Lecture 3: The Generalised Minimum Residual Method (GMRES)

Dr Qianqian Yang

School of Mathematical Sciences

Queensland University of Technology

Outline

GMRES: Introduction

• GMRES: Development

GMRES: Examples

• GMRES: Convergence analysis

Restarted GMRES

GMRES: Introduction

- So far we have looked at projection methods for the eigenvalue problem where our main tool was Arnold's method: a Krylov subspace projection method.
- Now, we turn to the other big problem in linear algebra: solving systems of equations

$$Ax = b$$
.

 The standard algorithm of this kind is known as GMRES, which stands for "Generalised Minimum Residuals".

Lecture 3: GMRES MoCao Lectures 2025 3 / 19

• To solve Ax = b, once again we build the Krylov subspace

$$\mathcal{K}_m(A, b) = \operatorname{span}\{b, Ab, \dots, A^{m-1} b\}.$$

- Here, the vector is not arbitrary; it is the RHS vector of the linear system.
- So, our approximate solution $x^{(m)}$, which we will choose (somehow) from the Krylov subspace \mathcal{K}_m will be a linear combination of the vectors b, Ab, ..., $A^{m-1}b$.
- That is, $x^{(m)} = c_0 \ b + c_1 \ A \ b + \dots c_{m-1} \ A^{m-1} \ b$ for some coefficients c_i . Or, in other words, $x^{(m)} = q_{m-1}(A) \ b$ for some degree m-1 polynomial q_{m-1} .
- According to the Arnoldi decomposition $AV_m = V_{m+1}\bar{H}_m$, our solution $x^{(m)}$ will be given by

$$x^{(m)} = V_m y_m$$

for some coordinate vector y_m .

Lecture 3: GMRES MoCao Lectures 2025 4 / 19

- Question: how do we know a good approximate solution could be found in this Krylov space \mathcal{K}_m ?
- The Cayley–Hamilton theorem: if $P_n(\lambda) = \det(\lambda I A)$ is the characteristic polynomial of A, then $P_n(A) = 0$. That is,

$$a_0 I + a_1 A + a_2 A^2 + ... + a_n A^n = 0$$
, where $a_n = 1$.

• Multiply A^{-1} on both sides

$$a_0 A^{-1} + a_1 I + a_2 A + \ldots + A^{n-1} = 0$$

$$A^{-1} = -\frac{a_1}{a_0} I - \frac{a_2}{a_0} A - \dots - \frac{1}{a_0} A^{n-1} = \tilde{P}_{n-1}(A)$$

- The exact solution $x = A^{-1}b = \tilde{P}_{n-1}(A)b \in \mathcal{K}_n(A, b)$
- The approximate solution $x^{(m)} = q_{m-1}(A) b = V_m y_m \in \mathcal{K}_m(A, b)$, note m < n

Lecture 3: GMRES MoCao Lectures 2025 5 / 19

- Question: how do we choose y_m such that $x^{(m)}$ is a good approximation of x?
- This is what GMRES does: it minimises the residual norm

$$||r^{(m)}|| = ||b - Ax^{(m)}||.$$

Using the Arnoldi decomposition,

$$r^{(m)} = b - A x^{(m)} = b - A V_m y_m = b - V_{m+1} \bar{H}_m y_m$$

• Note the first column of V_{m+1} is $v_1=b/\beta$, with $\beta=\|b\|$. So

$$r^{(m)} = \beta v_1 - V_{m+1} \bar{H}_m y_m = \beta V_{m+1} e_1 - V_{m+1} \bar{H}_m y_m$$

= $V_{m+1} (\beta e_1 - \bar{H}_m y_m)$.

And hence,

$$\|r^{(m)}\| = \|V_{m+1}(\beta e_1 - \bar{H}_m y_m)\| = \|\beta e_1 - \bar{H}_m y_m\|$$
 since $V_{m+1}^T V_{m+1} = I$.

