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A common framework

A matrix problem in n dimensions: e.g. eigenvalue problem, linear system.

A subspace Km (“trial space”) to project the problem onto. Our focus is
on Krylov subspaces. There are m degrees of freedom.

A second subspace Lm (“test space”) with which to impose m suitable
constraints: typically that the residual is orthogonal to Lm.

Different choices of Km and Lm give rise to different methods.

Let us put our methods in this framework and see where they fit.
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Arnoldi method for eigenvalues (Ritz)

Choose Km(A, b) = span{b,Ab,A2b, ...,Am−1b} and Lm = Km.

We found Ritz values θ
(m)
i and Ritz vectors u

(m)
i = Vmy

(m)
i ∈ Km.

The eigenvalue problem residual is

r
(m)
i = Au

(m)
i − θ

(m)
i u

(m)
i

= AVmy
(m)
i − θ

(m)
i Vmy

(m)
i

And the constraints imposed are r (m) ⊥ Km: i.e. V
∗
mr

(m)
i = 0.

V ∗
m(AVmy

(m)
i − θ

(m)
i Vmy

(m)
i ) = 0

V ∗
mAVmy

(m)
i − θ

(m)
i V ∗

mVmy
(m)
i = 0

Hmy
(m)
i − θ

(m)
i y

(m)
i = 0

So Ritz values come from solving Hm y
(m)
i = θ

(m)
i y

(m)
i
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GMRES

Choose Km(A, b) = span{b,Ab,A2b, ...,Am−1b} and Lm = AKm.

The residual is
r (m) = b− Ax (m) = b− AVmy

(m)

And the constraints imposed are r (m) ⊥ AKm: i.e. (AVm)∗r (m) = 0.

(AVm)
∗(b− AVmy

(m)) = 0

(Vm+1Hm)
∗(βVm+1e1 − Vm+1Hmy

(m)) = 0

H
∗
mV

∗
m+1(βVm+1e1 − Vm+1Hmy

(m)) = 0

H
∗
mHmy

(m) = H
∗
m(βe1)

which we recognise as the normal equations for the least squares problem

min ∥βe1 −Hmy∥

as used in GMRES.
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Methods so far

All methods are built on the Krylov subspace

Km(A, b) = span{b,Ab,A2b, ...,Am−1b}.

The choice of L and the form of the residual determines the method.

L = K L = AK
Au = λu Arnoldi (Ritz) ?
Ax = b ? GMRES

Can we fill in the rest of this table?

Projection method for eigenvalues using L = AK?

Projection method for linear systems using L = K?

Let’s tackle the second one first.
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FOM

Choose Km(A, b) = span{b,Ab,A2b, ...,Am−1b} and Lm = Km.

The residual is
r (m) = b− Ax (m) = b− AVmy

(m)

And the constraints imposed are r (m) ⊥ AKm: i.e. V
∗
mr

(m) = 0.

V ∗
m(b− AVmy

(m)) = 0

V ∗
mb− V ∗

mAVmy
(m) = 0

βe1 −Hmy
(m) = 0

which is simply the (square) linear system

Hmy
(m) = βe1

This is the Full Orthogonalisation Method (FOM).

Nowhere near as popular as GMRES but we’ll find a use for it today.
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Arnoldi method for eigenvalues (Harmonic Ritz)

Choose Km(A, b) = span{b,Ab,A2b, ...,Am−1b} and Lm = AKm.

The eigenvalue problem residual is

r
(m)
i = Au

(m)
i − θ

(m)
i u

(m)
i = AVmy

(m)
i − θ

(m)
i Vmy

(m)
i

And the constraints imposed are r
(m)
i ⊥ AKm: i.e. (AVm)∗r

(m)
i = 0.

(AVm)
∗(AVmy

(m)
i − θ

(m)
i Vmy

(m)
i ) = 0

Replace AVm with VmHm + hm+1,m vm+1 em
T throughout and simplify.

