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Outline (3 lectures)

Introduction / Motivation / Perspective

FORMULATIONS: Formulating data science problems as optimization
problems.

I 15 applications and one “issue” (nonconvexity)
I Neural networks

ALGORITHMS: Optimization algorithms that are useful for data
science formulations.

I First-order methods
I Prox-gradient
I Stochastic gradient
I Coordinate descent
I Primal-dual methods for min-max problems
I Augmented Lagrangian and ADMM

NOT exhaustive!
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Sources Include...

Wright, S. J. and Recht, B., Optimization for Data Analysis,
Cambridge, 2022.

Wright, S. J., Optimization algorithms for data analysis. in The
Mathematics of Data, 25, 49 (2018).
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Optimization and Data Science

Optimization is being revolutionized by its interactions with machine
learning and data science.

New algorithms + new interest in old algorithms;

Challenging formulations and new paradigms;

Renewed emphasis on certain topics: convex optimization algorithms,
complexity, structured nonsmoothness, nonconvex optimization,
stochastic gradient, augmented Lagrangian,

Large research community now working on the machine learning /
optimization spectrum. The optimization / ML interface is a key
component of many top conferences (ISMP, SIOPT, NeurIPS, ICML,
ICLR COLT, AISTATS, ...) and journals (JMLR, Math Programming,
SIOPT, ....).
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Data Science
Related To: AI, Machine Learning, Data Analysis, Statistical Inference,
Learning Theory, ...

Extract meaning from data: Learn important features and
fundamental structures in the data.

Use this knowledge to make predictions (inferences) about other,
similar data.

Multidisciplinary!

Foundations in Statistics;

Computer Science: AI, Machine Learning, Databases, Parallel
Systems, Architectures (GPUs);

Optimization provides tools for modeling / formulation / algorithms;

Closely tied to applications in some areas e.g. signal (speech / image
/ natural language) processing, robotics.

Modeling and domain-specific knowledge is vital in practice: “80% of data
analysis is spent on the process of cleaning and preparing the data.”
[Dasu and Johnson, 2003].
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Typical Setup

After cleaning and formatting, obtain a data set of m objects:

Vectors of features: aj , j = 1, 2, . . . ,m.

Outcome / observation / label yj for each feature vector.

The outcomes yj could be:

a real number: regression

a label indicating that aj lies in one of M classes (for M ≥ 2):
classification. M can be very large!

multiple labels e.g. yj ∈ Rt or yj ∈ {0, 1}t : classify aj according to
multiple criteria.

no labels (yj is null):

I subspace identification: Locate low-dimensional subspaces that
approximately contain the (high-dimensional) vectors aj ;

I clustering: Partition the aj into a clusters; each cluster groups
objects with similar features.
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Fundamental Data Analysis Task: Classical Perspective

Seek a function φ that:

approximately maps aj to yj for each j : φ(aj ) ≈ yj , j = 1, 2, . . . ,m.

satisfies additional properties that make it “plausible” for the
application, robust to perturbations in the data, generalizable to
other data samples from the same distribution.

Can usually define φ in terms of some parameter vector x — thus
identification of φ becomes a data-fitting problem:

Find an x such that φ(aj ; x) ≈ yj for j = 1, 2, . . . ,m.

Objective function in this problem often built up of m terms, each
depending on a single (aj , yj ) pair, that capture mismatch between
predictions and observations for that pair.

(If no labels yj , φ assigns each aj to a cluster or subspace.)

The process of finding φ is called learning or training.
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How is φ used?

Prediction: Given new data vector ak , predict outputs yk ← φ(ak ; x).

Analysis: φ (or the parameter x) reveals structure in the data.

I Feature selection: reveal the components of vectors aj that are
most important in determining the outputs yj .

I Uncovers some hidden structure:

F low-dimensional subspaces that contain the aj (approx);
F find clusters of aj ’s;
F decision tree building intuition about how yj depends on aj .

Many possible complications:

Noise or errors in aj and yj

Missing data: elements of aj and/or yj

Overfitting: φ exactly fits the set of training data (aj , yj ) but predicts
poorly on “out-of-sample” data (ak , yk ). But see later!

Distributional shift.
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Continuous Optimization and Data Analysis

Optimization is a major source of algorithms for machine learning and data
analysis.

Optimization Formulations translate statistical principles (e.g. risk,
likelihood, significance, generalizability) into measures and functions
that can be attacked with an algorithm.

Optimization Algorithms provide practical means to solve these
problems, but the “black-box” approach often doesn’t work well.
Structure and context are important.

Duality is valuable in several cases (e.g. kernel learning).

