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ke Article  Talk

e . .
wWikreepiA | Conjugate gradient method
L i From Wikipedia, the free encyclopedia
Main page In mathematics, the conjugate gradient method is an algorithm for the numerical soluti
Contents implemented as an iterative algorithm, applicable to sparse systems that are too large tc

Current vents numerically solving partial differential equations or optimization problems.
Random article

About Wikipedia The conjugate gradient method can also be used to solve uncaonstrained optimization pn
Contact us and extensively researched (415
Donate . . : -

The biconjugate gradient method provides a generalization to non-symmetric matrices.
Contribute

Contents [hide]

Help
TEmiEn 1 Description of the problem addressed by conjugate gradients

Community portal 2 Derivation as a direct method
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A class of Newton-type algorithms with MINRES as sub-problem solver
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Algorithm Newton-MR (Invex)
1: Input: x0,0<7<1,0<p<]1

2: for k =0,1,2,... until ||g,|| <7 do
3 P = _HI(gk
4 Find ay such that ||g. 1| < lgell® + 200k (P, Higx)

5. Update x44+1 = Xk + axpy
6: end for
7: Output: x for which ||g,|| <7

14 /53
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Examples of Convergence Results

Global Linear Rate in “||g]|”

[ <@ mlgul?, 0<n<t.

Global Linear Rate in “f(x) — min f" Under Polyak-tojasiewicz
X

f(xk) —minf < C¢*, 0< (<L

v
Error Recursion with o = 1

i —yl < i —y? 1-— i —y|.
min [ Xirs =yl < a min flxie —yll" + /(1 = v)ea min fxi -y
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Inexact Hessian
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Finite-sum Optimization

Sleo <e_2 log <25d>)

17/53



Newton-MR (Invex)
0000000®000000000000000

Finite-sum Optimization

17/53



Newton-MR (Invex)
00000000e00000000000000

Newton-MR with Inexact Hessian

Algorithm Newton-MR With Inexact Hessian Information

1 Input: x9, 0 <7<1,0<p<1

2: for k=0,1,2,... until ||g,|| <7 do

3 P ™ —’:’ng

4 Find oy such that |gs 1] < |lgkll® + 200 <pk, I:Ikgk>

5. Update xxy1 = xx + axpy
6: end for
7: Output: x for which ||g,|| <7
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XD = (0 o 1 1g,
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Newton-MR Method

xUF1) — x(k) _ akHLgk
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Newton-MR Method w. Inexact Hessian

D) — 50 o il g,

20/53



0000000000000 000000000
Newton-MR Method w. Inexact Hessian

D) — 50 o il g,
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lim A = H' <= Rank(H) = Rank(H)

e—0

[Matrix Perturbation Theory, Gilbert W. Stewart and Ji-guang Sun]
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lim A" = H' < Rank(H) = Rank(H)
€E—>

| <a X

[Matrix Perturbation Theory, Gilbert W. Stewart and Ji-guang Sun]
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[f =] < (2572 ma{
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[Matrix Perturbation Theory, Gilbert W. Stewart and Ji-guang Sun]
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[f =] < (15522 ) {0

#eo(2)

[Matrix Perturbation Theory, Gilbert W. Stewart and Ji-guang Sun]

m\f}e
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€

[Matrix Perturbation Theory, Gilbert W. Stewart and Ji-guang Sun]

22/53



Newton-MR (Invex)
000000000000e0000000000
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[Matrix Perturbation Theory, Gilbert W. Stewart and Ji-guang Sun]
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which implies

H (’:”:’T - HHT) VH < é&lv], forallv
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we only need
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pgf) /2 arg min HI:Ikp + ng
pPEK:
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p,’ ~arg min HI:Ikp —l—ng
peEL:

pr)H < <(’)(1) + \/16_7V> lgkll, t=1,2,..., Rank(FIk)
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Global Convergence: Inherent Stability

Igisal® < (1 —n+0O()) llgll?

v

Local Convergence: Inherent Stability

lg(xir)ll < llg(xi)ll” + (e2 + O(€)) g (xi)l

27 /53
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Softmax-Cross Entropy: HAPT

25 —— Newton MR s —— Newton MR
\ > Newton_ MR_10% > Newton_ MR_10%
g
" £
" L
<]
100 10°
Iteration Iteration
f(xx) vs. Iterations llg || vs. Iterations
25 —— Newton CG s —— Newton CG
" T i .
g
15 g3
" L,
<]
10° 10t

Iteration Iteration

f(x«) vs. Iterations llg |l vs. Iterations
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1072 4

Objective Function: f(w)

ASGD

SGD_LS '.'
Adagrad ‘\
Newton-MR "1y
RMSprop \,' :\
Adadelta N
Adamax

50 A

40 1

Test Classification Accuracy (%)

/] AR

g EEAS
o Ty ) ’
o S R Y

vy

S Aere e

X My
N R

20 40 60 80 100
Epoch

40 60 80 100
Epoch

DenseNet-201 with SoftPlus activation and CIFAR100 dataset
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The factors involving 1 — v have real effect!
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ai, x1 €R, x2 € (—o0, b) U (b, c0)

f(x1,x) = b
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f(x1,x2) = %1)(2’ x1 € R, xz € (—00,b) U (b, 0)
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Recall...

