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Outline: Algorithms

Optimization algorithms — mostly elementary — that can exploit the
structure of data science applications.

Gradient algorithms (first-order)

I prox-gradient for regularization terms

Accelerated gradient

Stochastic gradient

I and “variance reduced” hybrids with full-gradient

Coordinate descent

Primal-dual methods (for min-max problems)

Augmented Lagrangian / ADMM
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Structures of ML Optimization Problems

Finite sum: f (x) = 1
m

∑m
j=1 fj(x), x ∈ Rn.

I m and d may both be huge!
I fj sometimes convex (kernel learning, logistic regression) but

nonconvex problems (NN, low-rank matrix) recently interesting.

Regularization: f (x) + λψ(x), where λ > 0 is regularization
parameter and ψ is the regularization function or regularizer.

I ψ usually nonsmooth, possibly nonconvex.
I Introduces structure explicitly into the solution x e.g. sparsity,

column selection.
I Adjust λ to control fit to observations vs structure.

min f (x) subject to x ∈ Ω for closed convex Ω.

I Sometimes constraint x ∈ Ω replaces regularization λψ(x).
I Arises naturally in some formulations e.g. kernel SVM dual form,

nonnegative matrix factorization.
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Everything Old is New Again

“Old” approaches from the optimization literature have found many
applications in data analysis.

Nesterov acceleration of gradient methods [Nesterov, 1983].

Alternating direction method of multipliers (ADMM)
[Eckstein and Bertsekas, 1992].

Parallel coordinate descent and incremental gradient algorithms
[Bertsekas and Tsitsiklis, 1989]

Stochastic gradient [Robbins and Monro, 1951]

Frank-Wolfe / conditional gradient
[Frank and Wolfe, 1956, Dunn, 1979].

Many extensions have been made to these methods and their convergence
analysis. Many variants and adaptations proposed.
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Preliminaries: Convexity

f is convex if

f (αx + (1− αy)) ≤ αf (x) + (1− α)f (y).

When f is convex and smooth, we have

f (y) ≥ f (x) +∇f (x)T (y − x)

Strongly convex is there is γ > 0 such that

f (αx + (1− αy)) ≤ αf (x) + (1− α)f (y)− γ

2
α(1− α)‖x − y‖2

2.

For f strongly convex and smooth, we have

f (y) ≥ f (x) +∇f (x)T (y − x) +
1

2
γ‖y − x‖2
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Preliminaries: Optimality and Subgradients

For smooth f , first-order optimal (stationary) point satisfies ∇f (x∗) = 0.
For convex f , this condition is sufficient for x∗ to be optimal.

For smooth f , second-order necessary condition for optimality is
∇f (x∗) = 0 and ∇2f (x∗) � 0

When ψ is convex but not necessarily smooth, define subgradient of ψ at
x to be vector g such that

ψ(z) ≥ ψ(x) + gT (z − x), for all z .

The subdifferential ∂ψ(x) is the set of all subgradients of ψ at x .

A sufficient condition for x∗ to be a minimizer of convex ψ is 0 ∈ ∂ψ(x∗).
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Preliminaries: Smoothness and Consequences

A common assumption is that f : Rn → R has Lipschitz continuous
gradients:

‖∇f (x)−∇f (z)‖ ≤ L‖x − z‖, for some L > 0.

A consequence is that we can bound f above by a simple quadratic:

f (z) ≤ f (x) +∇f (x)T (z − x) +
1

2
L‖z − x‖2.
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Moreau Envelope, Prox Operations
For a closed proper convex function h and a positive scalar λ, the Moreau
envelope is

Mλ,h(x) := inf
u

{
h(u) +

1

2λ
‖u − x‖2

}
=

1

λ
inf
u

{
λh(u) +

1

2
‖u − x‖2

}
.

The prox operation for a function λh is the value that achieves the min in
the Moreau envelope definition:

proxλh(x) := arg min
u

{
λh(u) +

1

2
‖u − x‖2

}
.

Moreau envelope is a smoothed version of h, with finite value for all x .
Differentiable everywhere:

∇Mλ,h(x) =
1

λ
(x − proxλh(x)).

x∗ is a minimizer of h if and only if it is a minimizer of Mλ,h.
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First-Order Method: Steepest Descent

For minx f (x), steepest descent steps in the negative gradient direction:

xk+1 ← xk − αk∇f (xk).