Nonsmoothness appears often e.g. as a formulation tool to promote
generalizability, but often in a highly structured way that can be
exploited by algorithms.
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ML’s Influence on (Continuous) Optimization

The needs of ML and the ML community have influenced optimization in
recent years.

ML has a different perspective on some important algorithmic issues:

Computational complexity and global convergence rates are more
interesting.

Fast local convergence rates are less interesting, possibly because fast
convergence often occurs only below the level of accuracy required for
minimization of the empirical risk.

Prefer cheaper, approximate solutions over expensive, accurate
solutions (for the same reason).

Huge problems, both in number of parameters (x) and size of data set
defining the problems ((aj , yj ), j = 1, 2, . . . ,m). Leads to a need for

I Parallel methods (“federated learning”)
I Methods that don’t need exact functions or gradients (stochastic

gradient).
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What’s an “Algorithm” in ML and Optimization
In ML, the “algorithm” is the process that maps a training data set S to a
predictor. (Sometimes randomized, e.g. stochastic gradient.)

Aim for generalizability: Predicting well on unseen data.

An ML “algorithm” is implemented via optimization in two stages: the
optimization formulation and the optimization algorithm.

The responsibility for good generalizability thus falls both on the
optimization formulation and the optimization algorithm.

This overloads the optimization algorithm! Traditionally, optimization
algorithms were just tasked with finding the solution of the formulation.
Nowadays they have to pursue a more nebulous and unfamiliar goal.

New questions arise, e.g.

Does small-batch SGD give results with better generalizability?

Is the algorithm finding a “low-norm” or “low-curvature” solution
that generalizes better?
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1https://blogs.sas.com/content/subconsciousmusings/2020/12/09/

machine-learning-algorithm-use/
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There’s a lot of continuous optimization here (yellow)!
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Application 1: Least Squares Regression (+ Regularization)

min
x

f (x) :=
1

2

m∑
j=1

(aT
j x − yj )

2 =
1

2
‖Ax − y‖2

2.

[Gauss, 1799], [Legendre, 1805]. Still a popular topic!

Here the function mapping data to output is linear: φ(aj ; x) = aT
j x .

`2 regularization reduces sensitivity of the solution x to noise in y .

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖2
2.

`1 regularization (“Lasso”) yields sparse solutions x with few
nonzeros:

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1.

Feature selection: Nonzero locations in x indicate important
components of feature vectors aj .
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Application 2: Robust Linear Regression
Least squares assumes Gaussian errors in yj . When error distributions are
otherwise, or contain “outliers,” need different formulations.

Use statistics to write down a likelihood function for x given y , then find
the maximum likelihood estimate — optimization!

min
x

m∑
j=1

`(aT
j x − yj ) + λR(x)

where ` is loss function and R is regularizer.

Can lead to logistic regression (see later), which is convex. But some
models lead to nonconvexity in the loss function and/or regularizer term.

Tukey biweight: `(θ) = θ2/(1 + θ2). Behaves like least squares for θ
close to 0, but asymptotes at 1. Outliers don’t affect solution much.

Nonconvex separable regularizers R such as SCAD and MCP behave
like ‖ · ‖1 at zero, but flatten out for larger x .
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Application 3: Matrix Sensing / Completion
Regression over a structured matrix: Observe a matrix X by probing it
with linear operators Aj (X ), giving observations yj , j = 1, 2, . . . ,m.

min
X

1

2m

m∑
j=1

(Aj (X )− yj )
2 =

1

2m
‖A(X )− y‖2

2.

Each Aj may observe a single element of X , or a linear combination of
elements. Can be represented as a matrix Aj , so that Aj (X ) = 〈Aj ,X 〉.

Seek a “simple” X e.g. low rank. Can add a nuclear-norm
(sum-of-singular-values) regularization term λ‖X‖∗ [Recht et al., 2010].

When the observations Aj are of individual elements, recovery is still
possible when X is low-rank and incoherent (i.e. not too “spiky” and with
singular vectors randomly oriented).

Procedures based on trimming + truncated singular value decomposition
(for initialization) and projected gradient (for refinement) produce good
solutions [Keshavan et al., 2010].
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Explicit Low-Rank Parametrization

Nonconvex, but much more useful for large problems:

min
L,R

1

2m

m∑
j=1

(Aj (LR
T )− yj )

2.

Despite the nonconvexity, near-global minima can be found when Aj are
incoherent. Use appropriate initialization [Candès et al., 2015],
[Zheng and Lafferty, 2015] or the observation that all local minima are
near-global [Bhojanapalli et al., 2016].