Algorithm Generic 2"%-order Method

Start from xgq

for k=1,2,... do

akp where Hyp~ —gy

Px =

argmin (p, gy) + (p, Hkp) /2
Ipll<a

Xk+1 = Xk + Py

end for

(Line Search)

(Trust Region)
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major iteration, we define a tolerance €, that specifies the required accuracy of t
solution. For concreteness, we choose the forcing sequence to be n; = min(0
to obtain a superlinear convergence rate, but other choices are possible.

Algorithm 7.1 (Line Search Newton-CG).
Given initial point x¢;
fork =0,1,2,...
Define tolerance €, = min(0.5, /[VA DIV fills
Setzg =0,r0 =V fi,dy = —rg = =V fi;;

for j =0,1,2,...
ifd? Bid; <0
ifj=0
return p; = —V fi;
else

return p; = z;;
Seta; = rfrj/d}'Bkd/;
Setzj =z +a;dj
Setrjyy =rj+a;Bidj;
if |7l < e
return py = zjq13
Set Bjs1 =1l risa/r] s
Setdjp1 = —rjn + Bjndj;
end (for)
Set xx41 = X + o pi, where oy satisfies the Wolfe, Goldstein, or
Armijo backtracking conditions (using ax = 1 if possible);

4 Springer

end
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where By = V2 f;. As in Algorithm 7.1, we use d; to denote the search directic
modified CG iteration and z; to df

SIAM ] NUMER, ANAL 21953 Socity for el and Acpbed Mhermats
20,80 3, Juse 1983 0363042978/ 2000012 801 25,0

Algorithm 7.2 (CG-Steihaug). THE CONJUGATE GRADIENT METHOD AND TRUST REGIONS
Given tolerance ¢ > 0; IN LARGE SCALE OPTIMIZATION*
? TROND STEIHAUG*
Setzo = 0,79 = V fi,do = —rp
if |Iroll < e
return p; = 79 =

Abstract. Algorithms based on trust regions 10 be robust

It is shown in this paper that an approximate solution of the trust region problem may be found by the
. preconditioned conjugate gradient method. This may be regarded as a gencralized dogleg technique where
forj=0,1,2,... we asympeocieally take the Inexact quesi-Newton siep. We also show that we heve the seme convergencs
. properties as existing methods based on the dogleg strategy using an approximate Hessian
if djT Bid; <0

Find 7 such that py

Key words. unconstrained optimization, locally constrained steps, negative curvature

and satisfies | 1 The i i of a smooth function in many
variables is an important problem in mathematical programming. These problems are
return py; usually referred to as large scale unconst rauu:d opummuon problems and they occur
T T . frequently, for example, in nonlinear
Setaj =r; r]/d] Bidj; partial differential equations.
Setzi =z, +a;d;; Since the function is smooth, the local minima occur at stationary points, i..
<t J i zeros of the gradient. Effective algorithms are usually based on Newton's method or
if [|lzj+11l = Ax some variation like the quasi-Newton methods for finding a zero of the gradient. To

. \_enlarge the region of convergence, the methods need to be modified. There are two
Find 7 > 0 such the s e e e e o e e e e/
return p;;
Setrjp =rj+a;Bid;;
if [lrjnll < e
return py = z;41;
T T, .
Set Bjp1 =rjrjn/rir;
Setdjt1 = —rjs1 + Bjnidj;

end (for). Numerical

Optimization

4 Springer
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Abstract

We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL)
framework for nonconvex optimization with nonlinear equality constraints. When an approx-
imate first-order (second-order) optimal point is obtained in the subproblem, an e first-order
ranteed within O(1/¢2-7)
is a user-defined parameter with 1 € [0, 2] for the first-order result

(second-order) optimal point for the original problem can be gu
outer terations (where
and 1 € [1,2] for the second-order result) when the proximal term coefficient /8 and penalty
parameter p satisfy = O(e") and p = 2(1 /"), respectively. We also investigate the total

nd whena algorithm

is used 10 solve the subproblems. Finally, we discuss an sdaptve schere for determining a

value of the parameter p that satisfies the requirements of the analysis.
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4‘ Conjugate Gradient }7

- ~
, ~
’ \

p(t) = argmin (p,g)+'(p,Hp)!/2
peki(H,—g) * !