Classical analysis applies for f with Lipschitz gradients.

Setting αk ≡ 1/L, we have using the quadratic upper bound that

f (xk+1) = f (xk − (1/L)∇f (xk))

≤ f (xk)− 1

L
‖∇f (xk)‖2 +

1

2
L

1

L2
‖∇f (xk)‖2

≤ f (xk)− 1

2L
‖∇f (xk)‖2,

so we get a guaranteed decrease in f whenever ∇f (xk) 6= 0, i.e. when xk
is not stationary.
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Convergence: General f
When f is bounded below by a constant f̄ , then steepest descent with
αk ≡ 1/L satisfies for any T ≥ 1 that

min
0≤k≤T−1

‖∇f (xk)‖ ≤
√

2L[f (x0)− f (xT )]

T
≤

√
2L[f (x0)− f̄ ]

T
.

Convergence to stationary point at a 1/
√
T rate.

Proof: Rearrange expression above and use telescoping sum:

T−1∑
k=0

‖∇f (xk)‖2 ≤ 2L
T−1∑
k=0

[f (xk)− f (xk+1)] = 2L[f (x0)− f (xT )].

Use

min
0≤k≤T−1

‖∇f (xk)‖ =
√

min
0≤k≤T−1

‖∇f (xk)‖2 ≤

√√√√ 1

T

T−1∑
k=0

‖∇f (xk)‖2.
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Convergence: Convex f

For f convex, same method yields a 1/T rate (in a different measure):

f (xT )− f ∗ ≤ L

2T
‖x0 − x∗‖2.

Proof: By convexity of f , we have f (x∗) ≥ f (xk) +∇f (xk)T (x∗ − xk), so

f (xk+1) ≤ f (x∗) +∇f (xk)T (xk − x∗)− 1

2L
‖∇f (xk)‖2

= f (x∗) +
L

2

(
‖xk − x∗‖2 −

∥∥∥∥xk − x∗ − 1

L
∇f (xk)

∥∥∥∥2
)

= f (x∗) +
L

2

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
.
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Sum over k = 0, 1, 2, . . . ,T − 1, and telescope: we have

T−1∑
k=0

(f (xk+1)− f ∗) ≤ L

2

T−1∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
=

L

2

(
‖x0 − x∗‖2 − ‖xT − x∗‖2

)
≤ L

2
‖x0 − x∗‖2.

Since {f (xk)} is a nonincreasing sequence, we have

f (xT )− f (x∗) ≤ 1

T

T−1∑
k=0

(f (xk+1)− f ∗) ≤ L

2T
‖x0 − x∗‖2,

as required.
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Convergence: Strongly Convex f
If f is strongly convex with modulus γ and smooth, we have linear
convergence:

f (xk+1)− f (x∗) ≤
(

1− γ

L

)
(f (xk)− f (x∗)).

Proof: Minimize both sides of the definition of strong convexity w.r.t. y
to obtain

min
y

f (y) ≥ min
y

f (x) +∇f (x)T (y − x) +
γ

2
‖y − x‖2

⇒ f (x∗) ≥ f (x)−∇f (x)T
(

1

γ
∇f (x)

)
+
γ

2

∥∥∥∥1

γ
∇f (x)

∥∥∥∥2

⇒ f (x∗) ≥ f (x)− 1

2γ
‖∇f (x)‖2.

By rearrangement, we obtain

‖∇f (x)‖2 ≥ 2γ[f (x)− f (x∗)]. (1)
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Substitute into the basic decrease condition to obtain

f (xk+1) = f

(
xk − 1

L
∇f (xk)

)
≤ f (xk)− 1

2L
‖∇f (xk)‖2

≤ f (xk)− γ

L
(f (xk)− f ∗).

Subtracting f ∗ from both sides of this inequality, we obtain

f (xk+1)− f ∗ ≤
(

1− γ

L

)
(f (xk)− f ∗).
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Convergence and Complexity

The global convergence rates (1/
√
T , 1/T , (1− δ)T ) can be expressed

alternatively as complexities: The number of iterations required to get a
factor of ε reduction in the quantity at hand.