(H∗
mHm + h2m+1,m emem

T )y
(m)
i − θ

(m)
i H∗

my
(m)
i = 0

Harmonic Ritz values solve the generalised eigenvalue problem

(H∗
mHm + h2m+1,m emem

T )y
(m)
i = θ

(m)
i H∗

my
(m)
i
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The full family

All methods are built on the Krylov subspace

Km(A, b) = span{b,Ab,A2b, ...,Am−1b}.

The choice of L and the form of the residual determines the method.

L = K L = AK
Au = λu Arnoldi (Ritz) Arnoldi (Harmonic Ritz)
Ax = b FOM GMRES

Terminology:

Galerkin: L = K
Petrov-Galerkin: L ̸= K
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Shift-and-invert

Standard Arnoldi tends to converge to exterior eigenvalues.

If you want smallest eigenvalues, one idea is to apply the method to A−1

instead of A.

The eigenvalues are reciprocals, so the smallest eigenvalues of A look like
exterior eigenvalues of A−1 (with eigenvectors unchanged).

Build the Krylov subspace

Km(A
−1, b) = span

{
b,A−1b,A−2b, . . . ,A−(m−1)b

}
and apply Arnoldi as usual from here.

This works well, but requires you can cheaply apply A−1v .

(If eigenvalues close to some µ are desired, use instead (A− µI )−1).
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Ritz vs harmonic Ritz values

There is an interpretation of the harmonic Ritz values along these lines.

Ritz: u ∈ Km and Au − θu ⊥ Km.

Harmonic Ritz: u ∈ Km and Au − θu ⊥ AKm.

Let w = Au ∈ AKm. Then the harmonic Ritz residual in terms of w is

w − θA−1w ⊥ AKm =⇒ θ−1w − A−1w ⊥ AKm

So harmonic Ritz looks like an ordinary Ritz method applied to A−1, albeit
using the space AKm. i.e.

Harmonic Ritz: w ∈ AKm and A−1w − θ−1w ⊥ AKm.

In practice the harmonic Ritz values are somewhat better at small
eigenvalues but not comparable to true shift-and-invert (which uses
Km(A−1, b)).
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The Hermitian case

If A = A∗ then there is considerable simplification in the Arnoldi method.

Recall the third Arnolid relation: V ∗
mAVm = Hm.

By construction, Hm is upper Hessenberg.

But now also, we see since A = A∗ it must be Hermitian.

A matrix that is upper Hessenberg and Hermitian must be tridiagonal.

So Hm is usually relabelled Tm and it is necessarily of the form

Tm =


α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . . βm−1

βm−1 αm


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The Lanczos process

The implications of Hm becoming the tridiagonal Tm are that most of the
inner products we usually compute in the Arnoldi process are already zero!

In fact, at most two previous vectors need subtracting at each iteration
(two of the entries in a column of Tm, the third being the resulting norm).

The algorithm is now O(1) work per iteration, O(m) overall, making it
readily applicable for very large m.

Loss of orthogonality can appear in the basis, owing to the mathematical
enforcement of orthogonality only, rather than explicit numerical
enforcement.

If full reorthogonalisation is used, the algorithm cost blows back out to
O(m2), negating much of the advantage.

Selective or partial reorthogonalisation schemes are popular.
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The fuller family

We can now add a whole second table to our family of methods – those
for Hermitian matrices all get separate names and specialised algorithms.

A ̸= A∗ L = K L = AK
Au = λu Arnoldi (Ritz) Arnoldi (Harmonic Ritz)
Ax = b FOM GMRES

A = A∗ L = K L = AK
Au = λu Lanczos (Ritz) Lanczos (Harmonic Ritz)
Ax = b Conjugate gradient MINRES

Notably conjugate gradient is derived as the symmetric version of FOM
when A is additionally positive definite, with the optimality property

∥ε(m)∥A = min
pm(0)=1

∥pm(A)ε(0)∥A

where ε(m) = x − x (m) is the error and the A-norm is ∥v∥A =
√
v ∗Av .
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Restarted GMRES with deflation

Back to GMRES, we have seen that restarting may be necessary for
reasons of memory or runtime.

But this seems wasteful – throwing away the entire Krylov subspace just to
start over with a new initial guess.

