
Lecture 4: Restarted GMRES + Preconditioning

Dr Qianqian Yang

School of Mathematical Sciences

Queensland University of Technology

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 1 / 31

Outline:

GMRES recap

Restarted GMRES

Preconditioning

Introduction
Left versus right preconditioning
How to choose an appropriate preconditioner
Examples

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 2 / 31

GMRES Recap

In the last lecture, we used GMRES to solve Ax = b.

It minimises the residual norm ∥r (m)∥ = ∥b− Ax (m)∥.
Using the Arnoldi decomposition AVm = Vm+1H̄m,

∥r (m)∥ = ∥β e1 − H̄m ym∥.

So the n-dimensional minimisation reduces to the m-dimensional least
squares problem:

min ∥β e1 − H̄m ym∥ over ym ∈ Rm .

That is, to ”solve” H̄m ym = β e1 → ym = H̄m \ (β e1).

Our approximate solution x (m) = Vm ym ∈ Km(A, b).

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 3 / 31

GMRES Recap

The following inequality determines the convergence rate of GMRES

∥r (m)∥
∥b∥ ≤ cond(X) inf

p̃m∈Pm

sup
z∈σ(A)

|p̃m(z)|,

where p̃m(z) = 1− z qm−1(z) is a polynomial of degree m with
constant coefficient 1 (p̃m(0) = 1), and A = X diag(λi) X−1.

We see that small eigenvalues are not desirable and clustering of
eigenvalues is desirable.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 4 / 31

Restarted GMRES

Recall that GMRES builds an orthonormal basis [v1, v2, . . . , vm] for
the Krylov subspace Km, growing by one vector at each iteration.

Each basis vector vi is of dimension n: the size of the full problem.

Hence storage cost for Vm is O(mn), which for large m is easily the
dominant storage cost (much more memory than a typical sparse
matrix with O(n) nonzeros).

Furthermore, a typical sparse-matrix vector product requires O(n)
operations: using each entry of A once.

Whereas the cost of orthgonalising the next Krylov basis vector
against all the previous is O(m), and there are O(m) iterations:
O(m2) work.

For large m this can be the dominant runtime cost.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 5 / 31

Restarted GMRES

So for reasons of storage limitations, or of runtime considerations,
there may be an upper limit on the feasible size m.

It is quite possible that GMRES cannot converge within limited m
iterations.

One idea is to use restarting: simply take m iterations, compute x (m)

as usual, and use this as the initial guess for a new cycle of GMRES.

Continuing this process, restarting every m iterations, is called
Restarted GMRES, denoted GMRES(m).

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 6 / 31

Restarted GMRES

How to set up initial guess in GMRES?

Standard GMRES finds x (m) ∈ Km(A, b), effectively taking x (0) = 0.

If an initial guess is available, one can instead use the affine space
x (m) ∈ x (0) +Km(A, b).

Let r (0) = b−Ax (0) and set x = x (0) + δx , with δx to be determined.

Ax = b ⇒ A(x (0) + δx) = b

Aδx = b− Ax (0) ⇒ Aδx = r (0)

So run GMRES on this new problem Aδx = r (0), calculating
δx (m) ∈ Km(A, r (0)) and hence x (m) = x (0) + δx (m).

In the next cycle of GMRES, use this x (m) as the initial guess.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 7 / 31

Restarted GMRES

Example:

A = gallery(’poisson’, 100); b = rand(size(A,1),1);

tol = 1e-10; maxit = 1500;

m = 40; % restart every 40 iterations; and try m = 80 and 120

[x,flag,relres,iter,resvec] = gmres(A,b,m,tol,floor(maxit/m));

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 8 / 31

Restarted GMRES

In summary,

Restarted GMRES keeps the memory requirements bounded.

It also limits the orthgonalisation costs.

But there are serious consequences:

We lose optimality across cycles: the residual is only minimised within
each cycle.

Whatever progress had been made in localising troublesome
eigenvalues is lost; the cycle starts over from scratch, albeit with a
(hopefully) improved initial guess.

The rate of convergence may seriously deteriorate compared to full
GMRES.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 9 / 31

Preconditioning: Introduction

In the last lecture,

we saw that the eigenvalue distribution plays a significant role in the
convergence of GMRES,
in a few examples we were able to vastly improve the convergence rate
by shifting the spectrum, so that instead of solving Ax = b we were
solving (A+ σ I)x = b for some shift σ.

This, it has to be said, is cheating. But the idea is intriguing.

What if we could find a way to alter the spectrum, in our favour, such
that the solution was unchanged?

This is exactly the goal of preconditioning!

