to be maximal deviation for a polynomial approximation (numerator)
z ← (u + l)/2

while u − l ≤ ε do
Check feasibility.if feasible solution exists then u ← z

else
l ← z

end ifupdate z ← (u + l)/2
end whileA,B← solve problem with z
return z ,A,B
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Generalised fractional programming

In generalised fractional programming one needs to minimise supremum of
rational functions (subject to linear constraints).

f (ti )−
ATG(ti )

BTH(ti )
≤ z , i = 1, . . . ,N (7)

ATG(ti )

BTH(ti )
− f (ti ) ≤ z , i = 1, . . . ,N (8)

One of the methods for solving fractional programming problems is
Dinkelbach method [7]. There are a number of generalisations of this
method to generalised fractional problems and some of them are
Differential correction [5].
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Bisection vs Differential correction

Bisection method has linear convergence rate (bisecting the maximal
deviation at each step).
Differential correction correction is preferable when we are working in the
following conditions

1 approximation is univariate;

2 approximation is rational (ratio of two polynomials);

3 full alternation (impossible to know in advance).

There are also a number of specific issues: Differential correction
terminates when the improvement (from one iteration to the next one) is
small, while Bisection terminates with ε from the optimal solution.
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Near optimal approximation

AAA method (Y Nakatsukasa, O. Sete and L. Trefethen).
The name AAA stands for “adaptive Antoulas– Anderson”, the scheme is
based on [1].
[1] B. Alpert, L. Greengard, and T. Hagstrom, Rapid evaluation of
nonreflecting boundary kernels for time-domain wave propagation, SIAM
J. Numer. Anal., 37 (2000), pp. 1138–1164.
[2] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems,
SIAM, Philadelphia, 2005.
[3] A. C. Antoulas and B. D. Q. Anderson, On the scalar rational
interpolation problem, IMAJ. Math. Control Inform., 3 (1986), pp. 61–88.
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AAA and Bisection: provided by Vinesha Peiris

Absolute deviation. Approximation function is f (t) = |t − 0.25|,
t ∈ [−1, 1]
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Heat integral

They need to approximate

g(m, x) =

∫ ∞
x

e−x

xm+2
dx . (9)

It can be shown that

g(m, x) =
e−x

xm+2
h(m, x). (10)

A common approach is to approximate h(m, x) and then multiply by

e−x

xm+2
.
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g(m, x)
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h(m, x)
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e−x

xm+2
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Main results

1 Rational approximation of h(m, x) and then multiplication by e−x

xm+2

2 Bisection method is more stable than Differential correction.
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Neural Network (Wikipedia picture: creative commons)
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Neural Network: mathematical side

ϕ(W , x) = σ

 n∑
j=1

wjx
i
j + w0

 , (11)

σ is called activation function. This is a chosen function, not subject
to optimisation.

W are weights (subject to optimisation).

If one or more hidden layer is present, ϕ becomes a composition,
where affine transformations are alternating with (different) activation
functions.
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Neural Network (no hidden layer)
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Neural Network and universal approximators: Universal
Approximation Theorem

Theorem

Fix a continuous function σ : R→ R (activation function) and positive
integers d ,D. The function σ is not a polynomial if and only if, for every
continuous function f : Rd → RD and every ε > 0 there exists a
continuous function fε : Rd → RD (the layer output) with representation
fε = W2 ◦ σ ◦W1, where W2,W1 are affine maps and ◦ denotes
component-wise composition, such that the approximation bound

sup
x∈K
‖f (x)− fε(x)‖ < ε

arbitrarily small (distance from f to fε can be infinitely small).
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Maths behind Universal approximation

1 A. Kolmogorov and V. Arnold ([9, 2], multivariate function);

2 Cybenko [6], Hoknik [8], Pinkus et al [10] (activation functions);

3 Is Kolmogorov-Arnold theorem relevant to Neural Networks?

4 The most popular ReLU and Leaky ReLU do NOT satisfy the
conditions of Cybenko-Hornik-Pinkus theorem (previous slide).

Pinkus et al: Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon
Schocken.
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Main directions for approximation

1 Approximation of timeseries by rational functions and then use the
coefficients of the rational functions as input parameters for the
Neural network.

2 Network approximation (no hidden layer) by Leaky ReLU
(quasiconvex approximation)

3 Network approximation (no hidden layer) by rational functions.
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Approximation of the timeseries: general idea

Generalised rational approximation and its application to improve deep
learning classifiers by V Peiris, N Sharon, N Sukhorukova, J Ugon, Applied
Mathematics and Computation 389, 125560

min z (12)

subject to

f (ti )−
ATG(ti )

BTH(ti )
≤ z , (13)

ATG(ti )

BTH(ti )
− f (ti ) ≤ z , (14)

BTH(ti ) > 0, (15)

ti ∈ I , i = 1, . . . ,N. (16)

Note that if (A,B) is an optimal solution, then α(A,B), α ∈ R
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Approximation of timeseries: one hidden layer