o Useful for trust region:

o Similarity to TR's sub-problem: argmin (p,g) + (p, Hp) /2
Ipll<A

p(t)H increasing with t

36/53



MR (Non-convex)

0000000000000 00

Algorithm 7.1 (Line Search Newton-CG).
Given initial point x;
fork=0,1,2,...
Define tolerance €, = min(0.5, /[|V fk DIV fell;
Setzg =0,ry =V fi,dy = —ro = =V fi5 Numerical
Optimization

else

=j ) springer

Setzjp1 = zj +a;dj;
Setrjy =r;+o;Bid;;
if 7l < e
return py = z;1);
Set B4 = rf+1rj+l/rj.rr,-;
Setdji1 = —rjy1+ Bjndj;
end (for)
Set x4 = X + &y pr, where oy, satisfies the Wolfe, Goldstein, or
Armijo backtracking conditions (using a; = 1 if possible);
end

37/53



0000@0000000000000000

Algorithm 7.2 (CG-Steihaug).
Given tolerance ¢; > 0;
Setzg = 0,70 =V fi,dy = —ro = =V fi5
if [lroll < €
return py = z9 = 0; Numerical

for j Optimization

Td t such that p, = z; + td; minimizes m(p;) in (4.5)
and satisfies || pr|| = Ag;
return p;;

4) Springer

if llzjsall = A
Find t > 0 such that py = z; + td; satisfies || pi|| = Ag;
return p;;

Setrjy1 =r; +a;Bid;;

if [lrj1ll < e
return py = zj41;

Set Bj1 = rj-T+]rj+1/rl-Trj;

Setdjp1 = =rjw1 + Bjsidj;

end (for).
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CG VERSUS MINRES: AN EMPIRICAL COMPARISON*
DAVID CHIN-LUNG FONG' AND MICHAEL SAUNDERS*

Abstract. For iterative solution of symmetric systems Az = b, the conjugate gradient method
(CG) is commonly used when A is positive definite, while the minimum residual method (MINRES)
is typically reserved for indefinite systems. We investigate the sequence of approximate solutions xy,
generated by each method and suggest that even if A is positive definite, MINRES may be preferable
to CG if iterations are to be terminated early. In particular, we show for MINRES that the solution
norms ||zx|| are monotonically increasing when A is positive definite (as was already known for CG),
and the solution errors ||z* — x| are monotonically decreasing. We also show that the backward
errors for the MINRES iterates zj, are monotonically decreasing.

Key words. conjugate gradient method, minimum residual method, iterative method, sparse
matrix, linear equations, CG, CR, MINRES, Krylov subspace method, trust-region method

1. Introduction. The conjugate gradient method (CG) [11] and the minimum
residual method (MINRES) [18] are both Krylov subspace methods for the iterative
solution of symmetric linear equations Az = b. CG is commonly used when the matrix
A is positive definite, while MINRES is generally reserved for indefinite systems [27,
p85]. We reexamine this wisdom from the point of view of early termination on
positive-definite systems.

We assume that the system Ax = b is real with A symmetric positive definite
(spd) and of dimension n x n. The Lanczos process [13] with starting vector b may
be used to generate the n x k matrix Vi = (v1 vz ... vi) and the (k+1) x k

et 2 - ==l 2 s 2 2 e

\&L. 2

1 AT I =,
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Science, 17, 44-62.

Fong, D.C., & Saunders, M. (2012). CG Versus MINRES: An Empirical Comparison. Sultan Qaboos University Journal for
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pl) = argmin g+ Hp|? /2
pe’Cf(H77g)
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p) = argmin (p,Hg)+ (p,H’p) /2
per(H’_g)
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MINRES:

@ Negative Curvature or PSD Certificate?
(without any additional work)

@ Monotonicity Properties?
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Starting from xo = 0, we have

x¢ = argmin ||Ax — b||
xeK¢(A,b)

41/53



Newton-MR (Non-convex)
000000000e00000000000

Lemma (Liu and Roosta, 2021)
As part of MINRES iterations, we can readily compute

<rt—17 Art—l)
<rt—1art—1>

=1 X ot

where r;_1 = b — Ax;_1
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Since r;_1 € K¢ (A, b), from Lanczos Process, we get

T:

AV, =V, 1 T; T:=
t t+1 t t /Bt+1e1’
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Te | —viav, =T,

AVt = vt+1 ?tv ?t = /Bt+1e
t
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/Bt-‘rlet

Range(V:) = K (A, b)
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Since r;_1 € K¢ (A, b), from Lanczos Process, we get

