Lecture 3: The Generalised Minimum Residual Method
(GMRES)

Dr Qiangian Yang

School of Mathematical Sciences

Queensland University of Technology

QUT

Lecture 3: GMRES MoCao Lectures 2025 1/19



Outline

o GMRES: Introduction
GMRES: Development
GMRES: Examples

GMRES: Convergence analysis

o
]
o
o Restarted GMRES

Lecture 3: GMRES MoCao Lectures 2025 2/19



GMRES: Introduction

@ So far we have looked at projection methods for the eigenvalue
problem where our main tool was Arnold’'s method: a Krylov
subspace projection method.

@ Now, we turn to the other big problem in linear algebra: solving
systems of equations

Ax = b.

@ The standard algorithm of this kind is known as GMRES, which

stands for " Generalised Minimum Residuals”.
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GMRES: Development

@ To solve Ax = b, once again we build the Krylov subspace
Km(A, b) = span{b, Ab, ..., A" b}.

@ Here, the vector is not arbitrary; it is the RHS vector of the linear
system.

e So, our approximate solution x(™  which we will choose (somehow)
from the Krylov subspace IC,, will be a linear combination of the
vectors b, Ab, ..., Am~1p,

e That is, x(M = cob+ci Ab+...c;m1 AL b for some
coefficients ¢;. Or, in other words, x(m) — dm—1(A) b for some degree
m — 1 polynomial gp—1.

@ According to the Arnoldi decomposition AV,, = V,,1Hpm, our
solution x(™ will be given by

X(m) = VmYm

for some coordinate vector y,,.
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GMRES: Development

@ Question: how do we know a good approximate solution could be
found in this Krylov space K,,,?

e The Cayley-Hamilton theorem: if P,(A) = det(Al — A) is the
characteristic polynomial of A, then P,(A) = 0. That is,

al +a1 A+ a A%+ ... +a, A" =0, where a, = 1.
e Multiply A=! on both sides

aoA_1+31/-|-32A-|'...+ A”_1:O

Al 12 4 _1

2 20 T 2

@ The exact solution x = A~1b = P,_1(A)b € K,(A b)
@ The approximate solution

XM = g 1(A) b= Vi ym € Km(A b), note m < n
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GMRES: Development

Question: how do we choose y,, such that x(™ is a good
approximation of x?
This is what GMRES does: it minimises the residual norm

™) = (16— Ax{™].

(]

Using the Arnoldi decomposition,
K = p—Ax(™) = b— AV, ym = b— Vimi1 Am ym

Note the first column of Vi1 is vi = b/, with B = ||b]|. So

r(m — Bvi — Vi1 HnYm = B Vi1 €1 — Vi1 Am ym
= Vint1(Ber = Hm ym).
And hence,
1P = | Vin (B ex = A ym) | = 118 €1 = Hm yi

since Viy1! Vg1 = 1.
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GMRES: Development

@ So the n-dimensional minimisation reduces to the m-dimensional least
squares problem:

min || e — Hm ym| over ym € R™.

e That s, to "solve” Hypym =pBer — Ym= Hn\ (Be).

o Our approximate solution x(™) = V,, y,,.
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GMRES: Example 1

rng(’default’); n = 20; density = 0.3;
A = sprand(n, n, density); b = rand(n,1); m = 6;
[x, flag, relres, iter, resvec] = gmres(A, b, [, 0, n);

Amoldi method for eigenvalues: [|p,,(A) bl| = 5.551584 GMRES relative residual norm versus iteration
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GMRES: Example 1

@ This is discouraging!

@ GMRES is behaving more like a direct method: it is no use at all until
it " finishes” by reaching m = n iterations, at which point it's found
the exact solution.

@ It's ok for this example with n = 20, but it's no use when n is large.

@ But should we really expect we can do better than taking m = n
iterations? Perhaps this whole idea of projection methods for linear
systems is no good?

o Before we throw it all away, let's take a moment to analyse what's
happening, just in case we can salvage things somehow.
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GMRES: Convergence analysis

Questions we have

@ How quickly does GMRES converge?
@ How many iterations m must be taken before ||r(™]| /| b]| is reduced
to a satisfactory level such as 1073 or 10767

e What properties of A determine the size of ||r(™||?
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GMRES: Convergence analysis

Let’s do some analysis:

Recall that GMRES produces a solution at each iteration which is a
polynomial in A times b: x(™ = q,,_1(A) b.