Original (raw data) Model 1 Model 2
4097 features 5 features 6 features

Number of nodes Accuracy Nodes Accuracy Nodes Accuracy

100 (default) 55% 100 75% 100 75%
1 60% 1 40% 1 40%
2 35% 2 90% 2 60%
3 45% 3 60% 3 45%
4 65% 4 60% 4 65%
5 45% 5 35% 5 80%
6 45% 6 55% 6 70%
7 55% 7 70% 7 65%
8 55% 8 65% 8 85%
9 50% 9 70% 9 65%

10 55% 10 45% 10 45%

2731 (2/3 of inputs) 60% 3 60% 4 65%
8194 (2*inputs+1) 50% 11 75% 13 70%
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Approximation of timeseries: two hidden layers

Number of nodes Original (raw data) Model 1 Model 2
in each layer 4097 features 5 features 6 features

100, 100 65% 60% 45%
2, 1 60% 60% 60%
3, 2 30% 40% 60%
4, 3 60% 45% 75%
5, 1 60% 60% 80%
5, 4 45% 75% 50%
6, 5 70% 40% 80%
7, 6 50% 60% 40%
8, 2 60% 90% 40%
8, 7 50% 55% 50%
8, 8 60% 25% 80%
9, 8 45% 55% 80%

10 , 9 45% 75% 85%
10, 10 65% 80% 80%
11,11 55% 80% 75%
12, 11 45% 85% 60%
12, 12 50% 80% 50%
13, 12 75% 85% 55%
16, 15 45% 80% 40%
25, 25 50% 85% 55%
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Approximation of the output using rational functions (no
activation function)

This approach is new. Instead of approximating the network by an
composition of affine functions and activation functions, we suggest to
approximate it by a multivariate rational function.
Kolmogorov-Arnold theorem states that every multivariate continuous
function can be written as a finite composition of univariate functions and
binary operation of addition:

f (x) = f (x1, . . . , xn) =
2n∑
q=0

Φq

 n∑
p=1

φq,p(xp)

 .

The degree of the monomials does not exceed one.
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Approximation of the output using rational functions:
experiments

Data Size Training Test Best result

BirdChicken 512/20/20 100% 55% 98.40%
BeetleFly 512/20/20 100% 80% 94.85%

ElectricDeviceDetect 256/623/3767 100% 85.88% Unknown
MoteStrain 84/20/1252 100% 75.08% 91.65%
CatsDogs 14773/138/137 70.12% 50.61% Unknown

Wafer 152/1000/6164 100% 92.98% 99.98%
PowerCons 144/180/180 100% 71.67% Unknown

ItalyPowerDemand 24/67/1029 100% 93.68% 97.03%
Chinatown 24/20/345 100% 82.80% Unknown

HandOutlines 2709/1000/370 100% 74.32% 92.37%

DistalPhalanx 80/600/276 63% 58.33% 82.12%
MiddlePhalanx 80/600/291 64.67% 57% 72.23%

SharePriceIncrease 60/965/965 31.30% 31.37% Unknown
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Future research and open problems

Abstract convexity?

Approximation by quasiaffine functions (no restriction to rational and
generalised rational approximation). The level sets are hyperplanes
and the sublevel sets are half-spaces.
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The End
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Network approximation (quasiconvex model), joint work
with Dr. V Roschina and V. Peiris, under review

min
w∈Rn+1

max
i∈1:N

∣∣∣∣∣∣y i − σ
 n∑

j=1

wjx
i
j + w0

∣∣∣∣∣∣ .
σ is the activation function, we work with leaky ReLU, the corresponding
optimisation problem is quasiconvex (uniform approximation).
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Network approximation (quasiconvex model): numerical
experiments (1000 points for training and 370 for the test)

Test set
Method classification Confusion matrix

accuracy

MATLAB toolbox 89.7%
108 25

13 224

Uniform approximation 60.54%
77 56

90 147

Table: Original dataset: classification results

Why our procedure is not efficient?
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Network approximation (quasiconvex model): comments
(1000 points for training and 370 for the test)

Uniform approximation, due to its nature, treats under-represented groups
as valid points, while least squares approximation tends to “average” and
therefore under-represented groups tend to be “ignored”. This is a great
advantage when the under-represented groups are outliers, but in many
cases these points are valid data.
On the other hand, the presence of ouliers may decrease may decrease the
accuracy in the case of uniform approximation. Therefore, our hypothesis
is that uniform approximation approach is preferable in the following cases.

1 Absence (or small number) of outliers.

2 Presence of under-represented groups of valid data or uneven
distribution of data between the classes (that is, one class is
significantly larger than others).

3 Limited size of the available data, where most datapoints are valid
and accurate.
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Reduced dataset: 5+35 and 35+5

Method Test accuracy Confusion matrix

MATLAB toolbox 64.3%
296 66

291 347

Uniform approximation 69.5%
193 169

136 502

Table: Reduced dataset: classification results for uneven number of points from
each class in the training set: 5 ponts in Class 1 and 35 points in Class 2.

Method Test accuracy Confusion matrix

MATLAB toolbox 74.6%
116 246

8 630

Uniform approximation 66.5%
128 234

101 537

Table: Reduced dataset: classification results for uneven number of points from
each class in the training set: 35 points in Class 1 and 5 points in Class 2
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