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GMRES: Introduction

So far we have looked at projection methods for the eigenvalue
problem where our main tool was Arnold’s method: a Krylov
subspace projection method.

Now, we turn to the other big problem in linear algebra: solving
systems of equations

Ax = b.

The standard algorithm of this kind is known as GMRES, which
stands for ”Generalised Minimum Residuals”.
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GMRES: Development

To solve Ax = b, once again we build the Krylov subspace

Km(A, b) = span{b,Ab, . . . ,Am−1 b}.

Here, the vector is not arbitrary; it is the RHS vector of the linear
system.

So, our approximate solution x (m), which we will choose (somehow)
from the Krylov subspace Km will be a linear combination of the
vectors b, Ab, ..., Am−1b.

That is, x (m) = c0 b+ c1 A b+ . . . cm−1 A
m−1 b for some

coefficients ci . Or, in other words, x (m) = qm−1(A) b for some degree
m− 1 polynomial qm−1.

According to the Arnoldi decomposition AVm = Vm+1H̄m, our
solution x (m) will be given by

x (m) = Vm ym

for some coordinate vector ym.
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GMRES: Development

Question: how do we know a good approximate solution could be
found in this Krylov space Km?

The Cayley–Hamilton theorem: if Pn(λ) = det(λI − A) is the
characteristic polynomial of A, then Pn(A) = 0. That is,

a0 I + a1 A+ a2 A
2 + . . . + an An = 0, where an = 1.

Multiply A−1 on both sides

a0 A
−1 + a1 I + a2 A+ . . . + An−1 = 0

A−1 = −a1
a0

I − a2
a0

A− . . . − 1

a0
An−1 = P̃n−1(A)

The exact solution x = A−1b = P̃n−1(A)b ∈ Kn(A, b)

The approximate solution
x (m) = qm−1(A) b = Vm ym ∈ Km(A, b), note m < n
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GMRES: Development

Question: how do we choose ym such that x (m) is a good
approximation of x?

This is what GMRES does: it minimises the residual norm

∥r (m)∥ = ∥b− Ax (m)∥.

Using the Arnoldi decomposition,

r (m) = b− Ax (m) = b− AVm ym = b− Vm+1 H̄m ym

Note the first column of Vm+1 is v1 = b/β, with β = ∥b∥. So

r (m) = β v1 − Vm+1 H̄m ym = βVm+1 e1 − Vm+1 H̄m ym

= Vm+1(β e1 − H̄m ym).

And hence,

∥r (m)∥ = ∥Vm+1(β e1 − H̄m ym)∥ = ∥β e1 − H̄m ym∥

since Vm+1
T Vm+1 = I .
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GMRES: Development

So the n-dimensional minimisation reduces to the m-dimensional least
squares problem:

min ∥β e1 − H̄m ym∥ over ym ∈ Rm .

That is, to ”solve” H̄m ym = β e1 → ym = H̄m \ (β e1).

Our approximate solution x (m) = Vm ym.
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GMRES: Example 1

rng(’default’); n = 20; density = 0.3;

A = sprand(n, n, density); b = rand(n,1); m = 6;

[x, flag, relres, iter, resvec] = gmres(A, b, [], 0, n);
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GMRES: Example 1

This is discouraging!

GMRES is behaving more like a direct method: it is no use at all until
it ”finishes” by reaching m = n iterations, at which point it’s found
the exact solution.

It’s ok for this example with n = 20, but it’s no use when n is large.

But should we really expect we can do better than taking m = n
iterations? Perhaps this whole idea of projection methods for linear
systems is no good?

Before we throw it all away, let’s take a moment to analyse what’s
happening, just in case we can salvage things somehow.
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GMRES: Convergence analysis

Questions we have

How quickly does GMRES converge?

How many iterations m must be taken before ∥r (m)∥/∥b∥ is reduced
to a satisfactory level such as 10−3 or 10−6?

