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Outline

Iterative methods for sparse matrix problems

@ Arnoldi method for eigenvalues (2 hr)
o GMRES for linear systems (2 hr)
e Extensions (1 hr)
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Sparse Matrices

@ Matrices with most entries zero: we store and operate only on the
nonzeros

@ Save memory and computation — essential for very large systems (e.g.
PDE discretisations)

e Various storage formats (coordinate, CSR/CSC, etc.) — tradeoffs
between memory usage, implementation complexity and operation
speed

o lterative methods (Arnoldi, GMRES, etc.) with only minimal
requirements, e.g. matrix-vector product

@ Applications to scientific computing, optimisation, simulation,
machine learning, etc.

2025 MoCaO Lectures Arnoldi Method 3/22



Eigenvalue problem

Today we consider the eigenvalue problem:
Ax = Ax
A is large, sparse, nonsymmetric, but, we assume, diagonalisable
Can be complex (everything works fine) but we present only real examples
Our goal is to compute some (not all) of the eigenvalues of A

In practice, we estimate the “extreme” eigenvalues of A (those near the
edge of the spectrum — most often relevant in applications)

We'll consider two algorithms:

@ Power method (stepping stone)
@ Arnoldi method (main focus)
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Suppose A has a dominant eigenvalue, [A1| > [A2| > -+ and has a
complete eigenbasis {xi, x2, ..., Xp}.

Choose a starting vector b at random.
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Suppose A has a dominant eigenvalue, [A1| > [A2| > -+ and has a
complete eigenbasis {xi, x2, ..., Xp}.

Choose a starting vector b at random.

b= ZC,'X,' =c1x1 + Z Ci X
i

i>2
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Suppose A has a dominant eigenvalue, [A1| > [A2| > -+ and has a
complete eigenbasis {xi, x2, ..., Xp}.

Choose a starting vector b at random.

b= ZC,'X,' =c1x1 + Z Ci X
i

i>2
Then
Ab = c1Axy + Z CiAX;
i>2
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Suppose A has a dominant eigenvalue, [A1| > [A2| > -+ and has a
complete eigenbasis {xi, x2, ..., Xp}.

Choose a starting vector b at random.

b= ZC,'X,' =c1x1 + Z Ci X
i

i>2
Then
Ab = c1Axy + Z CiAX;
i>2
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Suppose A has a dominant eigenvalue, [A1| > [A2| > -+ and has a
complete eigenbasis {xi, x2, ..., Xp}.

Choose a starting vector b at random.

b= ZC,'X,' =c1x1 + Z Ci X
i

i>2
Then
Ab = c1Axy + Z CiAX;
i>2
= adx + ) GAixi
i>2
and Akp = Cl/\lkxl + Z C,')L,'kX,'
i>2
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Afb = ciA1Fx + Z ciAi*xi

i>2
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Afb = ciA1Fx + Z ciAi*xi

i>2

A. k
= Alk cxy + 2 Cj (AI> X;
i>2 1
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Afb = ciA1Fx + Z ciAi*xi

i>2

A k
=M (ax+Y ¢ ( > X
(on g i

So as k — oo the bracketed factor — c1x; geometrically at rate [A5/Aq]¥.

Conclusion: the direction of A¥b tends to the dominant eigenvector x;.
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Choose b # 0 at random
Set vi = b/ || b||
Forj=1,2,...m

Wil = Ay
Visr = Wit/ [|wja|  (normalise)
Hi+1 = V1AV (Rayleigh quotient)

End
vj+1 is normalised eigenvector estimate.

Rayleigh quotient yields eigenvalue estimate:

Avji1 R A1vjqg

Hit1 = Vi Avi & v v = Mflviall = M
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We start with b, and progressively calculate Ab, A%b, A3b, ... (ignore
scaling for now).

The final eigen-estimates use only the last vector in this sequence.

Could we do better by incorporating all the intermediate vectors too
(somehow)?