There are numerous approaches to recycling some of this information, here
we present one approach: GMRES with deflated restarting.

The idea is to use the existing Krylov subspace to estimate a few of the
smallest eigenvalue/eigenvector pairs.

Smallest eigenvalues (closest to zero) are those that cause the most
trouble for convergence

Harmonic Ritz projection is the tool for the job
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Restarted GMRES with deflation

We can exploit the fact that the GMRES residual vector r (m) = b− Ax (m)

and the harmonic Ritz residual vector r
′(m)
i = Au

(m)
i − θiu

(m)
i are parallel

(if built from the same Krylov subspace).

Proof: both belong to Km+1 (dim m+ 1) and both are orthogonal to
L = AKm (dim m), hence, parallel.

So conceptually starting the next GMRES cycle with u
(m)
i generates Au

(m)
i

as the next vector, and this span already includes the “proper” restart

vector r (m) = r
(0)
new.

If u
(m)
i was a true eigenvector u, at the end of the next cycle, the new

residual r
(m)
new will have no component in that direction.

Proof: GMRES takes r ⊥ AKm, but if u ∈ Km then u ∈ AKm also
(eigenvector), so r ⊥ u.
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Restarted GMRES with deflation

Better yet is to include multiple (k , say) harmonic Ritz vectors, all stuffed
at the front of the space.

So the next cycle of GMRES builds an orthonormal basis for

S = span
{
u
(m)
1 , u

(m)
2 , . . . , u(m)

k , r
(0)
new,Ar

(0)
new, . . .Am−k−1r

(0)
new

}
where as usual r

(0)
new is the relabelled residual r (m) from the previous cycle.

If you choose a starting vector s (say) as a linear combination of the u
(m)
i

then this is truly a Krylov subspace

S = Km(A, s)

so we still have ourselves a genuine Krylov subspace method.
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Restarted GMRES with deflation

S = span
{
u
(m)
1 , u

(m)
2 , . . . , u(m)

k , r
(0)
new,Ar

(0)
new, . . .Am−k−1r

(0)
new

}
In practice you

Orthonormalise the harmonic Ritz vectors (Schur decomposition)

Orthonormalise r
(0)
new against each of those

Build out the rest of the space from there in the usual way

(better still, do the first two steps in m-dimensions and map back up).

You derive a generalised Arnoldi relation AVm = Vm+1Hm where Hm has
the usual upper Hessenberg structure except for a full top-left (k + 1)× k
block.

You no longer have r (0) = Vm(βe1), but it’s definitely in S , so just
calculate c = V ∗

mr
(0) and solve

min ∥c −Hmy
(m)∥ then x (m) = x (0) + Vmy

(m)
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Restarted GMRES with deflation
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Shift invariance

Suppose you have multiple shifted linear systems to solve:

(A+ σj I )xj = b

You only need the one Krylov subspace, since

Km(A+ σI , b) = Km(A, b) = span{b,Ab,A2b, ...,Am−1b}

The Arnoldi relations carry right over:

(A+ σI )Vm = AVm + σVm

= VmHm + hm+1,mvm+1e
T
m + σVm

= Vm(Hm + σI ) + hm+1,mvm+1e
T
m

= Vm+1(Hm + σE ) E = [I ; 0]

So you pay a one-off cost building the basis, then you get arbitrarily many
cheap shifted solves.
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Matrix Functions

Functions of a matrix, or simply “matrix functions” arise in many
applications. e.g. exponential integrators, fractional PDEs, Markov chains

As is often the case, we may not really need f (A), but only its action on a
vector i.e. f (A)b.

Once again, Krylov subspace methods are available to help.

Given the Arnoldi decomposition of Km(A, b) with the usual Vm and Hm

we know the projection of A onto Km is given by AK = V ∗
mAVm = Hm.

Meanwhile b has coordinate vector in the Krylov subspace given by βe1.

