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A polytope is the convex hull of a finite set.

In a standard optimisation problem, we have a domain P (possibly
a polytope), a reasonable function g : P → R (possibly convex),
and we wish to find

min
x∈P

f (x)

or perhaps
max
x∈P

f (x).

We will be interested in another optimisation problem; our domain
P will be a collection of polytopes (of the same dimension), and
for some natural functions f : P → R we want to find

min
P∈P

f (P).
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Precise upper bounds for the numbers of edges are easy to obtain.
If d = 3, a polyhedron with v vertices has at most 3v − 6 edges,
with equality iff every face is a triangle. Such maximal examples
are easy to construct.

If d ≥ 4, the cyclic polytope C (v , d) has precisely
(v
2

)
edges.

Clearly this is the maximum possible.
McMullen (1970) established the corresponding conclusion for
k-dimensional faces for all k ; this is known as the Upper Bound
Theorem.
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We are interested in minimising the total number of m-dimensional
faces (of d-dimensional polytope with a certain number of
vertices). We focus mainly on the number of edges, i.e. m = 1.
Barnette (1973) established a precise lower bound for simplicial
polytopes, but for general polytopes, lower bounds are not so easy
to obtain.



Simple polytopes in higher dimensions
A d-dimensional polytope is simple if every vertex has degree d .
For any polytope, the sum of the degrees of the vertices is equal to
twice the number of edges. So in general there must be at least
1
2dv edges, with equality only if there exists a simple polytope with
v vertices.

If there is a simple d-polytope with v vertices, then either
v = d + 1 (simplex), v = 2d (prism), v = 3d − 3 (∆2,d−2),
v = 16 and d = 6, or v ≥ 3d − 1.
For all d , and all sufficiently large v , we have
min F1(v , d) = 1

2vd if either v or d is even, and
min F1(v , d) = 1

2(v + 1)d − 1 if both v and d are odd.
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Let us define Fm(v , d) = {n : there is a d-polytope with v vertices
and n faces of dimension m}.

More interested in the case when v is small.
Following Grünbaum (1967), we set

φm(v , d) =

(
d + 1

m + 1

)
+

(
d

m + 1

)
−
(

2d + 1− v

m + 1

)
.

Grünbaum conjectured that φm(v , d) = min Fm(v , d) for
d < v ≤ 2d .
(Easy to show that this is false for v ≥ 2d + 1.)
He proved that this conjecture is true for every m and v ≤ d + 4.
McMullen (1971) proved this conjecture for facets, i.e. for the case
m = d − 1 and for all v ≤ 2d .
Until 2014, no further progress had been made on this problem.
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Then, we proved that Grünbaum’s conjecture is true in the case
m = 1, i.e.

min F1(v , d) = φ1(v , d)

for d < v ≤ 2d ,

and moreover that the minimising polytope is
unique.
We also obtained precise values for φ1(2d + 1, d) and
φ1(2d + 2, d).
We will not discuss high dimensional faces much, so for simplicity
we will mostly write φ rather than φ1.
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Theorem
Let P be a d-dimensional polytope with d + k vertices, where
0 < k ≤ d.
(i) If P is a (d − k)-fold pyramid over the k-dimensional prism
based on a simplex, then P has φ(d + k , d) edges.
(ii) Otherwise P has > φ(d + k , d) edges.
(iii) Furthermore, P has at least d − k nonsimple vertices, with
equality only if P is a M(k , d − k)-triplex

The polytope described in (i) will be denoted M(k , d − k).
The proof depends on the identity

φ(d + k − n, d − 1) + nd −
(

n

2

)
= φ(d + k, d) + (k − n)(n − 2).

Note that if there are n vertices of a polytope lying outside a given
facet, they must belong to at least nd −

(n
2

)
edges, and the facet

must by induction contain sat least φ(d + k − n, d − 1) edges.
Observe also that if P had strictly more than 2k simple vertices,
then it would have strictly more than φ(d + k , d) edges.



(a) P2 = M(2, 0) (b) M(2, 1) (c) M(2, 2) (d) P3 (e) M(3, 1)

FIGURE 1. Multiplexes

(a) Pentasm3 (b) Pentasm4

FIGURE 2. Pentasms

Triplices
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We also proved that Grünbaum’s conjecture is true for all faces of
sufficiently high dimension (more precisely m ≥ 0.62d). Recently
(published online 25/11/21), the problem was solved for all m ≥ 2
by Xue, with a more elegant argument.



Now, change the question.
Define the excess degree of a polytope as

2e − dv =
∑
v∈V

(deg v − d).

Obviously a polytope is simple iff its excess degree is 0.

Minimising the number of edges is the same as minimising the
excess degree.



Now, change the question.
Define the excess degree of a polytope as

2e − dv =
∑
v∈V

(deg v − d).

Obviously a polytope is simple iff its excess degree is 0.
Minimising the number of edges is the same as minimising the
excess degree.



Theorem
If P is a non-simple d-polytope, then its excess degree is at least
d − 2.

Proof.
Choose a non-simple vertex v in P, and denote by k its excess
degree; the conclusion is trivial if k ≥ d − 2. Now the vertex figure
of v , i.e. the facet which results when we cut v from P, is a
(d − 1)-polytope with d + k = d − 1 + k + 1 vertices, and for
k ≤ d − 2 the previous theorem ensures that it has at least
(d − 1)− (k + 1) nonsimple vertices. But every simple neighbour
of v in P corresponds to a simple vertex in the vertex figure. Thus
at least d − k − 2 neighbours of v are nonsimple and each of them
has excess degree at least 1. This gives P excess degree at least
k + (d − k − 2).