Observation: By step m of the method we have built a basis for the
subspace

Kum(A,b) = span{b, Ab, A%b, .., A" b} |

which is known as the Krylov subspace of dimension m (for this particular
A and b).
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Krylov subspace

Km(A, b) = span{b, Ab, A%b, ..., A" b}

This is a very natural subspace to consider: formed only by repeated
matrix-vector products with A.

Clearly it captures something about how A acts on vectors. There should
be some information about the eigenvectors lurking in there!

The power method however throws nearly all of it away, and only uses the
final vector.

How can we make better use of the full subspace of information?
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Projection methods

Start with a large-dimensional problem (e.g. our large, sparse eigenvalue
problem).

Project the problem down onto a small-dimensional space (e.g. our Krylov
subspace).

Solve it exactly (and cheaply!) in the small-dimensional space.

Lift the solution back up to the full scale to obtain an approximate
solution to the large-dimensional problem.

So first question:

@ What does it mean to “project” the eigenvalue problem onto a Krylov
subspace?
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Maybe we're getting ahead of ourselves

Here's the Krylov subspace:

Km(A, b) = span{b, Ab, A%b, ..., A""1b}

The naive choice of basis for this space, literally formed by the vectors
b, Ab, A%b, . .., would be hopelessly ill-conditioned.

The whole point of the power method is that the later vectors all point in
pretty much the same direction!

So second question (which we'll answer first):

@ How do we build a well-conditioned basis for the Krylov subspace?
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The Arnoldi process

B=Ibl, w=0b/p
Forj=1,2,...m

hi = (Av,v),  i=12...j
J

wj = Ay =) hyvi
i=1

hj_:,_l’j = || WJ” if hj+1’j = 0 then StOp

Vi+1 = Wi/ hjtj
End

At any step m the columns of Vi, = [vy va+ - vy form an orthonormal
basis for the Krylov subspace (A, b) = span{b, Ab, A%b, ..., A"~1b}.

We have also generated the matrix H,, whose (i, j)th entry is hi;.
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Forj=1,2,...m
hij = (Avj, vi), i=1,...,j
J
wj = Av; — ) hjvi
i=1

hj+1,j = HWJH if hj+1,j = 0 then stop
Viy1 = wj/hjy1;

End
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Forj=1,2,...m
hij = (Avj, vi), i=1,...,j
J
wj = Av; — ) hjvi
i=1

hj+1,j = HWJH if hj+1,j = 0 then stop
Vitr = Wi/ hip1j = w; = hj1jvit

End
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Forj=1,2,...m
hij = (Avj, vi), i=1,...,j
J J
wj = Av; — ) hyvi = hi1j v = Ay — ) by
i1 i1
hj+1,j = HWJH if hj+1,j = 0 then stop
Vi1 = wj/hjy1; = w; = hj11;vj1

End
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Forj=1,2,...m
hij = (Avj, vi), i=1,...,j
J
wj = Av; — ) hjvi = hj1 v = Ay
i1
hj+1,j = HWJH if hj+1,j = 0 then stop
Vit1 = wj/hjy1; = w; = hj11jvj

End

Rearranging the central formula:

J
=) hivi
i=1

j
Avi =) hjvi+hiijvien,  j=1...m
i=1
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Forj=1,2,...m
hij = (Avj, vi), i=1,...,j
J J
wj = Av; — ) hyvi = hi1j v = Ay — ) by
i1 i1
hj+1,j = HWJH if hj+1,j = 0 then stop
Vi1 = wj/hjy1; = w; = hj11;vj1

End
Rearranging the central formula:
j .
AVJ: EhUVi+hj+1,j Vit1, j=1...m
i=1

Combining:

j+1
Avj:Zh,-jv,-, j=1...m
i=1
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Arnoldi relation 1

Jj+1
Avi =Y hjvi, j=1...m
i=1
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Arnoldi relation 1

Jj+1
Avi =Y hjvi, j=1...m
i=1

Alvi|=1|wn V2 e Vi1 e Vm+1 hjt1,j
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Arnoldi relation 1

Jj+1
Avi =Y hjvi, j=1...m
i=1

Alvi|=1|wn V2 e Vi1 e Vm+1 hjt1,j
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Arnoldi relation 1