(More on this later.)
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Application 4: Nonnegative Matrix Factorization

Given m × n matrix Y , seek factors L (m × r) and R (n × r) that are
element-wise positive, such that LRT ≈ Y .

min
L,R

1

2
‖LRT − Y ‖2

F subject to L ≥ 0, R ≥ 0.

Applications in computer vision, document clustering, chemometrics,
genomics, . . .

Often r � min(m, n), so L and R are “skinny.” Low rank.

Several variants, e.g.

Not all elements of Y are known (matrix completion + bounds);

Additional structure in L and/or R, e.g. columns of R have disjoint
support.

Wright (UW-Madison) Optimization in Data Science July 2022 18 / 63



Application 5: Recovering Dependency Networks
Let Z ∈ Rp be a (vector) random variable with zero mean. Let
z1, z2, . . . , zN be samples of Z . Sample covariance matrix (estimates
covariance between components of Z ):

S :=
1

N − 1

N∑
`=1

z`z
T
` .

Seek a sparse inverse covariance matrix: X ≈ S−1.

X reveals dependencies between components of Z : Xij = 0 if the i and j
components of Z are conditionally independent, i.e. don’t influence each
other directly (but may still be correlated due to a chain of dependencies
involving other components).

Obtain X from the regularized formulation:

min
X
〈S ,X 〉 − log det(X ) + λ‖X‖1, where ‖X‖1 =

∑
i ,j |Xij |.

[d’Aspremont et al., 2008, Friedman et al., 2008].
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Reveals Network Structure. Example with p = 6.

6
1

2

3

4

5

X =



∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0
0 ∗ ∗ 0 ∗ 0
0 ∗ 0 ∗ ∗ 0
0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗
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Application 6: Sparse Principal Components (PCA)

Seek sparse approximations to the leading eigenvectors of the sample
covariance matrix S .

For the leading sparse principal component, solve

max
v∈Rn

vTSv = 〈S , vvT 〉 s.t. ‖v‖2 = 1, ‖v‖0 ≤ k ,

for some given k ∈ {1, 2, . . . , n}. Convex relaxation replaces vvT by an
n × n positive semidefinite proxy M:

max
M∈SRn×n

〈S ,M〉 s.t. M � 0, 〈I ,M〉 = 1, ‖M‖1 ≤ R,

where ‖ · ‖1 is the sum of absolute values [d’Aspremont et al., 2007].

Adjust the parameter R to obtain desired sparsity. Can be generalized for
first r principal components: use 〈I ,M〉 = r .
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Sparse PCA: Explicit Parametrization

Seek an approximation to the leading r -dimensional eigenspace with space
basis vectors.

Explicit low-rank formulation is

max
F∈Rn×r

〈S ,FFT 〉 s.t. ‖F‖2 ≤ 1, ‖F‖2,1 ≤ R̄,

where ‖F‖2,1 :=
∑n

i=1 ‖Fi ·‖2 to promote sparsity
[Chen and Wainwright, 2015, Chi et al., 2019].
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Application 7: Sparse + Low-Rank (Robust PCA)
Given Y ∈ Rm×n, seek low-rank M and sparse S such that M + S ≈ Y .

Robust PCA: Sparse S represents “outlier” observations.

Foreground-Background separation in video processing.
I Each column of Y is one frame of video, each row is a single

pixel evolving in time.
I Low-rank part M represents background, sparse part S represents

foreground.

Convex formulation [Candès et al., 2011, Chandrasekaran et al., 2011]:

min
M,S
‖M‖∗ + λ‖S‖1 s.t. Y = M + S .

Compact formulation (nonconvex): Variables L ∈ Rn×r , R ∈ Rm×r ,
S ∈ Rm×n sparse.

min
L,R,S

1

2
‖LRT + S − Y ‖2

F + λ‖S‖1
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Application 8: Subspace Identification
Given vectors aj ∈ Rn with missing entries, find a subspace of Rn such
that all “completed” vectors aj lie approximately in this subspace.

If Ωj ⊂ {1, 2, . . . , n} is the set of observed elements in aj , seek X ∈ Rn×d

such that
[aj − Xsj ]Ωj

≈ 0,

for some sj ∈ Rd and all j = 1, 2, . . . .
[Balzano et al., 2010, Balzano and Wright, 2014].

Application: Structure from motion. Reconstruct opaque object from
planar projections of surface reference points.
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Application 9: Linear Support Vector Machines

Each item of data belongs to one of two classes: yj = +1 and yj = −1.

Seek (x , β) such that

aT
j x − β ≥ 1 when yj = +1;

aT
j x − β ≤ −1 when yj = −1.