1/
√
T convergence rate ⇒ 1/ε2 iterations;

1/T convergence ⇒ 1/ε iterations;

(1− δ)T ⇒ log ε/ log(1− δ) iterations. Since for small positive δ we
have log(1− δ) ≈ −δ, this complexity is approximately | log ε|/δ.
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Regularized Optimization: Prox-Gradient Methods

min
x∈Rn

φ(x) := f (x) + λψ(x),

where f is a smooth convex function, ψ is a convex regularizer, λ ≥ 0 is
aregularization parameter.

Take gradient descent step in f ;

Use prox operator to take λψ explicitly into account.

xk+1 := proxαkλψ
(xk − αk∇f (xk)),

or equivalently

xk+1 := arg min
z
∇f (xk)T (z − xk) +

1

2αk
‖z − xk‖2 + λψ(z).
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Convergence of Prox-Gradient

The details are technical, but the convergence behavior is similar to
steepest descent on a smooth function. With αk ≡ 1/L, we have

φ(xk)− φ∗ ≤ L‖x0 − x∗‖2

2k
,

which is the same 1/k rate as steepest descent.

The prox operation can be added to other algorithms for minimization of
smooth f , such as coordinate descent and accelerated gradient.
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Prox-Gradient for the Constrained Problem

We can express the constrained problem as a regularized optimization
problem:

min
x∈Ω

f (x) ⇔ min
x

f (x) + IΩ(x),

where IΩ(x) is the indicator function that takes the value 0 when x ∈ Ω
and ∞ otherwise.

The operation proxIΩ(z) is identical to projection onto Ω, which is denoted
by PΩ(z) and defined by

PΩ(z) := arg min
y∈Ω

1
2‖y − z‖2

2.

Thus each step of prox-gradient in this case is

xk+1 = PΩ(xk − αk∇f (xk)),

which is the well known gradient projection algorithm.
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Accelerated Gradient and Momentum

Accelerated gradient methods [Nesterov, 1983] highly influential.

Fundamental idea: Momentum! Search direction at iteration k depends
on the latest gradient ∇f (xk) and also the search direction at iteration
k − 1, which encodes gradient information from earlier iterations.

Heavy-ball & conjugate gradient (incl. nonlinear CG) also use momentum.

Heavy-Ball for minx f (x):

xk+1 = xk − α∇f (xk) + β(xk − xk−1).

Nesterov’s optimal method:

xk+1 = xk − αk∇f (xk + βk(xk − xk−1)) + βk(xk − xk−1).
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Nesterov Acceleration
Set αk = 1/L and introduce an intermediate variable yk ∈ Rn (with
y0 = x0) to rewrite the Nesterov optimal update as

xk+1 = yk − 1

L
∇f (yk),

yk+1 = xk+1 + βk+1(xk+1 − xk), k = 0, 1, 2, ...

For general convex f , βk is defined via another scalar sequence λk :

λ0 = 0, λk+1 =
1

2

(
1 +

√
1 + 4λ2

k

)
, βk =

λk − 1

λk+1
.

Since λk ≥ 1 for k ≥ 1, we have βk+1 ≥ 0.

Convergence:

f (xT )− f ∗ ≤ 2L‖x0 − x∗‖2

(T + 1)2
, T = 1, 2, . . . .

A 1/T 2 rate! Rather than the 1/T rate of steepest descent.

Proof: Technical! See the sources.
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Nesterov Acceleration: Strongly Convex

When f is strongly convex with modulus γ, another choice of βk is used:

βk+1 ≡
√
L−√γ
√
L +
√
γ
.

Convergence:

f (xT )− f (x∗) ≤ L + γ

2
‖x0 − x∗‖2

(
1−

√
γ

L

)T

, T = 1, 2, . . . .

This yields a complexity of O(
√
L/γ log ε) to achieve an ε-optimal solution.

Improvement over steepest descent, which has complexity O((L/γ) log ε).

Conjugate gradient applied to convex quadratic f has similar asymptotic
rates.
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Full Gradient: Does It Make Sense?

The methods above, based on full gradients, are useful for some problems
in which X is a matrix, in which full gradients are practical to compute.