Jj+1
Avi =Y hjvi, j=1...m
i=1

Alvi|=1|wn V2 e Vi1 e Vm+1 hjt1,j

Altogether,
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Arnoldi relation 2

AV = m+ lﬁm

2025 MoCaO Lectures Arnoldi Method



Arnoldi relation 2

AV = m+ lﬁm

AVm:[Vm ‘ Vm+1] A
oo --- 0 m+1,m
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Arnoldi relation 2

AV = m+1ﬁm
Hm
AV, = [ Vi ‘ Vm+1 ]
00 0 hm+1,m
Hm

-
hm+1,m €m
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Arnoldi relation 2

AV = m+1ﬁm
Hm
AV, = [ Vi ‘ Vm+1 ]
00 0 hm+1,m
Hm

AV, = [ Vin ‘ Vm+1 ]
hm+1,m emT

[Avm = VmHm + hm+1,m Vm+1 €m T}
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Arnoldi relation 3

AV = Vi Hp + hm+1,m Vm+1 emT
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Arnoldi relation 3

AV = Vi Hp + hm+1,m Vm+1 emT

ViEAV, = ViV Ho + hmitm Vi Vi1 €m '

= InHm + hmy1,m0 emT
—H,
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Arnoldi relation 3

AV = Vi Hp + hm+1,m Vm+1 emT

ViEAV, = ViV Ho + hmitm Vi Vi1 €m '

= ImHm + hmi1,m 0 emT
—H,

VAV, = Hip,
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The Arnoldi relations

AVm == m+1ﬁm
AV = Vo Hy + hm+1,m Vm+1 emT
VEAV,, = Hi

Ais n X n, where n is typically large
Vi, is n X m: m columns of n-dimensional vectors
V1 is n X (m+1): it's just V,, but one iteration further along

Hpmis (m+1) x m (rectangular) upper Hessenberg

H., is m x m (square) upper Hessenberg: it's just H,, without the
bottom row

For eigenvalue problems H,, is the relevant matrix.
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Returning to our two questions

We have answered our second question from earlier:
@ How do we build a well-conditioned basis for the Krylov subspace?

Answer: the Arnoldi process generates an orthonormal basis for C,,; in the
form of the columns of V,,.

Furthermore the Arnoldi relation reveals that V}; AV,, = H;, where H, is
upper Hessenberg.
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Returning to our two questions

We have answered our second question from earlier:
@ How do we build a well-conditioned basis for the Krylov subspace?

Answer: the Arnoldi process generates an orthonormal basis for C,,; in the
form of the columns of V,,.

Furthermore the Arnoldi relation reveals that V}; AV,, = H;, where H, is
upper Hessenberg.

We now return to the first question:

@ What does it mean to “project” the eigenvalue problem onto a Krylov
subspace?
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Projecting A onto the Krylov subspace

e Consider an arbitrary vector u € KCp,:
u = Vp, y for some coordinate vector y.
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Projecting A onto the Krylov subspace

e Consider an arbitrary vector u € KCp,:
u = Vp, y for some coordinate vector y.

o Now form Au = AV,y
(most likely this new vector does not belong to KCp,).
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Projecting A onto the Krylov subspace

e Consider an arbitrary vector u € KCp,:
u = Vp, y for some coordinate vector y.
@ Now form Au = AV,,y
(most likely this new vector does not belong to KCp,).
@ Orthogonally project this vector back onto K ;-
proj,cm(A u) =V VEAu=V,ViAV,y
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Projecting A onto the Krylov subspace

e Consider an arbitrary vector u € KCp,:
u = Vp, y for some coordinate vector y.

o Now form Au = AV,y
(most likely this new vector does not belong to KCp,).

@ Orthogonally project this vector back onto K ;-
proj,cm(A u) =V VEAu=V,ViAV,y
@ This is of the form V,,Ax, y so we identify the projected matrix

Ac, = VEAV,,
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Projecting A onto the Krylov subspace

e Consider an arbitrary vector u € KCp,:
u = Vp, y for some coordinate vector y.
@ Now form Au = AV,,y
(most likely this new vector does not belong to KCp,).

