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GMRES Recap
In the last lecture, we used GMRES to solve Ax = b.

@ It minimises the residual norm ||r(’")|| ||b— Ax(’")H.

@ Using the Arnoldi decomposition AV,, = Vi, 1Hpm,
1™ = || ex — Flm yuml|.

@ So the n-dimensional minimisation reduces to the m-dimensional least
squares problem:

min || e — Hm ym| over ym € R™.

e Thatis, to "solve” Hpym =pBer — ym= HAm\ (Ber).
e Our approximate solution x(™ = V,, y,, € Km(A, b)
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GMRES Recap

@ The following inequality determines the convergence rate of GMRES

It

< cond(X) inf sup |Pm(2)],
HbH Pm€Pm zeg(A)

where p(z) =1 — zqm-1(2) is a polynomial of degree m with
constant coefficient 1 (pm(0) = 1), and A = X diag(A;) X L.

@ We see that small eigenvalues are not desirable and clustering of
eigenvalues is desirable.
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Restarted GMRES

@ Recall that GMRES builds an orthonormal basis [vi, v, ..., vp| for
the Krylov subspace KC.,,, growing by one vector at each iteration.

@ Each basis vector v; is of dimension n: the size of the full problem.

@ Hence storage cost for V), is O(mn), which for large m is easily the
dominant storage cost (much more memory than a typical sparse
matrix with O(n) nonzeros).

e Furthermore, a typical sparse-matrix vector product requires O(n)
operations: using each entry of A once.

@ Whereas the cost of orthgonalising the next Krylov basis vector
against all the previous is O(m), and there are O(m) iterations:
O(m?) work.

@ For large m this can be the dominant runtime cost.
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Restarted GMRES

@ So for reasons of storage limitations, or of runtime considerations,
there may be an upper limit on the feasible size m.

o It is quite possible that GMRES cannot converge within limited m
iterations.

@ One idea is to use restarting: simply take m iterations, compute x(m)
as usual, and use this as the initial guess for a new cycle of GMRES.

@ Continuing this process, restarting every m iterations, is called
Restarted GMRES, denoted GMRES(m).
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Restarted GMRES

How to set up initial guess in GMRES?

o Standard GMRES finds x(™) € K,,,(A, b), effectively taking x(%) = 0.

o If an initial guess is available, one can instead use the affine space
x(M € x©) 4+ ICn(A, b).
o Let r® = p— Ax(® and set x = x(9) 4 §x, with dx to be determined.
Ax=b = AKX +46x)=b
Adx = b— Ax\® = Asx = r(©
@ So run GMRES on this new problem Adx = r(®, calculating
ox(m € K (A, r®) and hence x(M = x(0) 4 gx(m).
@ In the next cycle of GMRES, use this x(") as the initial guess.
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Restarted GMRES

Example:

A = gallery(’poisson’, 100); b = rand(size(A,1),1);

tol = 1e-10; maxit = 1500;

m = 40; % restart every 40 iterations; and try m = 80 and 120
[x,flag,relres,iter,resvec] = gmres(A,b,m,tol,floor (maxit/m));

GMRES(m) relative residual norms

10° 5
i GMRES(40)
t GMRES(80)
3 GMRES(120)
102} Full GMRES
Run time:
= 104;r GMRES(40): 1.01s
S GMRES(80): 0.82s
E | GMRES(120): 0.96s
= 0% Full GMRES: 2.02s
3
10"’;
10'105
500 1000 1500
iterations
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Restarted GMRES

In summary,

@ Restarted GMRES keeps the memory requirements bounded.

@ It also limits the orthgonalisation costs.

@ But there are serious consequences:
o We lose optimality across cycles: the residual is only minimised within
each cycle.

o Whatever progress had been made in localising troublesome
eigenvalues is lost; the cycle starts over from scratch, albeit with a
(hopefully) improved initial guess.

e The rate of convergence may seriously deteriorate compared to full
GMRES.
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Preconditioning: Introduction

@ In the last lecture,

e we saw that the eigenvalue distribution plays a significant role in the
convergence of GMRES,

e in a few examples we were able to vastly improve the convergence rate
by shifting the spectrum, so that instead of solving Ax = b we were
solving (A+ o 1)x = b for some shift ¢.

@ This, it has to be said, is cheating. But the idea is intriguing.

@ What if we could find a way to alter the spectrum, in our favour, such
that the solution was unchanged?

@ This is exactly the goal of preconditioning!

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 10/31



Preconditioning: Introduction

@ The basic idea of preconditioning is to find a matrix M which
approximates A in some sense (M ~ A), and whose inverse is
computationally efficient to apply.

@ Reformulate our problem
Ax=b (1)
by multiplying by M1 on both sides:
MAx=M71b (2

@ Now the convergence will depend on the properties of M~1 A instead
of those of A.

o If we've chosen our preconditioner M wisely, the matrix M~ A will
have a much more favourable spectrum (e.g. removal of small
eigenvalues, clustering of eigenvalues), and (2) may be solved much
more rapidly than (1).
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How to choose an appropriate preconditioner
Preconditioned system:
MTAx=M"1p (2)

@ For the idea of preconditioning to be useful, we need to be able to
compute the operation represented by M~! efficiently.

o If M very closely approximates A , then M~ A~ A~ A is almost the
identity /, but applying the preconditioner may be as hard as solving
the original problem, and nothing has been gained.

e If M = I, then the preconditioned system (2) is the same as the
original problem, so applying the preconditioner accomplishes nothing.