Matrix completion, including explicitly parametrized problems with
X = LRT or X = ZZT ; nonnegative matrix factorization.

Subspace identification;

Sparse covariance estimation;

They are less appealing when the objective is the sum of m terms, with m
large. To calculate

∇f (x) =
1

m

m∑
j=1

∇fj(x),

generally need to make a full pass through the data.

Often not practical for massive data sets. But can be hybridized with
stochastic gradient methods (see below).
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Stochastic Gradient (SG)

For f (x) = (1/m)
∑m

j=1 fj(x), iteration k has the form:

Choose jk ∈ {1, 2, . . . ,m} uniformly at random;

Set xk+1 ← xk − αk∇fjk (xk).

∇fjk (xk) is a proxy for ∇f (xk) but it depends on just one data item ajk
and is much cheaper to evaluate.

Unbiased — Ej∇fj(x) = ∇f (x) — but the variance may be very large.

Average the iterates for more robust convergence:

x̄k =

∑k
`=1 γ`x

`∑k
`=0 γ`

,where γ` are positive weights.

Minibatch: Use a set Jk ⊂ {1, 2, . . . ,m} rather than a single item.
(Smaller variance in the gradient estimate.)
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Stochastic Gradient (SG)

Convergence results for hj convex require bounds on the variance of the
gradient estimate:

1

m

m∑
j=1

‖∇fj(x)‖2
2 ≤ B2 + Lg‖x − x∗‖2.

Analyze expected convergence, e.g. E(f (xk)− f ∗) or E(f (x̄k)− f ∗),
where the expectation is over the sequence of indices j0, j1, j2, . . . .

Sample results:

f strongly convex, αk ∼ 1/k : E(f (xk)− f ∗) = O(1/k);

h convex, αk ∼ 1/
√
k : E(f (x̄k)− H∗) = O(1/

√
k).

B = 0, f strongly convex, αk = const: E(‖xk − x∗‖2
2) = O((1− δ)k)

for some δ ∈ (0, 1).

Generalizes beyond finite sums, to f (x) = Eξf (x ; ξ), where ξ is random.
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Stochastic Gradient Variant: Adam

[Kingma and Ba, 2015] describe a modification of SGD which applies a
diagonal scaling to the update gk .

The scaling is computed from a weighted average of components of gk ,
and their squares, from previous iterations.

Echoes of a diagonal scaling of the gradient direction ∇f (xk): scaled
steepest descent, which can also be thought of as a Newton-type method
with a diagonal approximation to the Hessian ∇2f (xk).

Convergence theory (of variations of Adam) has been the subject of much
study.

The paper has 115,000 citations to date.

This method has become a juggernaut. Versions of it are used almost
universally in practice.
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Hybrids of Full Gradient and Stochastic Gradient
Stabilize SG by hybridizing with steepest descent (full-gradient). Get linear
convergence for strongly convex functions, sublinear for weakly convex.

SAG: [LeRoux et al., 2012] Maintain approximations gj to ∇hj , use search
direction −(1/m)

∑m
j=1 gj . At iteration k , choose jk at random, and

update gjk = ∇hjk (xk).

SAGA: [Defazio et al., 2014] Similar to SAG, but use search direction

−∇hjk (xk) + gjk −
1

m

m∑
j=1

gj .

SVRG: [Johnson and Zhang, 2013] Similar again, but periodically do a
full gradient evaluation to refresh all gj .

Too much storage, BUT when hj have the “ERM” form hj(a
T
j x) (linear

least squares, linear SVM), all gradients can be stored in a scalar:

∇xhj(a
T
j x) = ajh

′
j(a

T
j x).
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Coordinate Descent (CD) Framework
... for smooth unconstrained minimization: minx H(x):

Set Choose x1 ∈ Rn;
for ` = 0, 1, 2, . . . (epochs) do
for j = 1, 2, . . . , n (inner iterations) do

Define k = `n + j
Choose index i = i(`, j) ∈ {1, 2, . . . , n};
Choose αk > 0;
xk+1 ← xk − αk∇iH(xk)ei ;

end for
end for

where

ei = (0, . . . , 0, 1, 0, . . . , 0)T : the ith coordinate vector;

∇iH(x) = ith component of the gradient ∇H(x);

αk > 0 is the step length.
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CD Variants

CCD (Cyclic CD): i(`, j) = j .