What properties of A determine the size of ∥r (m)∥?
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GMRES: Convergence analysis

Let’s do some analysis:

Recall that GMRES produces a solution at each iteration which is a
polynomial in A times b: x (m) = qm−1(A) b.

The residual vector is

r (m) = b−Ax (m) = b−Aqm−1(A) b = (I −Aqm−1(A))b = p̃m(A) b,

where p̃m(z) = 1− z qm−1(z) is a polynomial of degree m with
constant coefficient 1 (coefficient of z0).

The norm of r (m) is ∥r (m)∥ = ∥p̃m(A) b∥.
We are (again!) solving the problem of minimising ∥p̃m(A) b∥, but
this time over a different space of polynomials.

Previously, in the Arnoldi method, our polynomial
pm(z) = det(z I −Hm) has leading coefficient of 1 (coefficient of
zm).
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GMRES: Convergence analysis

Let’s focus on GMRES. We have

∥r (m)∥ = ∥p̃m(A) b∥ ≤ ∥p̃m(A)∥ ∥b∥,

or, in terms of the relative residual

∥r (m)∥
∥b∥ ≤ ∥p̃m(A)∥.

Since GMRES minimises the left hand side, we can write

∥r (m)∥
∥b∥ ≤ inf

p̃m∈Pm

∥p̃m(A)∥

where Pm denotes the space of degree m polynomials with constant
coefficient 1, i.e. p̃m(z) = cmz

m + . . . + c1z + 1.

This inequality determines the convergence rate of GMRES.
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GMRES: Convergence analysis

Question: Given a matrix A and a subspace size m, how small can
∥p̃m(A)∥ be?

Suppose A is diagonalisable, with A = X diag(λi ) X−1. Then

p̃m(A) = X diag(p̃m(λi )) X
−1

Take norms on both sides

∥p̃m(A)∥ = ∥X diag(p̃m(λi ))X
−1∥

≤ ∥X∥ ∥diag(p̃m(λi ))∥ ∥X−1∥
≤ cond(X ) sup

z∈σ(A)
|p̃m(z)|

where σ(A) = {λ1,λ2, · · · ,λn} is the spectrum of A, and
cond(X ) = ∥X∥ ∥X−1∥ is the condition number of the matrix of
eigenvectors.
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GMRES: Convergence analysis

Combining with the earlier result, we obtain the following theorem on
the convergence of GMRES

∥r (m)∥
∥b∥ ≤ cond(X ) inf

p̃m∈Pm

sup
z∈σ(A)

|p̃m(z)|,

where p̃m(z) = 1− z qm−1(z) is a polynomial of degree m with
constant coefficient 1 (p̃m(0) = 1).

Summary of this theorem:
If the condition number cond(X ) is not too large, and if degree m
polynomials p̃m(z) can be found whose magnitude on the spectrum of
A, σ(A), decreases quickly with m, then GMRES converges quickly.
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GMRES: Example 2 (small eigenvalues)

Let’s build a 20x20 matrix with real eigenvalues [-0.1, 0.1, 1, 2, ..., 18] and
random eigenvectors, and run GMRES for different choices of m.
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GMRES: Example 3 (small eigenvalues shifted)

Take the matrix from Example 2, and solve (A+ I ) x = b, instead of
solving A x = b.
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GMRES: Example 4 (clustered eigenvalues)

Let’s build another 20× 20 matrix Ac with eigenvalues clustered around 5,
10, 15, and 20.
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GMRES: revisit Example 1

Let’s solve A x = b and (A+ 2 I ) x = b using GMRES with m = 6.
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GMRES: Key points on the convergence

In summary, for GMRES to solve Ax = b:

the rate of convergence depends on the condition number of the
eigenvector matrix, cond(X ), and how quick |p̃m(λi )| goes down
with m (note p̃m(0) = 1);

small eigenvalues are not desirable;

clustering of eigenvalues is desirable.
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