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 10 / 31

Preconditioning: Introduction

The basic idea of preconditioning is to find a matrix M which
approximates A in some sense (M ≈ A), and whose inverse is
computationally efficient to apply.

Reformulate our problem

Ax = b (1)

by multiplying by M−1 on both sides:

M−1 Ax = M−1 b (2)

Now the convergence will depend on the properties of M−1 A instead
of those of A.

If we’ve chosen our preconditioner M wisely, the matrix M−1 A will
have a much more favourable spectrum (e.g. removal of small
eigenvalues, clustering of eigenvalues), and (2) may be solved much
more rapidly than (1).

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 11 / 31

How to choose an appropriate preconditioner

Preconditioned system:

M−1 Ax = M−1 b (2)

For the idea of preconditioning to be useful, we need to be able to
compute the operation represented by M−1 efficiently.

If M very closely approximates A , then M−1 A ≈ A−1 A is almost the
identity I , but applying the preconditioner may be as hard as solving
the original problem, and nothing has been gained.

If M = I , then the preconditioned system (2) is the same as the
original problem, so applying the preconditioner accomplishes nothing.

So we need a matrix M that strike a balance between these two
extremes.

The matrix M has to somehow be effective at improving the spectrum
of M−1 A, but not such that the expense of calculating M−1 v is too
costly.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 12 / 31

Left versus right preconditioning

The approach we’ve described so far is known as left preconditioning,
since we multiply by the preconditioner on the left.

Alternatively we can multiply on the right, to implement right
preconditioning:

AM−1M x = b

let u = M x and solve

AM−1 u = b, (3)

then compute x = M−1 u.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 13 / 31

Left versus right preconditioning

The difference between these two approaches is more than cosmetic.

When preconditioning on the left, the residual vector, whose norm is
monitored for convergence in GMRES, is

r
(m)
left = M−1 b−M−1 Ax (m) = M−1(b− Ax (m)) = M−1 r (m)

where r (m) is the ordinary residual vector (i.e. without
preconditioning).

If M−1 is quite close to A−1 (in its effect on r (m)), then the
left-preconditioned residual approximates the error ϵ(m):

ε(m) = x − x (m) = A−1 b− x (m) = A−1(b− Ax (m))

= A−1 r (m) ≈ M−1r (m) = r
(m)
left .

However, if M−1 is not very much like A−1, then it may not be clear
what the left preconditioned residual really represents.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 14 / 31

Left versus right preconditioning

On the other hand, with right preconditioning, the residual is
unaffected:

r
(m)
right = b− (AM−1)u(m) = b− AM−1Mx (m) = b− Ax (m) = r (m).

Hence, the residual norm ∥r (m)
right∥ can be monitored during the

GMRES iterations with full confidence that it represents the true,
unpreconditioned, residual norm.

Note: MATLAB’s inbuilt gmres function implements left
preconditioning.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 15 / 31

Classical Preconditioners

Jacobi

Gauss-Seidel

Symmetric Gauss-Seidel

Incomplete LU

To illustrate the effect of these preconditioners, we will consider a matrix
from a problem in oil reservoir simulation. This is the matrix Sherman5
taken from the Matrix Market, an online repository of test matrices.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 16 / 31

https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/sherman/sherman5.html
https://math.nist.gov/MatrixMarket/

Classical Preconditioners

Sherman5: size 3312× 3312; real non-symmetric matrix

The real parts of eigenvalues range from -200 to 600 with no
clustering.

There are some small eigenvalues in magnitude.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 17 / 31

Classical Preconditioners

Solve the unpreconditioned system: set tolerance of 10−10 in relative norm
with the maximum number of iterations 200. Use MATLAB’s builtin
function gmres.

There’s really nothing much happening here; the residual norm has
barely budged in 200 iterations. We need preconditioners!

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 18 / 31

Classical Preconditioners: Jacobi

Solve the preconditioned system M−1 Ax = M−1 b with the Jacobi
preconditioner: M = diag(A). Cheap to apply.

There are no longer any eigenvalues in the left half-plane.

The range of magnitudes has also been greatly reduced, and there is a
hint of clustering around unity.

Some small magnitude eigenvalues evidently remain.
Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 19 / 31

Classical Preconditioners: Jacobi

Let’s check out the performance of the Jacobi preconditioner.

The Jacobi preconditioned GMRES converges to the desired tolerance
in 145 iterations.

If it can be this effective, how much better could we get by choosing
something a little more elaborate?

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 20 / 31

Classical Preconditioners: Gauss-Seidel

Solve the preconditioned system M−1 Ax = M−1 b with the Gauss-Seidel
preconditioner: M = tril(A), which uses the entire lower triangular portion
of A as M.