Lecture 3: GMRES MoCao Lectures 2025 6 / 19

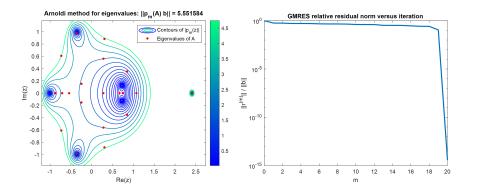
• So the *n*-dimensional minimisation reduces to the *m*-dimensional least squares problem:

$$\min \|\beta e_1 - \bar{H}_m y_m\| \text{ over } y_m \in \mathbb{R}^m.$$

- That is, to "solve" $\bar{H}_m y_m = \beta e_1 \rightarrow y_m = \bar{H}_m \setminus (\beta e_1)$.
- Our approximate solution $x^{(m)} = V_m y_m$.

Lecture 3: GMRES MoCao Lectures 2025 7 / 19

```
rng('default'); n = 20; density = 0.3;
A = sprand(n, n, density); b = rand(n,1); m = 6;
[x, flag, relres, iter, resvec] = gmres(A, b, [], 0, n);
```



Lecture 3: GMRES MoCao Lectures 2025 8 / 19

GMRES: Example 1

- This is discouraging!
- GMRES is behaving more like a direct method: it is no use at all until it "finishes" by reaching m = n iterations, at which point it's found the exact solution.
- It's ok for this example with n = 20, but it's no use when n is large.
- But should we really expect we can do better than taking m=niterations? Perhaps this whole idea of projection methods for linear systems is no good?
- Before we throw it all away, let's take a moment to analyse what's happening, just in case we can salvage things somehow.

MoCao Lectures 2025 9/19

Questions we have

- How quickly does GMRES converge?
- How many iterations m must be taken before $||r^{(m)}||/||b||$ is reduced to a satisfactory level such as 10^{-3} or 10^{-6} ?
- What properties of A determine the size of $||r^{(m)}||$?

Lecture 3: GMRES MoCao Lectures 2025 10 / 19

Let's do some analysis:

- Recall that GMRES produces a solution at each iteration which is a polynomial in A times b: $x^{(m)} = q_{m-1}(A) b$.
- The residual vector is

$$r^{(m)} = b - A x^{(m)} = b - A q_{m-1}(A) b = (I - A q_{m-1}(A)) b = \tilde{p}_m(A) b,$$

where $\tilde{p}_m(z) = 1 - z \, q_{m-1}(z)$ is a polynomial of degree m with constant coefficient 1 (coefficient of z^0).

- The norm of $r^{(m)}$ is $||r^{(m)}|| = ||\tilde{p}_m(A) b||$.
- We are (again!) solving the problem of minimising $\|\tilde{p}_m(A) b\|$, but this time over a different space of polynomials.
- Previously, in the Arnoldi method, our polynomial $p_m(z) = \det(z I H_m)$ has leading coefficient of 1 (coefficient of z^m).

Lecture 3: GMRES MoCao Lectures 2025 11 / 19

• Let's focus on GMRES. We have

$$||r^{(m)}|| = ||\tilde{p}_m(A) b|| \le ||\tilde{p}_m(A)|| ||b||,$$

or, in terms of the relative residual

$$\frac{\|r^{(m)}\|}{\|b\|}\leq \|\tilde{p}_m(A)\|.$$

Since GMRES minimises the left hand side, we can write

$$\frac{\|r^{(m)}\|}{\|b\|} \leq \inf_{\tilde{p}_m \in P_m} \|\tilde{p}_m(A)\|$$

where P_m denotes the space of degree m polynomials with constant coefficient 1, i.e. $\tilde{p}_m(z) = c_m z^m + \ldots + c_1 z + 1$.

• This inequality determines the convergence rate of GMRES.