AV, =V, T, T.,= l T T] — VIAV, =T,

/Bt-‘rlet

Range(V:) = K:(A,b) = r;—1 = V;z
—r] JAri 1=2'VIAV,z=2"T,z

T:~0 = r] JAr,_ 1 >0 1<i<t

How about the converse?
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T, -0, 1<i<t
A-0, if t=g(A,b)> Rank(A)

r,T_lAr,-_l >0,1<i<t =

E.g.: Picking b uniformly at random from unit sphere guarantees w.p.1
that t = g(A, b) > Rank(A)
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MINRES: Non-positive Curvature Detection and Monotonicity Properties

T, -0, 1<i<t
A-0, if t=g(A,b)> Rank(A)

. T T :
rlAr 1>0,1<i<t = {Xib>x;Ax;, 1<i<t

E.g.: Picking b uniformly at random from unit sphere guarantees w.p.1
that t = g(A, b) > Rank(A)
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MINRES: Non-positive Curvature Detection and Monotonicity Properties

T, -0, 1<i<t
A-0, if t=g(A,b)> Rank(A)
I‘;!—_]_Ar,'_1>0, 1<i<t —= X;!-b>X;!-AXt, 1<i<t

(xi, Axi) /2= (b,x)) |, 1<i<t

E.g.: Picking b uniformly at random from unit sphere guarantees w.p.1
that t = g(A, b) > Rank(A)
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Approximate Optimality Conditions:

o First-order

gkl < eg

@ Second-order

”ng < €g and  Amin (Hk) > —enl
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We use the perturbation approach by Royer, O'Neill, and Wright, 2020

H<—H+teyl

-
Mathematical Programming (2020) 180:451-488
hitps://doi.org/10.1007/510107-019-01362-7

FULL LENGTH PAPER

Series A @ CrossMark

A Newton-CG algorithm with complexity guarantees
for smooth unconstrained optimization

Clément W. Royer' - Michael O'Neill? - Stephen J. Wright?
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Abstract
‘We consider minimi; of a smooth objective function using an iterative|
algorithm based on Newton’s method and the linear conjugate gradient algorithm, with

explicit detection and use of negative curvature directions for the Hessian of the objec-
tive function. The algorithm tracks New conjugate gradient

in the 1980s closely, but includes enhancements that allow worst-case complexity
results to be proved for convergence to points that satisfy approximate first-order and|
B der optimality i The plexity results match the best known|
results in the literature for second-order methods.

Keywords Smooth nonconvex optimization - Newton’s method - Conjugate gradient
method - Optimality conditions - Worst-case complexity
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Algorithm Newton-MR (Non-convex)
for k=1,2,...do

end for
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for k=1,2,...do
if [lgkll <eg then

end for
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Algorithm Newton-MR (Non-convex)

for k=1,2,...do
if [lgkll <eg then

8k~ B(Oa ]-)
end if
Run MINRES to obtain p, ~ argmin ||[(Hx + eql) p + g4||
pERd
end for
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Algorithm Newton-MR (Non-convex)

for k=1,2,...do
if [lgkll <eg then

8k~ B(Oa ]-)

end if

Run MINRES to obtain p, ~ argmin ||[(Hx + eql) p + g4||

pERd

if ||gkll < eg and MINRES certifies H, > —eyl then
Terminate

end if

end for
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Algorithm Newton-MR (Non-convex)

for k=1,2,...do
if [lgkll <eg then

8k~ B(O’ 1)
end if
Run MINRES to obtain p, ~ arg mdin W(Hk +enl)p+ gl
pER
if ||gkll < eg and MINRES certifies H, > —eyl then
Terminate
end if

Find ay, with the initial trial step-size ay = 2, such that

f(xk + arpy) < f(xi) — pas ||l

end for
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Algorithm Newton-MR (Non-convex)

for k=1,2,...do
if [lgkll <eg then

8k~ B(O’ 1)
end if
Run MINRES to obtain p, ~ arg mdin W(Hk +enl)p+ gl
pER
if ||gkll < eg and MINRES certifies H, > —eyl then
Terminate
end if

Find ay, with the initial trial step-size ay = 2, such that

f(xk + arpy) < f(xi) — pas ||l

Xk+1 = Xk + Qpy
end for
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CG MINRES
—{p,Hp) /2 (p,g) < —{(p,Hp)

IN

(p,g)
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MINRES
(p,g) < —{(p,Hp)
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Operation Complexity

o First-order

6 (max {52 e/)) W 5 (7

@ Second-order

O (max{ej/z, 6;1/26;3/2}) 6%326 @) (677/4)
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—— Newton_MR_Pert
101 — Newton_CG_Pert
10° 10t 10? 10% 10*

Oracle calls

Figure: None-linear Least-square problem with CIFAR10 dataset.
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Figure: Auto-encoder with CIFAR10 dataset.
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Figure: Auto-encoder with CIFAR10 dataset.
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