@ Orthogonally project this vector back onto K ;-
proj,cm(A u) =V VEAu=V,ViAV,y
@ This is of the form V,,Ax, y so we identify the projected matrix

Ak, = Vi AV,
But from the Arnoldi relation

VEAV, = Hp
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Projecting A onto the Krylov subspace

e Consider an arbitrary vector u € KCp,:
u = Vp, y for some coordinate vector y.

o Now form Au = AV,y
(most likely this new vector does not belong to KCp,).

@ Orthogonally project this vector back onto K ;-
proj,cm(A u) =V VEAu=V,ViAV,y
@ This is of the form V,,Ax, y so we identify the projected matrix

Ak, = Vi AV,
But from the Arnoldi relation
VAV, = Hp
So the projection of A onto I, is simply
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Arnoldi method

,(m) and eigenvectors y™ of Hy,

We compute eigenvalues 6 ;

Hmyi(m): i Yi

This is a small, m-dimensional eigenproblem, easy to solve.
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Arnoldi method

We compute eigenvalues 8™ and eigenvectors y-(m) of Hp,

Hon y(™ = () ()

This is a small, m-dimensional eigenproblem, easy to solve.

Then map back to n-dimensions with

ul(m) _ me.(m)

1

The pair (9,('"), ulgm)) are the Ritz values and Ritz vectors, respectively.

Ideally they are good approximations of true eigenvalue/eigenvector pairs
of A.
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Arnoldi residual

We can derive the eigenvalue residual by comparing Aulm with §(m) y(m).

Aul™ = AV, ym
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Arnoldi residual

We can derive the eigenvalue residual by comparing Aulm with §(m) y(m).

Aul™ = AV, ym
= (Vm Hn+ hm+1,m Vm+1 emT) y(m)
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Arnoldi residual

We can derive the eigenvalue residual by comparing Aulm with §(m) y(m).

Aul™ = AV, ym
= (Vm Hn+ hm+1,m Vm+1 emT) y(m)

= Vm Hm y(m) + hm+1,m Vm+1 emTy(m)
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Arnoldi residual

We can derive the eigenvalue residual by comparing Aulm with §(m) y(m).

Aulm = AV, y(m
= (Vm Hn+ hm+1,m Vm+1 emT) y(m)
= Vm Hm y(m) + hm+1,m Vm+1 emTy(m)

= G(m) Vim y(m) + Amt+1,m Vm+1 emTy(m)
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Arnoldi residual

We can derive the eigenvalue residual by comparing Aulm with §(m) y(m).

Aul™ = AV, ym
= (Vin Hin + B 1m Vi1 €m ") yt™
= Vi Hn Y\ 4 B2 Vim g1 €y
=0 Voo y (™ bt Vgt €m |y (™

= (M) y(m 4 hm+1,m Vim+1 em’ ym
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Arnoldi residual

We can derive the eigenvalue residual by comparing Aulm with §(m) y(m).

A U(m) =A Vm y(m)
= (Vm Hm + hm+1,m Vm+1 emT) y(m)
= VmnHn y(m) + hm+1,m Vm+1 emTy(m)
— p(m) Vi, y(m) + Amt1,m Vm+1 emTy(m)
= o(m) y(m) 4 hm+1,m Vm+1 emTy(m)
Eigenvalue residual
(m)

A u(m) — Q(m) u(m) = Bm+1,m Vm+1 emTy
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Arnoldi residual

Aulm _ glm) (m) (m)

= hmt1,m Vi1 €m' Y
1A ™ — 00 ™| = || Ay 1,m vini1 em” ™|
= |hmitm] [[vims1 ]| lem " y™|
= |hm+1,m| |emTy(m)|
= | B 1,m| [y ]
Note the “lucky breakdown” in the Arnoldi process occurs when

hm+1,m = 0, so the Ritz values and vectors would in fact be true
eigenvalues and eigenvectors of A in that case.
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