The residual vector is
rm = b—Ax(™ = b—Agm_1(A) b= (I —Agqm_1(A))b = pm(A) b,

where p(z) =1 — zqm-1(2) is a polynomial of degree m with
constant coefficient 1 (coefficient of z°).

The norm of r™ is ||r(™|| = ||5m(A) b]|.

We are (again!) solving the problem of minimising ||5m,(A) b||, but
this time over a different space of polynomials.

Previously, in the Arnoldi method, our polynomial

pm(z) = det(z | — Hp,) has leading coefficient of 1 (coefficient of
z™).
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GMRES: Convergence analysis
@ Let's focus on GMRES. We have
IF ™1 = [18m(A) Bl < [|5m(A) | [15]],

or, in terms of the relative residual

< inf ||pm(A
B i a4

where P, denotes the space of degree m polynomials with constant
coefficient 1, i.e. pm(z) = cmz™+ ...+ az+ 1.

@ This inequality determines the convergence rate of GMRES.
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GMRES: Convergence analysis

@ Question: Given a matrix A and a subspace size m, how small can
1Bm(A) || be?
@ Suppose A is diagonalisable, with A = X diag(A;) X~1. Then

Bm(A) = X diag(pm(17)) X!
Take norms on both sides
1Bm (Al = X diag(pm(Ai)) X ]|

< [IX]| | diag(Bm(A) ] X~

< cond(X) sup |n(z)|
zeo(A)

where 0(A) = {A1, A2, - -+, A, } is the spectrum of A, and
cond(X) = ||X]| || X~1]| is the condition number of the matrix of
eigenvectors.
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GMRES: Convergence analysis

@ Combining with the earlier result, we obtain the following theorem on
the convergence of GMRES

Irtm)
1]

<cond(X) inf sup |pm(2)]
mePm ZGU'(A)

where p(z) =1 — zqm-1(2) is a polynomial of degree m with
constant coefficient 1 (p,(0) = 1).

@ Summary of this theorem:
If the condition number cond(X) is not too large, and if degree m
polynomials p,(z) can be found whose magnitude on the spectrum of
A, 0(A), decreases quickly with m, then GMRES converges quickly.
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GMRES: Example 2 (small eigenvalues)

Let’s build a 20x20 matrix with real eigenvalues [-0.1, 0.1, 1, 2, ..., 18] and
random eigenvectors, and run GMRES for different choices of m.

» GMRES relative residual norm versus iteration
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GMRES: Example 3 (small eigenvalues shifted)

Take the matrix from Example 2, and solve (A + I) x = b, instead of
solving A x = b.

m = 6, max [f,,(\;)| = 0.4
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GMRES: Example 4 (clustered eigenvalues)

Let’s build another 20 x 20 matrix A with eigenvalues clustered around 5,
10, 15, and 20.

GMRES relative residual norm versus iteration
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GMRES: revisit Example 1

Let's solve Ax = b and (A+2 /) x = b using GMRES with m = 6.

Ax=b: m = 6, max [f,.(\;)| = 1.518915 (A+2D)x=b: m = 6, max [5,.(\;)| = 0.039345
! ° e ! 0035
08 08t
06 \ 12 06 003
04 1 . \ 04t o
P o @ ! __ o2
N N
E° s E ° 002
02 / A\ 02
A oots
04 \ ‘ / 0s  04f
06 06 001
08 04 08
0005
El ER
02
1 05 0 05 1 15 2 25 115 2 25 3 35 4 45
Re(z) Re(z)

GMRES relative residual norm versus iteration

10

1015
0

Lecture 3: GMRES MoCao Lectures 2025

18/19



GMRES: Key points on the convergence

In summary, for GMRES to solve Ax = b:

@ the rate of convergence depends on the condition number of the
eigenvector matrix, cond(X), and how quick |pm(A;)| goes down
with m (note p,(0) = 1);

o small eigenvalues are not desirable;

@ clustering of eigenvalues is desirable.
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