RCD (Randomized CD a.k.a. Stochastic CD): i(`, j) is chosen
uniformly at random from {1, 2, . . . , n}.
RPCD (Randomized Permutations CD):

I At the start of epoch `, we choose a random permutation of
{1, 2, . . . , n}, denoted by π`.

I Index i(`, j) is chosen to be the jth entry in π`.

Important quantities in analysis:

Lmax: componentwise Lipschitz constant for ∇H:

|∇iH(x + tei )−∇iH(x)| ≤ Li |t|, Lmax = max
i=1,2,...,n

Li .

L: usual Lipschitz constant: |∇H(x + d)−∇H(x)| ≤ L‖d‖.
Lojasiewicz constant µ: ‖∇H(x)‖2 ≥ 2µ[H(x)− H∗]
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Randomized CD Convergence

Of the three variants, convergence of the randomized form has by far the
most elementary analysis [Nesterov, 2012].

Get convergence rates for quantity φk := E(H(xk)− x∗).

µ > 0 : φk+1 ≤
(

1− µ

nLmax

)
φk , k = 1, 2, . . . ,

µ = 0 : φk ≤
2nLmaxR

2
0

k
, k = 1, 2, . . . ,

where R0 bounds distance from x0 to solution set.

If the economics of evaluating gradient components are right, this can be
a factor L/Lmax faster than full-gradient steepest descent!

This ratio is in range [1, n]. Maximized by H(x) = (11T )x .

Functions like this are good cases for RCD and RPCD, which are much
faster than CCD or steepest descent.
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Cyclic and Random-Permutations CD Convergence

Analysis of [Beck and Tetruashvili, 2013] treats CCD as an approximate
form of Steepest Descent, bounding improvement in f over one cycle in
terms of the gradient at the start of the cycle.

Get linear and sublinear rates that are slower than both RCD and Steepest
Descent. This analysis is fairly tight — recent analysis of
[Sun and Ye, 2016] confirms slow rates on a worst-case example.

Same analysis applies to Randomized Permutations (RPCD), but practical
results for RPCD are much better, and usually at least as good as RCD.

We can explain good behavior of RPCD now, showing that it tracks RCD
not CCD. [Lee and Wright, 2018, Wright and Lee, 2020]
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CD Extensions

Block CD: Replace single component i by block I ⊂ {1, 2, . . . , n}.
Dual nonlinear SVM [Platt, 1999]. Choose two components of α per
iteration, to stay feasible w.r.t. constraint yTα = 0.

Can be accelerated (efficiently) using “Nesterov” techniques:
[Nesterov, 2012, Lee and Sidford, 2013].

Adaptable to the separable regularized case H(x) + λΩ(x).

Parallel asynchronous variants, suitable for implementation on
shared-memory multicore computers, have been proposed and
analyzed. [Bertsekas and Tsitsiklis, 1989, Liu and Wright, 2015,
Liu et al., 2015]
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Conditional Gradient / “Frank-Wolfe”

min
x∈Ω

f (x),

where f is a convex function and Ω is a closed, bounded, convex set.

Start at x0 ∈ Ω. At iteration k :

vk := arg min
v∈Ω

vT∇f (xk);

xk+1 := xk + αk(vk − xk), αk =
2

k + 2
.

Potentially useful when it is easy to minimize a linear function over
the original constraint set Ω;

Admits an elementary convergence theory: 1/k sublinear rate.

Same convergence rate holds if we use a line search for αk .

Revived by [Jaggi, 2013].
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Augmented Lagrangian
Consider the linearly constrained problem,

min f (x) s.t. Ax = b,

where f : Rn → R is convex.