The mapping is φ(aj ; x) = sign(aT
j x − β).

In the objective, the jth loss term is zero when φ(aj ; x) = yj , positive
otherwise. A popular one is hinge loss:

H(x , β) =
1

m

m∑
j=1

max(1− yj (a
T
j x − β), 0).

Add a regularization term (λ/2)‖x‖2
2 for some λ > 0 to maximize the

margin between the classes.

Wright (UW-Madison) Optimization in Data Science July 2022 25 / 63



Regularize for Generalizability
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Regularize for Generalizability
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Application 10: Kernel SVM
To enhance “separability” of the data, apply a nonlinear transformation
aj → ψ(aj ) (“lifting”) and do linear classification on (ψ(aj ), yj ):

min
x ,β

1

m

m∑
j=1

max(1− yj (ψ(aj )
T x − β), 0) +

1

2
λ‖x‖2

2.

Can avoid defining ψ explicitly by using instead the dual:

min
α∈Rm

1

2
αTQα− eTα s.t. 0 ≤ α ≤ (1/λ)e, yTα = 0.

where Qk` = yky`ψ(ak )Tψ(a`), y = (y1, y2, . . . , ym)T , e = (1, 1, . . . , 1)T .

No need to choose ψ(·) explicitly. Instead choose a kernel K , such that

K (ak , a`) ∼ ψ(ak )Tψ(a`).

[Boser et al., 1992, Cortes and Vapnik, 1995]. “Kernel trick.”
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Application 11: Multiclass Logistic Regression
Given M classes yj ∈ {1, 2, . . . ,M} for all j , seek odds functions pi (aj )
that give the probability of aj belonging to class i = 1, 2, . . . ,M:

pi (a) =
exp(aT xi )∑M

l=1 exp(aT xl )
(“softmax” over the aT xi ).

Seek xi so that
aT

j xyj � aT
j xl for all l 6= yj

so that pi (aj ) ≈ 1 when l = i , while pl (aj ) ≈ 0 for all l 6= i .

Maximize an a posteriori log-likelihood function:

L(x1, . . . , xM) =
1

m

m∑
j=1

log

(
exp(aT

j xyj )∑M
l=1 exp(aT

j xl )

)
, which is convex!

Often forms the final layer of a neural network. Here the aj are feature
vectors for item j , as transformed by the rest of the NN.
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Application 12: Community Detection in Graphs
Given an undirected graph, find “communities” (subsets of nodes) such
that nodes inside a given community are more likely to be connected to
each other than to nodes outside that community.

Probability p of being connected to a node within your community, and q
of being connected to a node outside your community, with
0 < q < p < 1.

Matrix optimization problem: relaxation of max-log-likelihood formulation.
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Application 13: Adversarial Machine Learning

Easy to fool DNN classifiers with a carefully chosen attack!

(Szegedy et al, Dec 2013): MNIST with carefully chosen perturbations.
NN misclassifies, even though the “correct” answer is visually obvious.

Note that even a large random perturbation is usually OK! But a small,
carefully crafted perturbation causes misclassification.
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Adversarial ML: The Issues

1. Can we generate efficiently the “carefully chosen perturbations” that
break the classifier?

I Various optimization formulations have been proposed,
depending on the type of classification.

2. Can we train the network to be robust to perturbations of a certain
size?

I Can use robust optimization techniques (expensive) or selectively
generate perturbed data examples and re-train.

3. Can we verify that a given network will continue to give the same
classification when we perturb a given training example x by any
perturbation of a given size ε > 0?

I Can use MIP, but very expensive even for small networks and
data sets (e.g. MNIST, CIFAR).
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Finding Adversarial Perturbations
Given a set of parameters x (e.g. weights in a NN) a data pair (aj , yj ),
and prediction function φ, obtain “optimal adversarial perturbation” v :

min
v
‖v‖ s.t. φ(aj + v) 6= yj .

Generally, this is a hard problem. But one special case is easy.

Suppose that we have two classes ±1, and that

φ(a) := sign J(a; x),

for some smooth function J. Thus, the optimal adversarial perturbation
will be the smallest v such that J(aj + v ; x) = 0. Since J is smooth, we
can write

J(aj + v ; x) ≈ J(aj ; x) + vT∇aJ(aj ; x),

so the approximate solution is

v = −J(aj ; x)
∇aJ(aj ; x)

‖∇aJ(aj ; x)‖2
.
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Training for Robustness
Instead of incurring a loss h(aj , yj ; x) for parameters x and data item
(aj , yj ) as above, define the loss to be the worst possible loss for all a
within a ball of radius ε centered at aj . That is,

max
vj :‖vj‖≤ε

h(aj + vj , yj ; x).

