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Review: The Arnoldi process

β = ∥b∥, v1 = b/β
For j = 1, 2, . . .m

hij = ⟨Avj , vi ⟩, i = 1, 2, . . . , j

wj = Avj −
j

∑
i=1

hijvi

hj+1,j = ∥wj∥ if hj+1,j = 0 then stop
vj+1 = wj/hj+1,j

End

At any step m the columns of Vm = [v1 v2 · · · vm] form an orthonormal
basis for the Krylov subspace Km(A, b) = span{b,Ab,A2b, ...,Am−1b}.

We have also generated the matrix Hm whose (i , j)th entry is hij .
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Review: Arnoldi relation 1

Avj =
j+1

∑
i=1

hijvi , j = 1, . . .m

A

 vj

 =

 v1 v2 · · · vj+1 · · · vm+1





h1,j
h2,j
...

hj+1,j

0
...
0


AVm(:, j) = Vm+1Hm(:, j), j = 1, . . . ,m

Altogether,

AVm = Vm+1Hm
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Review: Arnoldi relation 2

AVm = Vm+1Hm

AVm =
[
Vm vm+1

]  Hm

0 0 · · · 0 hm+1,m


AVm =

[
Vm vm+1

]  Hm

hm+1,m em
T


AVm = VmHm + hm+1,m vm+1 em

T
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Review: Arnoldi relation 3

AVm = VmHm + hm+1,m vm+1 em
T

V ∗
mAVm = V ∗

mVmHm + hm+1,m V ∗
m vm+1 em

T

= ImHm + hm+1,m 0 em
T

= Hm

V ∗
mAVm = Hm
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Review: The Arnoldi relations

AVm = Vm+1Hm

AVm = VmHm + hm+1,m vm+1 em
T

V ∗
mAVm = Hm

A is n× n, where n is typically large

Vm is n×m: m columns of n-dimensional vectors

Vm+1 is n× (m+ 1): it’s just Vm but one iteration further along

Hm is (m+ 1)×m (rectangular) upper Hessenberg

Hm is m×m (square) upper Hessenberg: it’s just Hm without the
bottom row

For eigenvalue problems Hm is the relevant matrix.
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Review: Arnoldi method

The projection of A onto Km is simply

AKm
= Hm

We compute eigenvalues θ
(m)
i and eigenvectors y

(m)
i of Hm

Hm y
(m)
i = θ

(m)
i y

(m)
i

This is a small, m-dimensional eigenproblem, easy to solve.

Then map back to n-dimensions with

u
(m)
i = Vmy

(m)
i

The pair (θ
(m)
i , u

(m)
i ) are the Ritz values and Ritz vectors, respectively.

Ideally they are good approximations of true eigenvalue/eigenvector pairs
of A.
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Review: Arnoldi residual

Au(m) − θ(m) u(m) = hm+1,m vm+1 em
T y (m)

∥Au(m) − θ(m) u(m)∥ = ∥hm+1,m vm+1 em
T y (m)∥

= |hm+1,m| ∥vm+1∥ |emT y (m)|
= |hm+1,m| |emT y (m)|
= |hm+1,m| |y (m)

m|

Note the “lucky breakdown” in the Arnoldi process occurs when
hm+1,m = 0, so the Ritz values and vectors would in fact be true
eigenvalues and eigenvectors of A in that case.
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Arnoldi theory

Our goal will be to show that the Arnoldi method minimises the expression

∥pm(A)b∥

over all monic polynomials of degree m.

Specifically, the characteristic polynomial of Hm, pm(z) = det(zI −Hm) is
precisely the minimiser.

To whatever extent the Arnoldi method is useful for finding eigenvalues, it
is a side-effect of this result.

We have a few steps to build up first.
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Formulas for Ak b

The theoretical tool involves pm(A)b, a monic polynomial of A times b.

pm(A)b = Amb+ cm−1A
m−1b+ . . . + c1Ab+ c0b

So we’d better work out what Ab, A2b, A3b, etc. look like.

We emphasise that this is a theoretical tool. Arnoldi does not actually
form these products.

b = βv1 = βVme1

Ab = A(βVme1) = βAVme1

= β(VmHm + hm+1,m vm+1em
T )e1

= βVmHme1 + βhm+1,m vm+1em
T e1

= βVmHme1
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Formulas for Ak b

A2b = A(βVmHme1) = βAVmHme1

= β(VmHm + hm+1,m vm+1em
T )Hme1

= βVmH
2
me1 + βhm+1,m vm+1em

T (Hme1)

= βVmH
2
me1

A3b = A(βVmH
2
me1) = βAVmH

2
me1

= β(VmHm + hm+1,m vm+1em
T )H2

me1

= βVmH
3
me1 + βhm+1,m vm+1em

T (H2
me1)

= βVmH
3
me1
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Formulas for Ak b

Am−1b = A(βVmHm
m−2e1)

= βAVmHm
m−2e1

= β(VmHm + hm+1,m vm+1em
T )Hm

m−2e1

= βVmHm
m−1e1 + βhm+1,m vm+1em

T (Hm
m−2e1)

= βVmHm
m−1e1

Amb = A(βVmHm
m−1e1)

= βAVmHm
m−1e1

= β(VmHm + hm+1,m vm+1em
T )Hm

m−1e1

= βVmHm
me1 + βhm+1,m vm+1em

THm
m−1e1
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Formulas for Ak b

So for k < m we have the neat result

Akb = βVmHm
ke1, k < m

And by linearity for all polynomials pm−1(A) of degree up to m− 1

pm−1(A)b = βVmpm−1(Hm)e1

But the result for k = m is not as simple:

Amb = βVmHm
me1 + βhm+1,m vm+1em

THm
m−1e1

2025 MoCaO Lectures Arnoldi Method Theory 13 / 22



Formulas for Ak b

But there is another way to formulate these results

Akb = βVmHm
ke1, k < m

Amb = βVmHm
me1 + βhm+1,m vm+1em

THm
m−1e1

Multiply through by V ∗
m to recover a neat formula up to k = m

V ∗
mA

kb = βV ∗
mVmHm

ke1, k < m

V ∗
mA

mb = βV ∗
mVmHm

me1 + βhm+1,m V ∗
mvm+1em

THm
m−1e1

In either case the result simplifies to

V ∗
m Akb = βHm

ke1, k≤m

And by linearity for all polynomials pm(A) of degree up to m

V ∗
m pm(A)b = β pm(Hm)e1
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Back to pm(A)b

For a general monic polynomial pm, we have

pm(A)b = Amb+ cm−1A
m−1b+ . . . + c1Ab+ c0b

and so
pm(A)b ∈ Km+1(A, b)

n.b. Km+1, not Km. So

pm(A)b = Vm+1V
∗
m+1pm(A)b

= Vm+1

[
Vm vm+1

]∗
pm(A)b

= Vm+1

[
V ∗
m pm(A)b

v ∗m+1 pm(A)b

]
= Vm+1

[
w
ρ

]
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Back to pm(A)b

pm(A)b = Vm+1V
∗
m+1pm(A)b

= Vm+1

[
Vm vm+1

]∗
pm(A)b

= Vm+1Vm+1

[
V ∗
m pm(A)b

v ∗m+1 pm(A)b

]
= Vm+1

[
w
ρ

]
where

w = V ∗
mpm(A)b and ρ = v ∗m+1pm(A)b

Now, since V ∗
m+1Vm+1 = I ,

∥pm(A)b∥2 =
∥∥∥∥[ w

ρ

]∥∥∥∥2 = ∥w∥2 + |ρ|2
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Main Lemma

For any monic polynomial pm, ρ is fixed and given by

ρ = βhm+1,m em
THm

m−1e1

Proof: Begin with

ρ = v ∗m+1pm(A)b

= v ∗m+1(A
mb+ qm−1(A)b)

since pm is monic. Take the two terms separately.
First term: involves Amb, so use the result

Amb = βVmHm
me1 + βhm+1,m vm+1em

THm
m−1e1

So

v ∗m+1A
mb = v ∗m+1(βVmHm

me1 + βhm+1,m vm+1em
THm

m−1e1)

= β v ∗m+1Vm Hm
me1 + βhm+1,m v ∗m+1vm+1 em

THm
m−1e1

= βhm+1,m em
THm

m−1e1
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THm
m−1e1
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Putting it all together

Recall we derived
∥pm(A)b∥2 = ∥w∥2 + |ρ|2

and we have now found that ρ is fixed for any monic pm. What about w?

w = V ∗
mpm(A)b = βpm(Hm)e1

and the choice that minimises this (by making it zero!) is

pm(z) = det(zI −Hm)

i.e. pm is the characteristic polynomial of Hm.

Conclusion: the Arnolid method generates the polynomial pm (as the
characteristic polynomial of Hm) that minimises ∥pm(A)b∥ over all monic
polynomials of degree m, and the minimum value is

|ρ| = βhm+1,m em
THm

m−1e1 = βhm+1,m

m

∏
j=1

hj+1,j .
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Discussion

This result says nothing about eigenvalues! Evidently Arnoldi is solving a
polynomial approximation problem.

Why does it produce good eigenvalue estimates?

If the “goal” is to make ∥pm(A)b∥ small, then a good strategy could be to
make pm(z) small at the eigenvalues of A.

Remember, pm(A) = X diag(pm(λi ))X−1 so you win by making pm(λi )
as small as possible.

But pm is the characteristic polynomial of Hm, so its roots are precisely
the Ritz values θi : pm(θi ) = 0.

Hence Arnoldi will arrange for the Ritz values θi to align with the
eigenvalues λi as “best as possible”.
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Discussion

There are only m Ritz values θi and in practice we typically have m ≪ n.

Arnoldi doesn’t have enough degrees of freedom to make pm(λi ) ≈ 0 for
all i = 1, . . . n.

Which eigenvalues λi will it prioritise to approximate well by Ritz values?

pm(A) = X diag(pm(λi ))X
−1

∥pm(A)b∥ ≤ ∥X∥ ∥diag(pm(λi ))∥∥X−1∥∥b∥ ≤ κ(X )∥b∥max
i

|pm(λi )|

so it can’t afford to have any |pm(λi )| too large.

Conclusion: Arnoldi will tend to converge to “exterior” eigenvalues first
(since otherwise pm(λi ) could be enormous there).
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Conclusion

We have presented the Arnoldi method for approximating eigenvalues and
eigenvectors of sparse matrices.

The method relies on building an onorthonormal basis for the Krylov
subspace Km(A, b) = span{b,Ab,A2b, ...,Am−1b}.

This yields the relation (among others) V ∗
mAVm = Hm

We calculate eigenvalues of Hm (Ritz values), and map the associated
eigenvectors y (m) up to n-dimensions using u(m) = Vmy

(m) (Ritz vectors).

Check residuals |hm+1,m| |y (m)
m| to see which have converged.

All the while, the method is really optimising ∥pm(A)b∥ over monic
polynomials of degree m: the optimal choice is pm(z) = det(zI −Hm).

If the Ritz values are accurate, it is a side effect of this true objective.
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