We now investigate min F1(2d + 1, d). We can also calculate
min Fm(2d + 1, d) for m > 1; the answer depends on some number
theory.
Slicing one corner from the base of a square pyramid yields a
polyhedron with 7 vertices and 6 faces, one of them a pentagon.
We call this a pentasm.
We will use the same name for the higher-dimensional version,
obtained by slicing one corner from the quadrilateral base of a
(d − 2)-fold pyramid. It has 2d + 1 vertices and can also be
represented as the Minkowski sum of a d-dimensional simplex, and
a line segment which lies in the affine span of one 2-face but is not
parallel to any edge.



Theorem
Let P be a d-dimensional polytope with 2d + 1 vertices.
(i) If P is d-dimensional pentasm, then P has d2 + d − 1 edges.
(ii) Otherwise the numbers of edges is > d2 + d − 1, or P is the
sum of two triangles.

This shows that the pentasm is the unique minimiser if d ≥ 5.
If d = 4, the sum of two triangles has 9 vertices, and is the unique
minimiser, with only 18 edges.
If d = 3, the sum of two triangles can have 7, 8 or 9 vertices; the
example with v = 7 has 11 edges, the same as the pentasm.



Minimizers of the number of edges, for polytopes with no more 
than 2d vertices



(a) 3-pentasm
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Minimizers of the number of edges, for polytopes with 
 2d+1 vertices





Slicing one corner from the apex of a square pyramid yields a
polyhedron combinatorially equivalent to the cube. Slicing one
corner from 3-prism yields a polyhedron combinatorially equivalent
to the 5-wedge. Of all the polyhedra with 8 vertices, these are the
only two with 12 edges.

We show that for d 6= 5, analogues of these polyhedra minimise
the number of edges, amongst polytopes with 2d + 2 vertices.
Consider first the polytope obtained by slicing one corner from the
apex of a (d − 2)-fold pyramid on a square base. It has 2d + 2
vertices, (d + 1)2 − 4 edges and can also be represented as the
Minkowski sum of a (d − 3)-fold pyramid on a square base, and a
line segment in the other dimension.
Consider next a (d − 3)-fold pyramid whose base is a 3-prism, then
slice one corner off. This example also has 2d + 2 vertices and
(d + 1)2 − 4 edges.
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Theorem
Let P be a d-dimensional polytope with 2d + 2 vertices, where
d ≥ 6 or d = 3.
(i) If P is one of the two polytopes just described, then P has
d2 + 2d − 3 edges.
(ii) Otherwise the numbers of edges is > d2 + 2d − 3.

If d = 4, there are two more minimising polytopes with 10 vertices
and 21 edges.
If d = 5, the unique minimiser is the sum of a tetrahedron and
triangle; this clearly has 12 vertices and 30 edges; 30 < 32.
If d = 7, there is a third minimising polytope with 10 vertices and
21 edges.
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60 edges.
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The 4-polytopes with ten vertices and 21 edges.

Polytopes with 2d+2 vertices with minimal number of edges



In fact, the set F1(d + k, d) contains gaps if k ≥ 4; the number of 
edges of a non-minimising polytope is at least φ(d + k, d) + k − 2 
(expect for k = 5).



We now show that having low excess degree imposes severe
restrictions on the structure of a polytope.
A polytope with excess d − 2 either has a single vertex with excess
d − 2, or d − 2 vertices with excess one. In both cases, the
nonsimple vertices form a simplex face.
If there is a d-polytope with v vertices with excess d − 2, then
either
v = d + 2 (triplex M(2, d − 2)),
v = 2d − 1 (triplex M(d − 1, 1)),
v = 2d + 1 (pentasm),
v = 3d − 2 (C (d),Σ(d),N(d),A(4)),
v = 3d − 1, d = 4 (three sporadic examples),
or v ≥ 3d .







d-pentasm
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If a polytope with excess d − 1, then either d = 3 (many sporadic
examples) or d = 5, and all nonsimple vertices have the same
degree. In the latter case, the nonsimple vertices form a face,
which is either a simplex or a square.



So, having excess d − 2 or d − 1 limits the possible excess degrees 
of individual vertices. Examples in dimensions 3 and 4 suggest 
there is no such structural result for excess d . Not so!

Theorem
Let P be a d-polytope with excess d, where d ≥ 7 or d = 5. Then 
P has d vertices with excess 1. For d = 6, we can still conclude 
that all nonsimple vertices have the same degree.

For examples in d = 6, consider M(3, 3) which has three vertices 
with excess two, M(4, 2) which has two vertices with excess three, 
and the pyramid over ∆(2, 3), which has one vertex with excess six.



Conjecture: If P is a d-polytope with excess d , where d ≥ 7, then
it is formed by gluing two simple polytopes together, along a
simplex facet. This would imply that if such a polytope has v
vertices, then either v = d + 2 (bipyramid over a simplex),
v = 2d + 1 (capped prism) or v ≥ 3d .



Towards a classification?
Three dimensional polyhedra are well understood. Catalogues exist
of all polyhedra with up to about 20 vertices, and algorithms exist
for creating more.
Catalogues exist of all 4-dimensional and 5-dimensional polyhedra
with up to 9 vertices.
There are d2

4 polytopes with d + 2 vertices, and they are very well
understood.
Algorithms exist for finding all (combinatorial types of)
d-polytopes with d + 3 vertices. Catalogues exist for d ≤ 6.
Polytopes with d + 4 vertices are often considered chaotic. If we
restrict our attention to polytopes with low excess/ few edges,
things become more tractable.
It seems feasible to characterise all d-polytopes with up to 2d + 2
vertices, and at most two more edges than the minimum possible.



Thank you for 
your attention
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