(The norm could be ‖ · ‖2 or ‖ · ‖∞, or something else.)

Training becomes the following min-max problem:

min
x

1

m

m∑
j=1

max
vj :‖vj‖≤ε

h(x ; aj + vj , yj ).

The inner “max” problems can at least be solved in parallel,
approximately, and sometimes in closed form.

Subproblems yield a generalized gradient w.r.t. x . We can use this to
implement a first-order method for the outer loop. Expensive in general!
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Robust Training by Adding Data

A variant on the min-max strategy is to generate perturbations vj

explicitly, add items of the form (aj + vj , yj ) to the training set, and
re-train. If the vj are chosen to be nearly optimal adverse perturbations,
this might be effective.

Successive rounds of training could be “warm-started,” and we might be
able to manage the size of the augmented data set by removing points
(aj + vj , yj ) from earlier rounds that are no longer relevant.
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Sparsity and Stability Make Verification Easier

Networks can be trained in a way that makes robustness to perturbations
easier to check [Xiao et al., 2018].

Verification is easier when

Sparsity: weight matrices W ` are sparse — a lot of missing arcs in
the NN, so fewer ReLU neurons to check. Promote sparsity via
regularizers ‖W `‖1.

Promoting ReLU stability during training: choose weights W `,
` = 1, 2, . . . , L so that fewer examples aj change activation. Use
interval arithmetic + regularization.

Tutorial by Z. Kolter and A. Madry presented at NeurIPS 2018:
https://adversarial-ml-tutorial.org/
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Application 14: Distributionally Robust Learning
Another perspective on robustness. Take the training data (aj , yj ),
j = 1, 2, . . . ,m to be an empirical approximation Pm to the true, unknown
underlying distribution of the data P.

We don’t know P, but we assume that it is close to Pm according to some
metric of distributions d(·, ·) (e.g. Wasserstein metric, divergence).

“Traditional” training (minimize loss over training data):

min
x

E(a,y)∼Pm
h(a, y ; x) =

1

m

m∑
j=1

h(x ; aj , yj ).

“True” training (not implementable, since we don’t know P):

min
x

E(a,y)∼P h(a, y ; x).

“Distributionally robust” training: minimize worst-case loss over “ball” of
data distributions centered at Pm:

min
x

max
Q:d(Q,Pm)≤ε

E(a,y)∼Q h(a, y ; x).
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Formulating Distributionally Robust Learning
In some cases, this problem can be formulated as a solvable optimization
problem.

Example [Ho-Nguyen and Wright, 2022]: When the model is linear and
h(a, y ; x) is discontinuous “zero-one loss”:

h(a, y ; x) =

{
1 if y(aT x) < 0

0 if y(aT x) ≥ 0

then the DRO problem with Wasserstein 2-metric is

min
x

ε‖x‖2 +
1

m

m∑
j=1

LR(yj (a
T
j x)),

where LR is the ramp-loss function: LR(r) = 1 for r < 0; LR(r) = 1− r for
r ∈ [0, 1], LR(r) = 0 for r > 1:
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In fact, [Song et al., 2021a] show that when h is any convex function of
y(aT x), the DRO problem using both Wasserstein 2-metric and a
alertdivergence metric can be formulated as a generalized linear program:

min
x

cT x + r(x) subject to Ax = b, x ∈ X ,

where X is a convex set that is easy to project onto while r(x) is a convex
function for which the “prox” operation is easy to compute. (For example,
r(x) could be a separable convex function

∑n
i=1 ri (xi ).)

Primal-dual algorithms for solving the generalized LP are described in
[Song et al., 2021a]; see also [Song et al., 2021b], [Alacaoglu et al., 2022].
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Application 15: Convex-Concave Min-Max
Several of the preceding applications are special cases of a convex-concave
min-max problem:

min
x

max
y

L(x , y) := yTAx −
m∑

j=1

h∗j (yj ) + g(x),

x ∈ Rn, y ∈ Rm, A is an m × n matrix;

each h∗j : R→ R is a conjugate of a convex scalar, that is

h∗j (z) = sup
t

[tx − hj (t)]

function.

g : Rn → R is convex.