So it makes sense to propose the Krylov approximation

f (A)b ≈ βVmf (Hm)e1
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Matrix Functions

This formula can be further motivated by the following argument.
Consider the Cauchy integral formula for f (A)

f (A)b :=
1

2πi

ˆ
Γ
f (z)(zI − A)−1 b dz

We will use Krylov methods to approximate x(z) = (zI − A)−1b.
Substitute the FOM approximation (shifted system!)

x(z) ≈ xm(z) = βVm(zI −Hm)
−1e1

So

f (A)b ≈ 1

2πi

ˆ
Γ
f (z)βVm(zI −Hm)

−1e1 dz

= βVm

[
1

2πi

ˆ
Γ
f (z)(zI −Hm)

−1 e1 dz
]

= βVmf (Hm)e1

(If f (z) = 1/z this recovers FOM itself.)
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Matrix Function residual

How do we find a suitable residual for f (A)b? For f = exp at least, we
can define an ODE-based residual, since exp(tA)b is the solution to

u′(t) = Au(t), u(0) = b

So define the ODE residual

ρm(t) := u′m(t)− Aum(t)

and substitute

um(t) = βVm exp(tHm)e1

u′m(t) = βVmHm exp(tHm)e1

and
Aum(t) = βAVm exp(tHm)e1

= β(VmHm + hm+1,mvm+1 e
T
m ) exp(tHm)e1

to derive

∥ρm(t)∥ = ∥u′m(t)− Aum(t)∥ = βhm+1,m|eTmexp(tHm)e1|
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Matrix Function convergence

A = gallery(’tridiag’, 1000); b = rand(size(A,1),1);
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Extended Krylov Subspace Methods

Matrix functions computed using Krylov subspace methods are naturally
polynomial-based approximations.

For a rational approximation (pole at the origin) we can instead build the
extended Krylov subspace

Kℓ,m(A, v) = span
{
A−ℓ+1v , . . . ,A−1v , v ,Av , . . . ,Am−1v

}
This can be attractive when

Your matrix is cheap to solve linear systems (e.g. tridiagonal)

Your function is not well approximated by a polynomial on the
spectrum of A (e.g.

√
A)
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Matrix function convergence (EKSM)

A = gallery(’tridiag’, 1000); b = rand(size(A,1),1);
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Flexible GMRES

Standard GMRES with (right) preconditioning uses Km(AM−1, b).

But what if the preconditioner varies each time it is applied? e.g. the
preconditioner is itself an iterative method, solved only to some tolerance.

Arnoldi step needs modifying: zj = M−1
j vj , w = Azj then orthogonalise w

as usual to get vj+1. So we need to record both zj and vj :

AZm = Vm+1Hm

min ∥βe1 −Hmy
(m)∥

x (m) = Zmy
(m)

Double the memory cost, storing both matrices Vm+1 and Zm.

But flexibility to vary the preconditioner with each step.
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Jacobian-Free Newton-Krylov

Consider Newton’s method for the nonlinear system F (x) = 0. Each step
requires solving

J(xk)δx (k) = −F (x (k))

where J = ∂F/∂x is the Jacobian matrix. A Krylov method for this system
requires Jacobian-vector products J(x (k))v to build the Krylov subspace.

But a Jacobian-vector product is nothing but a directional derivative of F :

J(xk)v =
d
dt

∣∣∣∣
t=0

F (x (k) + tv)

So using automatic differentiation (or finite differences), Jacobian-vector
products can be calculated (or approximated) entirely matrix-free.

This leads to a Jacobian-free Newton-Krylov method (JFNK).

(Depending on your preconditioner it could even be fully matrix-free.)
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JFNK with over-solving
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Jacobian-Free Newton-Krylov

Further efficiencies are possible by matching the accuracy of the inner
Krylov solves to the outer Newton level accuracy (avoid over-solving).

We’re solving
J(xk)δx (k) = −F (x (k))

Use tolerance for inner (linear) solve

∥J(xk)δx (k) + F (x (k))∥ ≤ γk∥F (x (k))∥

where the “forcing term” γk < 1 and is updated as the iterations proceed.
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JFNK reducing over-solving
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Conclusion

In this series we have covered:

Arnoldi process

Arnoldi method for eigenvalues

GMRES

Preconditioning

Other related Krylov methods

Deflation

Matrix functions

Various other tips and tricks
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