Lecture 3: GMRES MoCao Lectures 2025 12 / 19

- Question: Given a matrix A and a subspace size m, how small can $\|\tilde{\rho}_m(A)\|$ be?
- Suppose A is diagonalisable, with $A = X \operatorname{diag}(\lambda_i) X^{-1}$. Then

$$\tilde{p}_m(A) = X \operatorname{diag}(\tilde{p}_m(\lambda_i)) X^{-1}$$

Take norms on both sides

$$\|\tilde{p}_{m}(A)\| = \|X\operatorname{diag}(\tilde{p}_{m}(\lambda_{i}))X^{-1}\|$$

$$\leq \|X\| \|\operatorname{diag}(\tilde{p}_{m}(\lambda_{i}))\| \|X^{-1}\|$$

$$\leq \operatorname{cond}(X) \sup_{z \in \sigma(A)} |\tilde{p}_{m}(z)|$$

where $\sigma(A) = \{\lambda_1, \lambda_2, \cdots, \lambda_n\}$ is the spectrum of A, and $\operatorname{cond}(X) = \|X\| \|X^{-1}\|$ is the condition number of the matrix of eigenvectors.

Lecture 3: GMRES MoCao Lectures 2025 13 / 19

 Combining with the earlier result, we obtain the following theorem on the convergence of GMRES

$$\frac{\|r^{(m)}\|}{\|b\|} \leq \operatorname{cond}(X) \inf_{\tilde{p}_m \in P_m} \sup_{z \in \sigma(A)} |\tilde{p}_m(z)|,$$

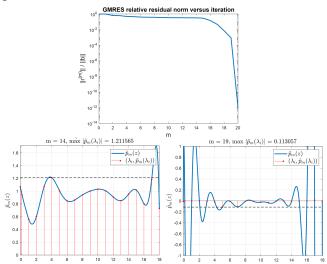
where $\tilde{p}_m(z) = 1 - z \, q_{m-1}(z)$ is a polynomial of degree m with constant coefficient 1 ($\tilde{p}_m(0) = 1$).

• Summary of this theorem: If the condition number cond(X) is not too large, and if degree m polynomials $\tilde{p}_m(z)$ can be found whose magnitude on the spectrum of A, $\sigma(A)$, decreases quickly with m, then GMRES converges quickly.

MoCao Lectures 2025 14 / 19

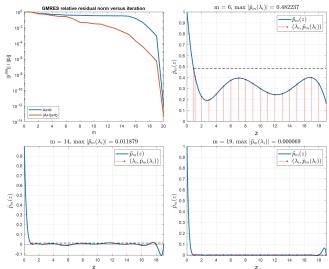
GMRES: Example 2 (small eigenvalues)

Let's build a 20×20 matrix with real eigenvalues [-0.1, 0.1, 1, 2, ..., 18] and random eigenvectors, and run GMRES for different choices of m.



GMRES: Example 3 (small eigenvalues shifted)

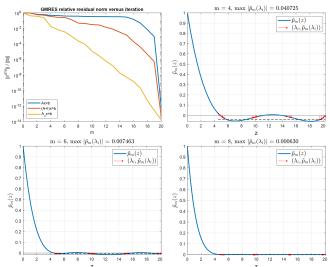
Take the matrix from Example 2, and solve (A+I) x=b, instead of solving A x=b.



Lecture 3: GMRES MoCao Lectures 2025 16 / 19

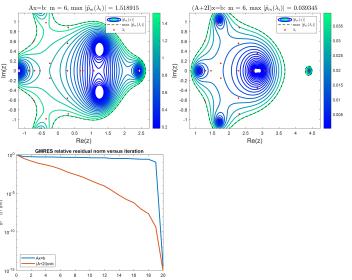
GMRES: Example 4 (clustered eigenvalues)

Let's build another 20 \times 20 matrix A_c with eigenvalues clustered around 5, 10, 15, and 20.



GMRES: revisit Example 1

Let's solve A x = b and (A + 2 I) x = b using GMRES with m = 6.



Lecture 3: GMRES MoCao Lectures 2025 18 / 19

GMRES: Key points on the convergence

In summary, for GMRES to solve Ax = b:

- the rate of convergence depends on the condition number of the eigenvector matrix, cond(X), and how quick $|\tilde{p}_m(\lambda_i)|$ goes down with m (note $\tilde{p}_m(0) = 1$);
- small eigenvalues are not desirable;
- clustering of eigenvalues is desirable.

MoCao Lectures 2025 19 / 19