By performing the max w.r.t. y explicitly, we obtain

min
x

h(Ax) + g(x),

where h : Rm → R has the separable form h(z) =
∑m

j=1 hj (zj ).
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Convex-Concave Min-Max

Empirical Risk Minimization (ERM) problems have the latter form,
including

Least squares: hi (t) = 1
2 t

2;

`1 regression: hi (t) = |t|;
Hinge loss: hi (t) = max(t, 0) (used in SVM, neural nets);

Regularization: Tikhonov g(x) = λ‖x‖2
2, `1: g(x) = λ‖x‖1;

TV regularization: hi (t) = ‖t‖2, Ai ∈ R2×d ;

logistic regression, least absolute deviation, ...

Also DRO with linear models (see above).

The min-max form of the problem can be useful for algorithms — see later!
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Issue: Benign Nonconvexity
Nonconvexity arises often in ML, but still useful solutions (even global
minima) are often easy to find:

matrix and tensor problems with explicit low-rank parametrizations
(not convex relaxations);

phase retrieval;

neural networks (NNs);

AC power flow;

(many other settings).

Ju Sun’s excellent page: https://sunju.org/research/nonconvex/

Several structures and properties promote benign nonconvexity, e.g.

All local minima are global minima;

All saddle points are strict saddle points, so are easy to escape from
(e.g. by detecting negative curvature in the Hessian);

Smart initialization schemes place x0 in a neighborhood of a global
minimizer.
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Example: Matrix Sensing
Matrix Sensing (Application 3) can be benignly nonconvex.

min
X

1

2m

m∑
j=1

(Aj (X )− yj )
2.

When symmetric X has low rank r , write X = ZZT where Z ∈ Rn×r .

Aj (X ) = 〈Aj ,ZZ
T 〉 for some symmetric Aj ∈ Rn×n.

Assume that the Aj satisfy a restricted isometry property (RIP):

(1− δq)‖X‖2
F ≤

1

m

m∑
j=1

〈Aj ,X 〉2 ≤ (1 + δq)‖X‖2
F ,

for all X with rank at most q and some δq ∈ (0, 1).

Formulation is thus

min
Z

h(Z ) :=
1

2m

m∑
j=1

(〈Aj ,ZZ
T 〉 − yj )

2.
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Example: Matrix Sensing

If the properties above hold with q = 2r and δ2r ∈ (0, .1], then

All local minima of h are global;

All stationary points of h that are not strict have negative curvature
in ∇2h(Z ).

[Bhojanapalli et al., 2016]

Smart initialization: The matrix

Y :=
1

m

m∑
j=1

yjAj

is close to the solution if RIP properties are satisfied for q = 2r . Steepest
descent on h can converge from such a starting point.
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Neural Networks

output nodes

input nodes

hidden layers

Inputs are the vectors aj = a0
j .

The M output nodes are com-
pared with label yj to form the
loss function, e.g. softmax or
linear combination.

At each layer, inputs are con-
verted to outputs by a linear
transformation composed with
an element-wise function σ:

a`+1 = σ(W `a` + b`),

where a` is vector of outputs
from layer `, (W `, b`) are pa-
rameters or weights in the net-
work.
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Neural Networks

The element-wise function σ makes transformations to scalar input.
Nowadays, it’s usually the ReLU / hinge function:

t → max(t, 0).

NN architectures are engineered to the application (speech processing,
image recognition, . . . ).

local aggregation of inputs: pooling;

restricted connectivity + constraints on weights (elements of W `

matrices): convolutions.

connections that skip a layer: ResNet. Each layer fits the “residual”
of the fit from the layer below.

“Long-short-term memory” (LSTM): for sequenced data (speech,
text).

(The network above is fully connected - a “convolutional NN” or CNN.)
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Training NNs

The network contains many parameters — (W `, b`), ` = 1, 2, . . . , L in the
notation above — that must be selected by training on the data (aj , yj ),
j = 1, 2, . . . ,m. Objective has the usual form:

L(x) :=
1

m

m∑
j=1

h(aj , yj ; x)

where x = (W 1, b1,W 2, b2, . . . ) are the parameters in the model and h
measures the mismatch between observed output yj and the outputs
produced by the model (as in multiclass logistic regression).

Number of parameters (components of x) is often vastly greater than the
number of data points — overparametrization.

Nonlinear, Nonconvex, usually Nonsmooth.

Many software packages available for training: Caffe, PyTorch,
TensorFlow, ... Many run on GPUs.
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NN Training: Stochastic Gradient

NNs are trained almost exclusively with some variant of stochastic
gradient (SGD). Steps have the form xk+1 ← xk − αkgk , where

gk :=
1

|Bk |
∑
j∈Bk

∇xh(aj , yj ; x
k ),

and Bk ⊂ {1, 2, . . . ,m} is a randomly sampled “batch.”