@ So we need a matrix M that strike a balance between these two
extremes.

@ The matrix M has to somehow be effective at improving the spectrum
of M~ A, but not such that the expense of calculating M~ v is too
costly.
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Left versus right preconditioning

@ The approach we've described so far is known as left preconditioning,
since we multiply by the preconditioner on the left.

@ Alternatively we can multiply on the right, to implement right
preconditioning:
AM*Mx=b

let v = M x and solve
AM™Lu=b, (3)

then compute x = M~ 1y,
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Left versus right preconditioning

The difference between these two approaches is more than cosmetic.

@ When preconditioning on the left, the residual vector, whose norm is
monitored for convergence in GMRES, is

A — M b — M T AX™ = M (b — Ax(M)) = p T p(m)
where r(™ is the ordinary residual vector (i.e. without

preconditioning).

o If M1 is quite close to A~ (in its effect on r(™), then the
left-preconditioned residual approximates the error elm).

elm = x —x(m = A7 p— x(m) = A71(p — Ax(m))

_a-1 (m)  pg-1,(m) _ (m)
—Alr()Ner()—rleft.

o However, if M~1 is not very much like A~1, then it may not be clear
what the left preconditioned residual really represents.
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Left versus right preconditioning

@ On the other hand, with right preconditioning, the residual is
unaffected:

e = b= (AM™1)ul™ = b— AM™ Mx(™) = b — Ax(m) = f(m),

@ Hence, the residual norm Hrr(ig}th can be monitored during the
GMRES iterations with full confidence that it represents the true,
unpreconditioned, residual norm.

o Note: MATLAB's inbuilt gmres function implements left
preconditioning.
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Classical Preconditioners

@ Jacobi
o Gauss-Seidel
@ Symmetric Gauss-Seidel

@ Incomplete LU

To illustrate the effect of these preconditioners, we will consider a matrix
from a problem in oil reservoir simulation. This is the matrix Sherman5
taken from the Matrix Market, an online repository of test matrices.
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https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/sherman/sherman5.html
https://math.nist.gov/MatrixMarket/

Classical Preconditioners

Sherman5: size 3312 x 3312; real non-symmetric matrix

Eigenvalues of A

Sparsity pattern ("spy plot") of Sherman5 0.08
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@ The real parts of eigenvalues range from -200 to 600 with no

clustering.

@ There are some small eigenvalues in magnitude.
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Classical Preconditioners

Solve the unpreconditioned system: set tolerance of 10710 in relative norm
with the maximum number of iterations 200. Use MATLAB's builtin
function gmres.

GMRES relative residuals for Sherman5

unpreconditioned

085}

™)

o
@

075k

07}

5‘ 26 46 Gb 8‘0 160 11;0 11‘10 WE;O 18‘0 200
@ There's really nothing much happening here; the residual norm has
barely budged in 200 iterations. We need preconditioners!
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Classical Preconditioners: Jacobi

Solve the preconditioned system M~! Ax = M~! b with the Jacobi
preconditioner: M = diag(A). Cheap to apply.

Sgarsity pattern of Jacobi preconditioner for Sherman5 Eigenvalues of m'A
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@ There are no longer any eigenvalues in the left half-plane.

@ The range of magnitudes has also been greatly reduced, and there is a
hint of clustering around unity.

@ Some small magnitude eigenvalues evidently remain.
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Classical Preconditioners: Jacobi

Let's check out the performance of the Jacobi preconditioner.

GMRES relative residuals for Shermans: [Ir (|
100

= unpreconditioned
Jacobi

I1/711bll

(m)
left

It

o (;- 2‘0 4‘0 6‘0 8‘0 160 12‘0 11‘10 WéO 18‘»0 260
@ The Jacobi preconditioned GMRES converges to the desired tolerance
in 145 iterations.

@ If it can be this effective, how much better could we get by choosing
something a little more elaborate?
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Classical Preconditioners: Gauss-Seidel

Solve the preconditioned system M~! Ax = M~ b with the Gauss-Seidel
preconditioner: M = tril(A), which uses the entire lower triangular portion

of A as M.

Spargity pattern of G. -Seidel
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@ We can see a definite clustering of eigenvalues around unity, and
again the negative eigenvalues are all gone. There are a couple of
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small eigenvalues still hanging around.

@ This looks like a better distribution than we had for Jacobi, so we
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might expect convergence to be improved again.
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Classical Preconditioners: Gauss-Seidel

Let's check out the performance of the Gauss-Seidel preconditioner.