Define the Lagrangian function:

L(x , λ) := f (x) + λT (Ax − b).

x∗ is a solution if and only if there exists a vector of Lagrange multipliers
λ∗ ∈ Rm such that

−ATλ∗ ∈ ∂f (x∗), Ax∗ = b,

or equivalently:

0 ∈ ∂xL(x∗, λ∗), ∇λL(x∗, λ∗) = 0.
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Augmented Lagrangian
The augmented Lagrangian is (with ρ > 0)

L(x , λ; ρ) := f (x) + λT (Ax − b)︸ ︷︷ ︸
Lagrangian

+
ρ

2
‖Ax − b‖2

2.︸ ︷︷ ︸
“augmentation”

Basic Augmented Lagrangian (a.k.a. method of multipliers) is

xk = arg min
x
L(x , λk−1; ρ);

λk = λk−1 + ρ(Axk − b);

[Hestenes, 1969, Powell, 1969]

Some constraints on x (such as x ∈ Ω) can be handled explicitly:

xk = arg min
x∈Ω
L(x , λk−1; ρ);

λk = λk−1 + ρ(Axk − b);
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Alternating Direction Method of Multipliers (ADMM)

min
(x∈Ωx ,z∈Ωz )

f (x) + h(z) s.t. Ax + Bz = c ,

for which the Augmented Lagrangian is

L(x , z , λ; ρ) := f (x) + h(z) + λT (Ax + Bz − c) +
ρ

2
‖Ax − Bz − c‖2

2.

Standard AL would minimize L(x , z , λ; ρ) w.r.t. (x , z) jointly. However,
since coupled in the quadratic term, separability is lost.

In ADMM, minimize over x and z separately and sequentially:

xk = arg min
x∈Ωx

L(x , zk−1, λk−1; ρ);

zk = arg min
z∈Ωz

L(xk , z , λk−1; ρ);

λk = λk−1 + ρ(Axk + Bzk − c).

Extremely useful framework for many data analysis / learning settings.
Major references: [Eckstein and Bertsekas, 1992, Boyd et al., 2011]
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Convex-Concave Min-Max: Primal-Dual Algorithms

Formulation (reminder):
min
x∈Rd

max
y∈Rn

L(x , y) (Min-Max)

L(x , y) =
n∑

i=1

[
〈Aix , y

(i)〉 − h∗i (y (i))
]

+ g(x)

= 〈Ax , y〉 − h∗(y) + g(x),

Gradient Ascent-Descent (GDA):

x̄k+1 = proxτ,g (x̄k − τA>ȳk)

ȳk+1 = proxσ,h∗(ȳk + σAx̄k+1),
(GDA)

for positive step sizes τ and σ. 1

1T = τ I in our earlier definition of prox.
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Primal-Dual Algorithms
Primal-Dual Hybrid Gradient (PDHG) [Chambolle and Pock, 2011] uses
extrapolation in the x step:

x̄k+1 = proxτ,g (x̄k − τA>(2ȳk − ȳk−1))

ȳk+1 = proxσ,h∗(ȳk + σAx̄k+1),
(PDHG)

Equivalent form of PDHG:

x̄k+1 = proxτ,g (x̂k − τA>ȳk) (2a)

ȳk+1 = proxσ,h∗(ȳk + σAx̄k+1) (2b)

x̂k+1 = x̄k+1 − τA>(ȳk+1 − ȳk). (2c)

[Chambolle and Pock, 2011] discusses connections to Douglas-Rachford,
Extrapolated gradient, ADMM.

[Aragón-Artacho et al., 2020] show application of DR to finding
intersection of sets, pictures show the benefits of extrapolation.
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Algorithms: Additional Features
Theoretical convergence / complexity properties of these algorithms can
be improved (in some cases, including strong convexity / concavity and
sparsity) by adding extra features.

Coordinate descent: e.g. update random element(s) of y in (2b)
instead of the whole vector.

Variance Reduction: Adjust the update formula for x to account for
noise arising from coordinate update of y .

Dual Averaging: At step k , use a gradient term that is a weighted
average over all previous iterations.

Importance sampling: Apply different weights to different components
of each update (e.g. weight matrix T in definition of prox).

Iterate averaging: Output a weighted average of iterates, rather than
the final iterate for x .

Some are used by PURE-CD [Alacaoglu et al., 2022] and VRPDA2

[Song et al., 2021].
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Not Discussed!

Many interesting topics not mentioned, including

Newton methods.

quasi-Newton methods.

Linear equations Ax = b: Kaczmarz algorithms.

Image and video processing: denoising and deblurring.

Graphs: detect structure and cliques, consensus optimization, . . . .

Integer and combinatorial formulations.

Parallel variants: synchronous and asynchronous.

Online learning.
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