Choice of batch Bk (large or small) and step size αk greatly affect
performance of training algorithms. Schemes for choosing these terms
(hyper-parameter optimization) are a major issue.

Momentum terms sometimes help convergence: add βk (xk − xk−1).

Results are evaluated not by success in reducing the objective, but by
prediction performance on a test set similar to the training set.
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Calculating Gradients: “Backpropagation”

The structure of the function represented by the NN allows gradients
∇xh(aj , yj ; x) to be computed efficiently by using a form of the chain rule,
or reverse-mode automatic differentiation.

The technique was already well known in other contexts (e.g. as
“adjoints” in data assimilation for dynamic models).

Each loss function h(aj , yj ; x) in the summation has the “progressive” form

h(x) = φ(φl (xl , φl−1(xl−1, φl−2(xl−2 . . . (x2, φ2(x2, φ1(x1)) . . . ),

where

φ1 : Rn1 → Rm1 , φi : Rni×Rmi−1 → Rmi (i = 2, . . . , l), and φ : Rml → R.

Each xi represents the weights introduced at layer i of the NN. The output
φi of layer i depends on xi as well as the output of the previous layer φi−1.
The weights (variables) are introduced progressively by layers.
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Calculating Gradients: “Backpropagation”

∇xl
h(x) = (∇xl

φl ) (∇φl
φ)

∇xl−1
h(x) =

(
∇xl−1

φl−1

) (
∇φl−1

φl

)
(∇φl

φ)

∇xl−2
h(x) =

(
∇xl−2

φl−2

) (
∇φl−2

φl−1

) (
∇φl−1

φl

)
(∇φl

φ)

∇xl−3
h(x) =

(
∇xl−3

φl−3

) (
∇φl−3

φl−2

) (
∇φl−2

φl−1

) (
∇φl−1

φl

)
(∇φl

φ)

...

The matrices ∇φl−1
φl ,∇φl−2

φl−1,∇φl−3
φl−2, . . . appear in multiple terms.

Can evaluate and store these terms during the progressive evaluation
of φ1, φ2, . . . , φl , φ = h.

Then perform a backward recurrence to compute
∇xl

h(x),∇xl−1
h(x), . . . ,∇x1h(x).

Similar principles apply to more complex NN structures.
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Overparametrized NN

The total number of weights (W `, g `), ` = 1, 2, . . . , L exceeds the number
of data items, sometimes by factors of 10− 100.

Training such networks can often achieve zero loss a.k.a. interpolation,
that is, all items in the training data set are correctly classified. (In our
earlier notation: yj = φ(aj ), j = 1, 2, . . . ,m.)

Two big questions arise.

1. Isn’t this overfitting? Apparently not: such models often generalize
well, making good predictions on non-training data, flouting
conventional wisdom.

2. Why is stochastic gradient (SGD) reliably finding the global minimum
of the nonsmooth, nonlinear, nonconvex training problem?
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Double Descent
[Belkin et al., 2018, Belkin et al., 2019, Belkin, 2021] show that as the
number of parameters in the model is increased beyond the number
needed to interpolate training data, performance on test data improves
again: double-descent curve.

The solution is not uniquely defined in the overparametrized regime. We
need to be careful about which solution we converge to.
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Discussion

As extra parameters are added to the model of φ, there is an entire
manifold of interpolating solutions — among which are a small
fraction that are “regular” in some sense, and generalize well.

Classical theory (due to Vapnik, for example) fails to explain good
generalization - because it gives results that apply to all interpolating
solutions, not just the nice ones.

Standard algorithms (e.g. gradient-based) are apparently good at
finding such nice solutions — they have an “implicit regularization”
or “inductive bias” property.

I Typically, they don’t even have to move far from an initial point
to find an interpolating solution.
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Finding Zero-Loss / Interpolating Solutions

Thus, in an overparametrized NN, we observe:

As the dimension grows, the “manifold” of solutions grows to fill the
space.

A random initial point for the weights will be close to the solution
manifold — closer as the dimension grows.

Don’t need to change many ReLU activations to get from the initial
point to the solution, so the nonsmoothness of ReLU may not be
important.

Gradient descent (or stochastic gradient descent with big enough
batches) will move from the initial point to the solution.
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Solution manifold fills the space as number of parameters grows. Any
random starting point is close to a solution (and a gradient method will
find it).
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Transition to Linearity: Neuro-Tangent Kernels
Suppose φ(aj ; x) defines the output of an NN with input aj ∈ Rd and
weights x ∈ Rn. Training yields x such that φ(aj ; x) ≈ yj .