GMRES relative residuals for Shermans: [[r (|
100

k = unpreconditioned
| Jacobi
102 Gauss-Seidel

117116l

(m)
left

It
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m
@ By including more information about A in our preconditioner M, the
convergence has been improved again.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 22/31



Classical Preconditioners: Symmetric Gauss-Seidel

Solve the preconditioned system M~! Ax = M~! b with the symmetric
Gauss-Seidel preconditioner:

M = My M,

with My = tril(A) and M, = triu(A)./(diag(A)).

@ It brings in the upper triangular portion of A as well, through the
product M = M; M, where Mj is the lower triangular portion and
M, is the upper triangular portion scaled by the diagonal (to avoid
" double-counting” the diagonal).

@ The product M = M; M5 has a similar sparsity pattern to A.

@ Importantly, this product is never computed explicitly. Whenever the
algorithm calls for the product w = (M; M,) =1 Av for some vector v,
it is computed entirely through matrix-vector operations:
w= Myt (Mt (AV)), ie, Mo\ (Mi\(AV)).
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Classical Preconditioners: Symmetric Gauss-Seidel

Let's have a look at the eigenvalue spectrum for the symmetric
Gauss-Seidel preconditioned matrix. Note that here we did compute the
product (M; Mp)~1 A, but this is just for the purposes of illustration.

06 - i Eigen’values of‘M'1A

04+
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02+

o4l
ol } . . 1 . ‘ ]
0 0.5 1 15 2 25 3 3.5
Re
@ This may or may not look better than ordinary Gauss-Seidel to you,
but certainly it’s quite similar in its effect on the spectrum.
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Classical Preconditioners: Symmetric Gauss-Seidel

GMRES relative residuals for Sherman5: ||r :’E"ﬂ]”
10°

unpreconditioned
Jacobi
Gauss-Seidel

10?2
Symmetric G-S

11/11bll

(m)
left

IIr

20 40 60 80 100 120 140 160 180 200
m

@ Symmetric Gauss-Seidel does outperform ordinary Gauss-Seidel as a
preconditioner for this problem.
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Classical Preconditioners: Incomplete LU factorisation

@ This is an example of a preconditioner that is often used in practice.

@ The idea of incomplete LU is to compute an approximate
factorisation for A, A =~ L U, where the LU factors are not the exact
LU factors (which would be too expensive to work with) but inexact,
sparse LU factors.
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Classical Preconditioners: Incomplete LU factorisation

For comparison, let's first consider the full, exact LU factorisation of our

matrix. 0 Before factorisation o After factorisation

o 1000 :,

1000 —=3
1500 \ \ 1500 ‘| ’

2000 . 2000 i

2500 2500 ‘
3000 \ 3000

0 1000 2000 3000 0 1000 2000 3000
nz = 20793 nz = 998542

@ Notice the large amount of fill-in generated by this factorisation.

@ The number of nonzero entries in the factorised matrix has exploded:
almost 50 times more nonzero entries after factorisation.

@ The computational and memory costs associated with generating this
factorisation quickly get out of control for larger matrices, making it
impractical.
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Classical Preconditioners: Incomplete LU factorisation

o Idea of incomplete LU (ILU): Drop entries from the factorisation to
keep the matrix sparse.

@ The computed LU factors are no longer exact, but in many cases they
suffice as a preconditioner.

@ The criteria for dropping entries can be simple, or more elaborate
based on tolerances.

@ Here we'll just look at ILU(0), which drops every single entry that
would have otherwise filled in.

Before factorisation 0 Incomplete factorisation

500 500 ¢

1000 1000
1500 1500
2000 2000 ¢

2500 2500 ¢

3000 3000 |

0 1000 2000 3000 0 1000 2000 3000
nz =20793 nz =20793
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Classical Preconditioners: Incomplete LU factorisation

Let's check out the resulting spectrum.

<1073 Eigenvalues of M “a
F r T T T

|

0 0}2 0‘4 0}6 O‘S 1‘ 1‘2 1.4
Re
@ The clustering around unity looks very nice.

@ There are still those couple of pesky small eigenvalues that none of
our preconditioners has been able to properly deal with.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 29/31



Classical Preconditioners: Incomplete LU factorisation

Let's check out the performance of ILU.
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@ ILU is the winner for today. It outperforms all our other
preconditioners, yielding convergence in only 38 iterations.

@ Note: the plot on the left is using Hrlg';)H = ||M~1r(m)|| which is
from the preconditioned system; the plot on the right is using the true
residual ||r(™)]].
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Summary of Lectures 3 and 4

GMRES (Generalised Minimal Residual)
o Iterative Krylov subspace method for solving Ax = b.
e Finds the approximate solution x{™ € K,,(A, b) by minimising the
residual norm |[r(m]].

@ Convergence rate depends on the properties of the matrix A: the
cond(X) and the eigenvalue distribution of the matrix A.

Restarted GMRES (GMRES(m))

@ Restarts after every m steps to control storage cost and run time.

@ May have slow convergence or even stall
Preconditioning

@ To improve the convergence for iterative methods.
Left-preconditioned system: M~t Ax = M~1 b.
Right-preconditioned system: AM~!u = b, then x = M~ u.
Never form M~ or M~! A explicitly; always compute the action of
M~1 through M~1v (i.e., M\v).
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