We can see a definite clustering of eigenvalues around unity, and
again the negative eigenvalues are all gone. There are a couple of
small eigenvalues still hanging around.

This looks like a better distribution than we had for Jacobi, so we
might expect convergence to be improved again.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 21 / 31

Classical Preconditioners: Gauss-Seidel

Let’s check out the performance of the Gauss-Seidel preconditioner.

By including more information about A in our preconditioner M, the
convergence has been improved again.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 22 / 31

Classical Preconditioners: Symmetric Gauss-Seidel

Solve the preconditioned system M−1 Ax = M−1 b with the symmetric
Gauss-Seidel preconditioner:

M = M1M2

with M1 = tril(A) and M2 = triu(A)./(diag(A)).

It brings in the upper triangular portion of A as well, through the
product M = M1M2, where M1 is the lower triangular portion and
M2 is the upper triangular portion scaled by the diagonal (to avoid
”double-counting” the diagonal).

The product M = M1M2 has a similar sparsity pattern to A.

Importantly, this product is never computed explicitly. Whenever the
algorithm calls for the product w = (M1M2)−1 Av for some vector v ,
it is computed entirely through matrix-vector operations:
w = M−1

2 (M−1
1 (Av)), i.e., M2\(M1\(Av)).

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 23 / 31

Classical Preconditioners: Symmetric Gauss-Seidel

Let’s have a look at the eigenvalue spectrum for the symmetric
Gauss-Seidel preconditioned matrix. Note that here we did compute the
product (M1M2)−1 A, but this is just for the purposes of illustration.

This may or may not look better than ordinary Gauss-Seidel to you,
but certainly it’s quite similar in its effect on the spectrum.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 24 / 31

Classical Preconditioners: Symmetric Gauss-Seidel

Symmetric Gauss-Seidel does outperform ordinary Gauss-Seidel as a
preconditioner for this problem.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 25 / 31

Classical Preconditioners: Incomplete LU factorisation

This is an example of a preconditioner that is often used in practice.

The idea of incomplete LU is to compute an approximate
factorisation for A, A ≈ LU, where the LU factors are not the exact
LU factors (which would be too expensive to work with) but inexact,
sparse LU factors.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 26 / 31

Classical Preconditioners: Incomplete LU factorisation

For comparison, let’s first consider the full, exact LU factorisation of our
matrix.

Notice the large amount of fill-in generated by this factorisation.
The number of nonzero entries in the factorised matrix has exploded:
almost 50 times more nonzero entries after factorisation.
The computational and memory costs associated with generating this
factorisation quickly get out of control for larger matrices, making it
impractical.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 27 / 31

Classical Preconditioners: Incomplete LU factorisation

Idea of incomplete LU (ILU): Drop entries from the factorisation to
keep the matrix sparse.
The computed LU factors are no longer exact, but in many cases they
suffice as a preconditioner.
The criteria for dropping entries can be simple, or more elaborate
based on tolerances.
Here we’ll just look at ILU(0), which drops every single entry that
would have otherwise filled in.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 28 / 31

Classical Preconditioners: Incomplete LU factorisation

Let’s check out the resulting spectrum.

The clustering around unity looks very nice.

There are still those couple of pesky small eigenvalues that none of
our preconditioners has been able to properly deal with.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 29 / 31

Classical Preconditioners: Incomplete LU factorisation

Let’s check out the performance of ILU.

ILU is the winner for today. It outperforms all our other
preconditioners, yielding convergence in only 38 iterations.

Note: the plot on the left is using ||r (m)
left || = ||M−1r (m)|| which is

from the preconditioned system; the plot on the right is using the true
residual ||r (m)||.

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 30 / 31

Summary of Lectures 3 and 4

GMRES (Generalised Minimal Residual)

Iterative Krylov subspace method for solving Ax = b.

Finds the approximate solution x (m) ∈ Km(A, b) by minimising the
residual norm ||r (m)||.
Convergence rate depends on the properties of the matrix A: the
cond(X) and the eigenvalue distribution of the matrix A.

Restarted GMRES (GMRES(m))

Restarts after every m steps to control storage cost and run time.

May have slow convergence or even stall

Preconditioning

To improve the convergence for iterative methods.

Left-preconditioned system: M−1 Ax = M−1 b.

Right-preconditioned system: AM−1 u = b, then x = M−1 u.

Never form M−1 or M−1 A explicitly; always compute the action of
M−1 through M−1v (i.e., M\v).

Lec 4: Restarted GMRES + Preconditioning MoCao Lectures 2025 31 / 31