Consider a general class of NN, with

final layer with large width p, and

output φ(aj ; x) is a linear function of the p final-layer outputs.

Define ∇xφ(a; x) to be a feature map:

ψx (a) := ∇xφ(a; x) ∈ Rn,

and kernel function K(a,z)(x) := 〈∇xφ(a; x),∇xφ(z ; x)〉 = 〈ψx (a), ψx (z)〉.

Under these conditions, ψx (a) (and hence K(a,z)(x)) are almost
independent of x , for x near a reference / starting point x0. Thus φ is
almost linear in x :

φ(a; x) ≈ φ(a; x0) + 〈ψx0(a), x − x0〉.
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Why is the kernel K(a,z) interesting?

The function K is familiar in the context of kernel learning / kernel
regression. It appears for example when we solve the least-distance
interpolation problem for the training data around some given point x0:

min
x

1
2‖x − x0‖2

2 s.t. φ(aj ; x) + 〈ψx0(aj ), x − x0〉 = yj , j = 1, 2, . . . ,m.

Optimality conditions: there are multipliers λ = (λ1, λ2, . . . , λm) such that

x−x0 =
m∑

j=1

λjψx0(aj ), 〈ψx0(aj ), x−x0〉 = yj−φ(aj ; x0)) =: rj , j = 1, 2, . . . ,m.

Defining the n × n kernel matrix based on the training data:

Kij := Kai ,aj (x0) = 〈ψx0(ai ), ψx0(aj )〉, i , j = 1, 2, . . . ,m,

we have λ = K−1r , from which the optimal weights x can be recovered.
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Usefulness of (approximate) linearity

This suggests why linearity of f is important — it vastly simplifies the
interpolation / optimization process.

The whole setup reduces to Kernel Learning (see Application 10) where
the data item aj is lifted to ψx0(aj ) = ∇xφ(aj ; x).

Such problems reduce to being “almost quadratic” — provided we stay in
the region of near-linearity, near x0.

Can show that particular NNs have this property:

wide final layer

output f is a linear combination of the final layer outputs.

See [Belkin, 2021].
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Recent Perspectives

Investigations continue into the related issues of finding zero-loss solutions
and generalizability.

Many consider simplified, impractical networks (e.g. single-hidden-layer,
very wide). Recent example: [Ding et al., 2022] consider a wide, deep
ResNet, proving global convergence results via mean-field and ODE
analysis of the continuous limits.

Catapult [Zhu et al., 2022]: Uses a quadratic approximation to the NN
loss (rather than the linear NTK approximation) to explain a phenomenon
seen in training with large steplengths.

Loss sometimes increases sharply, then peaks and decreases rapidly.

Observed in many settings, can be explained convincingly using
quadratic approx.
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Recent Perspectives

Other phenomenon related to “catapult” are grokking and slingshot
[Thilak et al., 2022].

Observed for adaptive stochastic gradient methods (like Adam).

Loss converges to almost zero, but occasionally spikes.

Spikes cause norm of last layer of NN weights to jump, cause
generalization (as measured by validation error) to continue improving
long after the training loss has converged nearly to zero.
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NNs with Output Constraints

Much recent work on Physics-Informed NNs (PINNs) in which physical
modeling is combined with NNs that “fill gaps” in the models.

Often the output of these NN components must be constrained to make
sense for the model. Example from [Djeumou et al., 2022]:
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For constrained problems, feasible solution may be distant from a random
starting point, so the usual logic of overparametrization + random starting
does not apply.

Algorithms can “get lost” traversing the parameter space between initial
point and feasible solution.
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Algorithms for Constrained NNs

What algorithms work for Constrained NN?

This area is in its infancy & is an active research topic.

Naive methods (e.g. quadratic penalty) don’t work - possibly for the
reasons shown above. Augmented Lagrangian has had some success
(e.g. [Lu et al., 2021, Djeumou et al., 2022]).

But there are many other algorithms for constrained optimization that
might be relevant:

I Exact penalty,
I Primal-dual interior-point,
I SQP.

One question is: Can these methods adapt well to NN problems,
where exact first-derivative information is not available. We only have
“stochastic gradients.”
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Formulations: Summary

Optimization provides powerful frameworks for formulating problems in
data analysis and machine learning.

The usefulness of the optimization perspective continues to grow. See for
example the use of robust optimization tools in formulating adversarial ML
and distributionally robust learning.

Usually not enough to use off-the-shelf optimization software to solve the
optimization formulations. The algorithms need to be customized to
problem structure, context, and size.

Research in this area has exploded over the past decade and is still going
strong, with a many unanswered questions — many of them in deep
learning.
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